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Abstract
Gliomas have the highest incidence among primary brain tumors, and the extracellular matrix (ECM) plays a vital role in tumor
progression. We constructed a risk signature using ECM-related genes to predict the prognosis of patients with gliomas.
mRNAandclinical data fromgliomapatientsweredownloaded fromTheCancerGenomeAtlas (TCGA),Genotype-TissueExpression

(GTEx) and Chinese Glioma Genome Atlas (CGGA) databases. Differentially expressed ECM-related genes were screened, and a risk
signature was built using least absolute shrinkage and selection operator (LASSO) Cox regression. Cell type identification by estimating
relative subsets of RNA transcripts (CIBERSORT) was used to assess immune infiltration in different risk groups. Gene set enrichment
analysis (GSEA) was performed to explore the molecular mechanisms of the genes employed in the risk score.
Differentially expressed ECM-related genes were identified, and their associated regulatory mechanisms were predicted via

analysis of protein–protein interaction (PPI), transcription factor (TF) regulatory and TF coexpression networks. The established risk
signature considered 17 ECM-related genes. The prognosis of the high-risk group was significantly worse than that of the low-risk
group. We used the CGGA database to validate the signature. CIBERSORT indicated that the levels of naive B cells, activated
memory CD4 T cells, regulatory T cells, gamma delta T cells, activated NK cells, monocytes, activated dendritic cells and activated
mast cells were higher in the high-risk group. The levels of plasma cells, CD8 T cells, naive CD4 T cells, resting memory CD4 T cells,
M0macrophages, M1macrophages, resting mast cells, and neutrophils were lower in the high-risk group. Ultimately, GSEA showed
that the terms intestinal immune network for IgA production, primary immunodeficiency, and ECM receptor interaction were the top 3
terms enriched in the high-risk group. The terms Wnt signaling pathway, ErbB signaling pathway, mTOR signaling pathway, and
calcium signaling pathway were enriched in the low-risk group.
We built a risk signature to predict glioma prognosis using ECM-related genes. By evaluating immune infiltration and biofunctions,

we gained a further understanding of this risk signature. This risk signature could be an effective tool for predicting glioma prognosis.
This study did not require ethical approval. We will disseminate our findings by publishing results in a peer-reviewed journal.

Abbreviations: CGGA = Chinese Glioma Genome Atlas, DEGs = differentially expressed genes, ECM = extracellular matrix, FDR
= false discovery rate, GTEx = Genotype-Tissue Expression, IDH = isocitrate dehydrogenase, LASSO = least absolute shrinkage
and selection operator, OS = overall survival, PPI = protein–protein interaction, ROC = receiver operating characteristic, STRING =
Search Tool for the Retrieval of Interacting Genes/Proteins, TCGA = The Cancer Genome Atlas.
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1. Introduction
The extracellular matrix (ECM), which constitutes scaffolds of
tissues and organs, is a complex network composed of more than
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300 proteins (with main components including extracellular
proteins, proteoglycans, and glycoproteins).[1–3] The ECM could
also regulate cell growth, differentiation, migration, vascular
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development, and immune function.[4,5] As the key to maintaining
tissue homeostasis, the ECM is a dynamic environment, and ECM
disorders can promote tumor occurrence, progression, and
metastasis.[6,7] The ECM could act as a physical barrier between
tumor cells and normal cells in the early stage of tumors, preventing
tumor cell invasion.[8]However, under the influence ofmany factors
(such as hypoxia, metabolic stress, and tumor cell proliferation), the
remodeling process of the ECM is gradually deregulated, which is
manifested by increased deposition (fibrosis) and the degradation of
ECM.[9] It was reported that the degradation of ECM was an
important step in tumor invasion and metastasis, and MMP9 (a
matrix-degrading enzyme) was overexpressed in highly aggressive
breast cancer andwas closely related to recurrence.[10,11] In addition,
ECMdepositionwas found in solid tumors (fibrosis),making tumor
tissues stiffer than normal tissues and activating the proliferation of
tumor cells.[12,13] Additionally, increased expression of ECM-
related genes was associated with poor prognosis in clear cell renal
cell carcinoma, and theupregulated expressionof genes thatmediate
ECMremodeling could improve themortality of breast cancer, lung
cancer, and gastric cancer.[14,15]

The incidence of gliomas is highest among primary brain
tumors.[16] Gliomas include astrocytoma, oligodendroglioma,
oligoastrocytoma, ependymoma, malignant glioma, etc.[17]

Gliomas are classified into 4 grades (grade I-IV) by the World
Health Organization (WHO).[18] Although surgical resection,
radiotherapy, and chemotherapy are the main treatments for
gliomas, the prognosis is still poor.[19,20] Glioblastoma (part of
astrocytoma, grade IV) accounts for 50% of gliomas and
generally responds poorly to all therapies, leading to the highest
mortality rate, with a median survival time of approximately 1 to
2years.[21,22] It is confusing that the prognosis of patients with
low-grade glioma is quite different; some patients have a poor
prognosis, while some patients could survive for more than 10
years.[23] Currently, a study indicated that isocitrate dehydroge-
nase (IDH) mutation and 1p/19q codeletion could serve as
important biomarkers for predicting the prognosis and develop-
ment of gliomas, but these biomarkers were only effective in some
patients.[24] Therefore, it is essential to confirm biomarkers that
can reliably predict the prognosis of glioma patients and develop
more effective targeted drugs to guide the treatment of gliomas.
Increasing studies have revealed the relationship between the
ECM and gliomas, and ECM remodeling could accelerate the cell
proliferation, angiogenesis, invasion, and infiltration of gliomas;
thus, the ECM is the focus of our research.[25–27]

In our study, we used the mRNA expression data obtained
from The Cancer Genome Atlas (TCGA) database and the
Genotype-Tissue Expression (GTEx) database to screen differ-
entially expressed genes (DEGs) from ECM-related genes. Then,
a risk signature was constructed to predict the prognosis of
patients with gliomas using ECM-related genes. A microarray
dataset obtained from the Chinese Glioma Genome Atlas
(CGGA) database was used to validate the accuracy of the risk
signature. Finally, risk score-related immune cell infiltration and
potential biological functions were also evaluated.

2. Materials and methods

2.1. Data collection

The mRNA expression data and clinical data of patients with
gliomas (including low-grade glioma and glioblastoma) in the
TCGA database were obtained from UCSC Xena (http://xena.
ucsc.edu/). The mRNA expression of normal brain tissues was
2

downloaded from the GTEx database (http://commonfund.nih.
gov/GTEx/). The transcriptome data fromTCGA andGTEx (702
glioma tissues and 1152 normal brain tissues) were merged for
further analysis (training set). ECM-related genes were found in 2
ECM-related gene sets (“KEGG ECM RECEPTOR INTERAC-
TION” and “KEGG FOCAL ADHESION”) from the Molecular
Signatures Database (MSigDB) (https://www.gsea-msigdb.org/
gsea/msigdb/index.jsp). Data from 1018 patients with gliomas in
CGGA (http://www.cgga.org.cn/) were also obtained to validate
the risk signature (validation set). Intersecting ECM-related genes
in the training set and validation set were screened. To explore
regulatory mechanisms, we also acquired information on
transcription factors (TFs) from the Cistrome Cancer database
(http://cistrome.org/).[28]
2.2. DEGs

DEGs were identified from intersecting genes in the training set
via the limma package in R software.[29] Differentially expressed
TFs were also identified. A protein-protein interaction (PPI)
network was constructed with the Search Tool for the Retrieval
of Interacting Genes/Proteins (STRING) database (score >0.4)
(https://stringdb.org/) to assess the relationships among the
DEGs. Through cluster analysis, subnets were visualized from the
PPI network. TF enrichment analysis was performed via the
Database for Annotation, Visualization and Integrated Discovery
(DAVID) website (https://david.ncifcrf.gov/) to construct a TF-
DEG regulatory network (P< .05).
2.3. The risk signature

Univariable Cox regression was conducted to identify the DEGs
related to prognosis (P< .05). We used DEGs related to prognosis
and differentially expressed TFs to establish a coexpression
network (P value <.05 and correlation coefficient > 0.4 were
defined as the cutoff criteria). Then, the risk signature was built
using the selected DEGs related to prognosis via least absolute
shrinkage and selection operator (LASSO)Cox regression, and the
risk score was calculated. Based on the median value of the risk
score, the gliomapatientswere divided into 2 groups (high risk and
low risk). The accuracy of the risk signature was estimated via a
receiver operating characteristic (ROC) curve. Kaplan–Meier
survival curves were used to compare the overall survival (OS)
between the high-risk group and the low-risk group (the log-rank
test). Then, univariable and multivariable Cox regression analyses
were performed to evaluate whether the risk score was an
independent predictor of poor OS in glioma patients. Finally, the
CGGA database was used to validate the signature.

2.4. Immune cell infiltration

Cell type identification by estimating relative subsets of RNA
transcripts (CIBERSORT) was used to evaluate the infiltration of
immune cells. Through this deconvolution algorithm based on
gene expression profiles, we could clarify the relationship between
the risk score and the infiltration of 22 immune cells (including
naive B cells, memory B cells, plasma cells, CD8T cells, naive CD4
T cells, and resting memory CD4 T cells, among others).[30–32]

2.5. Gene set enrichment analysis (GSEA)

GSEA was conducted to assess the molecular mechanisms of the
genes in the risk score. We downloaded the gene set “c2.cp.kegg.

http://xena.ucsc.edu/
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Table 1

Characteristics of the patients obtained from the TCGA and CGGA
database.
Basic information TCGA (n=615) CGGA (n=696)

Age 45 (median) 43 (median)
Gender
Female 267 289
Male 348 407

Grade
WHO I&II – 182
WHO III&IV – 514

Radiotherapy
Yes 421 550
No 194 146

Chemotherapy
Yes – 505
No – 191

IDH mutation
Mutant – 376
Wildtype – 320

1p19q Codeletion
Yes – 145
No – 551

MGMTp methylation
Yes – 389
No – 307

CGGA = The Chinese Glioma Genome Atlas, IDH = isocitrate dehydrogenase, TCGA = The Cancer
Genome Atlas.

Figure 1. DEGs.Differentially expressedECM-relatedgenesbetweenglioma tissuesan
and volcanoplot (C). Differentially expressed TFsbetweengliomas and normal brain tiss
regulatory network was constructed (E). Diamond nodes represent enriched TFs, red
downregulated DEGs. DEGs = differentially expressed genes, ECM = extracellular m
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v7.1.symbols” from MSigDB for GSEA. Normalized enrichment
scores, nominal P values (NOMP values) and false discovery rate
(FDR) Q values were acquired though GSEA. A NOM P value
<.05 and an FDRQ value of<0.25 were considered significantly
enriched.
2.6. Statistical analysis

We performed the log-rank test and Cox regression via the
survival package for R. The LASSO Cox regression was carried
out via the glmnet package for R. The ROC curves were
generated via the survival ROC package for R. All networks were
displayed via Cytoscape software version 3.8.0.
3. Results

3.1. DEGs

The basic clinical information of the glioma patients in the TCGA
andCGGAdatabases is shown in Table 1.We identified 89DEGs
from the intersecting ECM-related genes; 52 of the DEGs
exhibited upregulated expression, and 37 exhibited down-
dnormalbrain tissues from theTCGAdatabasewere illustratedusingaheatmap (A)
ueswere identifiedand are shown via a heatmap (B) and volcanoplot (D). A TF-DEG
circular nodes represent upregulated DEGs, and green circular nodes represent
atrix, TCGA = The Cancer Genome Atlas, TF = transcription factor.
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Figure 2. PPI network. A PPI network was established based on the DEGs via the STRING database (A). Through cluster analysis, subnets were visualized from the
PPI network (B-H). Red circular nodes represent upregulated DEGs, and green circular nodes represent downregulated DEGs. By counting the number of edges
connected to the nodes, ITGAV was identified as the hub gene. DEGs = differentially expressed genes, ITGAV = integrin subunit alpha V, PPI = protein–protein
interaction.
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regulated expression (Fig. 1A and C). In addition, 289
differentially expressed TFs were screened; 193 exhibited
upregulated expression, and 96 exhibited downregulated
expression (Fig. 1B and D). A TF regulatory network was
constructed based on the 89 DEGs and enriched TFs (Fig. 1E). A
PPI network and subnets obtained through cluster analysis were
established and showed that integrin subunit alpha V (ITGAV)
was the hub gene (Fig. 2A-I).

3.2. The risk signature

We performed univariate Cox regression to identify the DEGs
related to prognosis (Fig. 3A). A TF coexpression network was
constructed based on the 79 DEGs related to prognosis and 289
differentially expressed TFs (Fig. 3B). The risk signature was built
using the selected genes via LASSO Cox regression, and the risk
score was calculated (Table 2) (Fig. 4A-C). Based on the median
value of the risk score, the glioma patients were divided into 2
groups (high risk and low risk). The ROC curve results showed
that the OS of patients with gliomas waswell predicted by the risk
score [area under the curve (AUC) at 1 year=0.884, AUC at 3
years=0.926, AUC at 5years=0.871] (Fig. 4D). The survival
curve suggested that the prognosis of the high-risk group was
significantly worse than that of the low-risk group (P< .001)
(Fig. 4E). Univariable Cox regression showed that age [hazard
ratio (HR)=1.066, 95% confidence interval (CI)=1.055–1.076,
P< .001], gender (HR=1.298, 95%CI=1.005–1.667, P= .046),
radiation therapy (HR=2.243, 95%CI=1.608–3.130, P< .001)
and risk score (HR=3.493, 95% CI=3.055–3.995, P< .001)
were closely related to poor prognosis in gliomas (Fig. 4F). The
risk score was also identified as a factor associated with prognosis
4

(HR=3.014, 95% CI=2.552–3.560, P< .001) via multivariable
Cox regression (Fig. 4G). We also established a nomogram that
could predict the survival probability of 1-year, 3-year and 5-year
OS (Fig. 4H). The calibration curve revealed the accuracy of the
prediction using the nomogram (Fig. 4I). The CGGA database
was used to validate the risk signature. The patients were divided
into 2 groups (Fig. 5A-C). The ROC curve results showed that the
OS of patients with gliomas was well predicted by the risk score
(AUC at 1 year=0.748, AUC at 3years=0.802, AUC at 5years=
0.806] (Fig. 5D). The survival curve also suggested that the
prognosis of the high-risk groupwas significantly worse than that
of the low-risk group (P< .001) (Fig. 5E). Univariable Cox
regression showed that age (HR=1.029, 95% CI=1.021–1.036,
P< .001), chemotherapy (HR=1.290, 95% CI=1.059–1.571,
P= .011), IDH mutation (HR=0.336, 95% CI=0.281–0.401,
P< .001), 1p19q codeletion (HR=0.237, 95% CI=0.179–
0.315, P< .001), grade (HR=4.841, 95% CI=3.754–6.242,
P< .001) and risk score (HR=2.034, 95% CI=1.869–2.214,
P< .001) were closely related to poor prognosis in gliomas
(Fig. 5F). The risk score was also identified as a factor associated
with prognosis (HR=1.439, 95% CI=1.278–1.620, P< .001)
via multivariable Cox regression (Fig. 5G). The nomogram could
predict the survival probability of 1-year, 3-year, and 5-year OS
(Fig. 5H). The calibration curve revealed the accuracy of the
prediction using the nomogram (Fig. 5I).

3.3. Evaluation of immune cell infiltration

CIBERSORT was used to evaluate the relationship between
immune cell infiltration and the risk score.The levels ofnaiveB cells
(P= .002), activated memory CD4T cells (P< .001), regulatory T



Figure 3. DEGs and prognosis. DEGs related to prognosis were screened via univariate Cox regression (A). A coexpression network was established using
differentially expressed TFs and DEGs related to prognosis (B). Diamond nodes represent TFs, red circular nodes represent high-risk DEGs (HR> 1), green circular
nodes represent low-risk DEGs (HR<1), red edges represent positive regulation, and green edges represent negative regulation. DEGs = differentially expressed
genes, HR = hazard ratio, TF = transcription factor.

Table 2

The coefficients of included genes obtained from LASSO Cox
regression.

Gene Coefficient

PARVB 0.0962
RAP1B 0.0529
PIK3CA �0.0132
PGF �0.0604
VEGFA 0.0294
SDC1 0.1073
SPP1 0.1006
FLNC 0.0940

LASSO = least absolute shrinkage and selection operator.
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cells (P< .001), gamma delta T cells (P< .001), activated NK cells
(P=0.012), monocytes (P< .001), activated dendritic cells (P
< .001) and activatedmast cells (P< .001) were higher in the high-
risk group than in the low-risk group. The levels of plasma cells
(P= .001), CD8 T cells (P= .002), naive CD4 T cells (P< .001),
resting memory CD4 T cells (P< .001), M0 macrophages
(P< .001), M1 macrophages (P< .001), resting mast cells (P
= .004), and neutrophils (P< .001) were lower in the high-risk
group than in the low-risk group (Fig. 6A). Then,we found that the
expression of programmed cell death 1 (PD-1; correlation
coefficient = 0.38, P< .001), programmed cell death 1 ligand 1
(PD-L1; correlation coefficient=0.55, P< .001), lymphocyte
activating 3 (LAG3; correlation coefficient=0.17, P< .001),
hepatitis A virus cellular receptor 2 (HAVCR2, correlation
coefficient = 0.55, P< .001), B- and T-lymphocyte–associated

http://www.md-journal.com


Figure 4. The risk signature. The expression of selected ECM-related genes in different groups (A). The distribution of patients with gliomas into different groups (B).
Survival status of the patients in different groups (C). The AUC of the ROC curve is shown (D). Kaplan-Meier survival analysis revealed that a high risk score was
significantly related to poor OS (E). Univariate Cox regression and multivariate Cox regression demonstrated that the risk score was an independent prognostic
factor in gliomas (F-G). The results of the nomogram and the calibration curve implied that the accuracy of the signature was satisfactory (H). AUC = area under the
curve, ECM = extracellular matrix, OS = overall survival, ROC = receiver operating characteristic.

Figure 5. Validation using the CGGA database. The expression of selected ECM-related genes in different groups (A). The distribution of patients with gliomas into
different groups (B). Survival status of the patients in different groups (C). The AUC of the ROC curve is shown (D). Kaplan–Meier survival analysis revealed that a high
risk score was significantly related to poor OS (E). Univariate Cox regression and multivariate Cox regression demonstrated that the risk score was an independent
prognostic factor in gliomas (F-G). The results of the nomogram and the calibration curve implied that the accuracy of the signature was satisfactory (H). AUC= area
under the curve, CGGA = the Chinese Glioma Genome Atlas, ECM = extracellular matrix, OS = overall survival, ROC = receiver operating characteristic.

Liu and Li Medicine (2021) 100:16 Medicine
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Figure 6. Immune cell infiltration. CIBERSORT was used to evaluate the immune cell infiltration in different risk groups (A). The risk score was significantly positively
correlated with the expression of immune checkpoints (PD-1, PD-L1, LAG3, HAVCR2, BTLA, and CTLA4) (B-G). BTLA=B- and T-lymphocyte–associated, CTLA4
= cytotoxic T-lymphocyte–associated protein 4, HAVCR2= hepatitis A virus cellular receptor 2, LAG3= lymphocyte activating 3, PD-1 = programmed cell death 1,
PD-L1 = programmed cell death 1 ligand 1.

Liu and Li Medicine (2021) 100:16 www.md-journal.com
(BTLA, correlation coefficient = 0.12, P= .002), and cytotoxic T-
lymphocyte–associated protein 4 (CTLA4, correlation coefficient
= 0.24, P< .001) was significantly positively correlated with the
risk score (Fig. 6B-G).

3.4. GSEA

GSEA was conducted to explore the biofunctions of the genes
related to the risk score. The most significantly enriched signaling
pathways in the high-risk group are shown in Table 3. The most
significant signaling pathways enriched in the low-risk group are
shown in Table 4.
7

4. Discussion

Gliomas account for 80% of primary brain malignancies, and the
5-year survival rate is less than 10%.[33,34] In the past decade,
targeted therapies for the treatment of glioma have been rapidly
developed, but the effects have not been satisfactory.[35] Recent
studies have pointed out that the ECM plays an important role in
tumors. The ECM could have an impact on metastatic glioma
cells.[36] ECM signaling could drive the proliferation, differenti-
ation, and invasion and defer the apoptosis of tumor cells.[37]

Therefore, we identified ECM-related genes in gliomas as

http://www.md-journal.com


Table 3

Gene sets enriched in the high risk phenotype.

Gene set name NES NOM p-value FDR q-value

KEGG_INTESTINAL_IMMUNE_NETWORK_FOR_IGA_PRODUCTION 1.9214 .0000 0.0353
KEGG_PRIMARY_IMMUNODEFICIENCY 1.8421 .0039 0.0322
KEGG_ECM_RECEPTOR_INTERACTION 1.9250 .0040 0.0387
KEGG_P53_SIGNALING_PATHWAY 1.8972 .0041 0.0348
KEGG_TOLL_LIKE_RECEPTOR_SIGNALING_PATHWAY 1.8063 .0079 0.0311
KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION 1.8832 .0080 0.0315
KEGG_JAK_STAT_SIGNALING_PATHWAY 1.7603 .0098 0.0380
KEGG_FOCAL_ADHESION 1.8111 .0120 0.0319
KEGG_CELL_ADHESION_MOLECULES_CAMS 1.8061 .0139 0.0302
KEGG_CYTOSOLIC_DNA_SENSING_PATHWAY 1.7429 .0154 0.0396
KEGG_NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY 1.7479 .0158 0.0402
KEGG_APOPTOSIS 1.7449 .0160 0.0400
KEGG_RIG_I_LIKE_RECEPTOR_SIGNALING_PATHWAY 1.5169 .0434 0.1215

FDR = false discovery rate, NES = normalized enrichment score, NOM = nominal.
Gene sets with NOM p-val< .05 and FDR q-val<0.25 were considered significant.

Liu and Li Medicine (2021) 100:16 Medicine
research targets to discover the molecular mechanism of glioma
progression and therapeutic biomarkers.
Here, we analyzed the relationship between ECM-related

genes and the prognosis of gliomas in detail. Additionally, the risk
score we calculated based on 17 selected genes was an
independent factor leading to the poor prognosis of gliomas.
Numerous studies have revealed a close relationship between the
17 genes included in the risk signature and the development of
tumors. The overexpression of PARVB increased the capability of
cell migration in tongue squamous cell carcinoma, but PARVB
was considered a metastasis suppressor in urothelial cell
carcinoma.[38,39] Some microRNAs reduced the ability of tumor
metastasis by negatively regulating RAP1B.[40–42] In triple-
negative breast cancer, the expression of PIK3CA could be a
better prognostic marker independent of subtype.[43] Studies have
confirmed that the knockdown of SERPINE1 and upregulation of
microRNA-29c downregulate the expression of VEGFA to
promote cell apoptosis in tumors.[44,45] Lower expression of
SDC1 could lead to an increased metastasis rate in gallbladder
cancer through the ERK/Snail pathway.[46] These selected ECM-
related genes are worthy of further investigation as targets for
glioma treatments.
The results of CIBERSORT indicated that the levels of immune

cell infiltration were significantly associated with the risk score.
Activated CD8 T cells are an important member of the immune
response against tumors, and high levels of CD8 T cells, not CD4
T cells, could improve the survival rate of patients with
gliomas.[47–49] CD4 T cells are conducive to the angiogenesis
and tumor progression of gliomas.[50] However, we found that
some immune cells that exerted antitumor responses were
Table 4

Gene sets enriched in low risk phenotype.

Gene set name NES NOM p-value FDR q-value

KEGG_WNT_SIGNALING_PATHWAY �1.7562 .0080 0.1882
KEGG_ERBB_SIGNALING_PATHWAY �1.7468 .0154 0.1266
KEGG_MTOR_SIGNALING_PATHWAY �1.6935 .0201 0.1489
KEGG_CALCIUM_SIGNALING_PATHWAY �1.7540 .0265 0.1608

FDR = false discovery rate, NES = normalized enrichment score, NOM = nominal.
Gene sets with NOM p-val< .05 and FDR q-val<0.25 are considered as significant.
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significantly upregulated in the risk group but led to a poor
prognosis. The reasons are very complicated. The first is the
expansion of immunosuppressive cells, such as regulatory T cells,
which makes the immune response ineffective, and gliomas
themselves also have a strong immunosuppressive effect.[51,52]

Additionally, new findings suggest that tumor cells can escape the
immune response by using immune checkpoints.[53] The results of
our study implied that the risk score was significantly positively
correlated with the expression of immune checkpoints, indicating
that the immunosuppressive effect of the high-risk group was
stronger. We believe that it is vital to identify the connection
between the ECM and immune cells in glioma, which could
provide preliminary evidence for glioma immunotherapy.
Most of the pathways revealed by GSEA are related to the

immune response and tumor cell migration and invasion,
including primary immunodeficiency, theWnt signaling pathway
and the mTOR signaling pathway,[54–56] and suggest that their
molecular mechanisms and biological functions are closely
related to the risk score.
We should also realize that our research still has some

limitations. First, the transcriptome data of normal brain tissue
were lacking in the TCGA database, so we had to merge the
transcriptome data of the 2 databases (TCGA database and
GTEx database) for the identification and subsequent analysis of
DEGs, which might cause errors. Second, there are few types of
clinical data on gliomas in the TCGA database, which might lead
to incomplete results. Third, research on the relationship between
the risk score and immune cell infiltration functions has not been
conducted in depth. Additionally, the biological functions of the
genes related to the risk score were not further verified by basic
experiments.
5. Conclusions

In conclusion, we built a risk signature to predict the prognosis of
gliomas using ECM-related genes. Through the evaluation of
immune infiltration and biofunctions, we have a further
understanding of this risk signature. We believe that this risk
signature could be an effective tool for predicting the prognosis of
gliomas. In the future, ECM-related genes could become
therapeutic targets for gliomas.
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