
1. Introduction
Air pollution is an increasing threat to today's society. Data from the Global Burden of Disease study ranked 
ambient pollution from PM2.5 as the fifth leading global mortality risk factor in 2015, causing 4.2 million deaths 
and 103.1 million disability-adjusted life years due to health impacts such as lung cancer, lower respiratory 
infection, chronic obstructive pulmonary disease, cerebrovascular disease, and ischemic heart disease (Cohen 
et al., 2017). A recent update for this study (Fuller et al., 2022) reports a rise in ambient pollution attributable 
deaths to 4.5 million in 2019, a 7% increase since 2015 and a 66% increase since 2000, revealing that, despite 
increased awareness and attempts at remediation of this problem, our efforts have so far been insufficient in 
protecting society from the harms of ambient pollution.

Abstract Ambient air pollution is an increasing threat to society, with rising numbers of adverse outcomes 
and exposure inequalities worldwide. Reducing uncertainty in health outcomes models and exposure disparity 
studies is therefore essential to develop policies effective in protecting the most affected places and populations. 
This study uses the concept of information entropy to study tradeoffs in mortality uncertainty reduction 
from increasing input data of air pollution versus health outcomes. We study a case scenario for short-term 
mortality from particulate matter (PM2.5) in North Carolina for 2001–2016, employing a case-crossover 
design with inputs from an individual-level mortality data set and high-resolution gridded data sets of PM2.5 
and weather covariates. We find a significant association between mortality and PM2.5, and the information 
tradeoffs indicate that a 10% increase in mortality information reduces model uncertainty three times more 
than increased resolution of the air pollution model from 12 to 1 km. We also find that Non-Hispanic Black 
(NHB) residents tend to live in relatively more polluted census tracts, and that the mean PM2.5 for NHB cases in 
the mortality model is significantly higher than that of Non-Hispanic White cases. The distinct distribution of 
PM2.5 for NHB cases results in a relatively higher information value, and therefore faster uncertainty reduction, 
for new NHB cases introduced into the mortality model. This newfound influence of exposure disparities in the 
rate of uncertainty reduction highlights the importance of minority representation in environmental research as 
a quantitative advantage to produce more confident estimates of the true effects of environmental pollution.

Plain Language Summary We study how estimates of the relationship between air pollution 
and mortality may be improved with more information on air pollution concentrations or death records, and 
compare the impacts of improved air pollution data alone versus improved death data alone. We also study the 
effect of social inequalities by comparing what happens when there is missing data in the majority demographic 
(in this case, Non-Hispanic White, NHW) versus missing data in a minoritized demographic group (in this case, 
Non-Hispanic Black, NHB). We find that, because NHW and NHB populations are exposed to different levels 
of air pollution, the data from the NHB minority is, statistically speaking, more informative, as it provides 
new information that cannot be obtained by only looking at the NHW majority. This finding highlights the 
importance of ensuring that studies of air pollution and health effects are representative of both majority 
and minoritized populations. Having data that represent everyone allows us to develop better assessments of 
environmental health impacts, and also to do research that treats environmental health as a fundamental right 
for all humans regardless of their race, income, or other differences.
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The United States stands out as a successful case of continued efforts to curb air pollutant emissions. The Clean 
Air Act required in 1970 that the Environmental Protection Agency (EPA) set National Ambient Air Quality 
Standard (NAAQS) for “criteria pollutants” and establish a network of ambient pollution monitoring stations to 
assess compliance to these standards. The first NAAQS specifically for PM2.5 was issued in 1997 (once monitors 
were advanced enough to measure particles of this size), setting the standard for annual mean concentration at 
15 μg/m 3 (EPA, 1997). However, subsequent findings of harmful health effects at air pollution concentrations that 
blend into background levels have prompted the continual lowering of NAAQS (McClellan, 2002). The standard 
for PM2.5 was lowered to 12 μg/m 3 in 2012 (EPA, 2013), and a proposal issued in January of 2023 is now currently 
underway to further lower the NAAQS to 9–10 μg/m 3 (EPA, 2023). Although these nationwide measures have 
been effective in reducing overall levels of air pollution, they have not been as successful in curbing demographic 
and socioeconomic inequalities in relative exposure (Colmer et al., 2020; Liu et al., 2021).

Extensive research has found demographic and/or socioeconomic disparities in exposure to PM2.5 and other air 
pollutants across different regions of the world (Hajat et al., 2015). In the United States, multiple studies have 
found that people of color have been systematically exposed to higher levels of air pollution (Colmer et al., 2020; 
Liu et al., 2021; Tessum et al., 2021). These racial disparities are not only found across different income levels, 
urbanicity levels, and emission types (Liu et al., 2021; Tessum et al., 2021), but they have also persisted despite 
the nationwide decreasing trend in air pollution seen in the last four decades, with studies identifying that the 
relatively most polluted census tracts in present day are largely the same census tracts that were most polluted in 
the 80s and the 90s (Colmer et al., 2020; Liu et al., 2021).

In light of this lack of progress in addressing both air pollution-related health outcomes at the global level and 
pollution exposure disparities at the national level, it is essential to develop policies that will effectively target 
the places and populations most affected by ambient air pollution. However, one of the multiple challenges to 
effective policy is the uncertainty affecting ambient pollution health impact assessments (HIAs) used to guide 
AQ standards from local and national (EPA, 2019; EU, 2008) to global (WHO, 2006) levels. These studies inte-
grate multiple sources of information such as, among others, air pollution concentrations and related population 
exposure, physiological responses to pollution exposure, and their variation by individual-level factors (such 
as gender, age, body mass, race, etc.) as well as residential factors (such as proximity to water bodies or green 
spaces). Each of these sources of information involved in the air pollution HIA may introduce several different 
kinds of uncertainty into the final assessment model (Nethery & Dominici, 2019).

Among the many possible sources of uncertainty in HIAs, this study focuses on uncertainty stemming from 
incomplete knowledge of the pollution and/or health impact scenarios, caused by data scarcity in the input infor-
mation. When there is a recognized scarcity in observational data precluding the full characterization of the 
pollution-exposure-effects scenario, action can be taken to augment the available input data sets to increase our 
knowledge of the problem and gain confidence in the results of the final assessment. Solutions to the problem of 
data scarcity have been indeed addressed extensively in both the air pollution and the epidemiology fields.

Air pollution research has proposed different approaches to data assimilation for better risk characterization, 
mainly by supplementing ground observations from official monitoring stations (e.g., those from the United 
States' EPA) with other sources of data, such as citizen-science observations (Bonas & Castruccio, 2021; Shen 
et  al.,  2021), satellite observations of atmospheric and aerosol properties (Van Donkelaar et  al.,  2015, 2021; 
Zani et al., 2020), chemical transport models, or CTMs (Giani et al., 2020a, 2020b), and/or dispersion models 
(Bates  et al., 2018). In cases where ground-based pollution data are sparse, CTMs able to reproduce monitored 
pollutant concentrations have also been used to make robust assessments of the region's pollution risks (Mead 
et al., 2018). Therefore, several studies have focused on localized downscaling of existing CTMs to achieve finer 
resolution in areas of interest (Tessum et al., 2017) or in the implementation of higher-resolution CTMs for a 
more accurate representation of meteorological, chemical and aerosol properties (Crippa et al., 2019).

Previous work has also focused on assessing epidemiological uncertainty. For example, meta-analyses of epidemi-
ological studies combine multiple previous studies' results for robustness (Atkinson et al., 2014; Pope et al., 2020). 
Another approach (Burnett et al., 2014) developed an integrated exposure-response model by combining epide-
miological data from multiple PM2.5 sources, such as ambient air pollution, active and second hand tobacco 
smoke, and household solid cooking fuel. A recent study (Coffman et al., 2020) derived distributions from exist-
ing epidemiological data to model uncertainty in the exposure-response curve at low levels of PM2.5, for which 
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data is usually sparse. Other studies have performed disaggregation of exposure data with the goal of improving 
health effect estimation in future epidemiological studies (Beckx et al., 2009; Breen et al., 2020).

Data scarcity in air pollution epidemiology studies also has environmental justice implications. Studies of air 
pollution epidemiology have been traditionally based on ambient air pollution monitoring data from the US 
EPA, resulting in an urban bias in the assessment (Bell et al., 2004; Dominici et al., 2006) since the EPA prior-
itizes monitor placements in population-dense areas (Bravo et  al.,  2012; Miranda et  al.,  2011). Even within 
relatively-urbanized counties, minority populations have been found to live closer to sources of air pollution but 
further away from monitoring stations (Stuart et al., 2009). Recent research has therefore leveraged the use of 
satellite data, land use regression, and air quality models to expand and diversify the spatial area and thus, popu-
lation, for which PM2.5 exposures and health effects can be estimated (Ha et al., 2014; Hyder et al., 2014; Kloog 
et al., 2012; Qian et al., 2019).

Although the problem of data scarcity has been extensively studied as it relates to air pollution, epidemiology, and 
environmental justice, there remains a need for more interdisciplinary research linking the findings from all these 
fields under a single framework. We began addressing this need in a previous study (Alifa et al., 2022) where 
we adapted a methodology proposed in the hydrology field (De Barros & Rubin, 2008; De Barros et al., 2009) 
to create a novel framework that identifies the most efficient pathway to reduce uncertainty in estimates of air 
pollution-associated health risks. The studies in hydrology (De Barros & Rubin, 2008; De Barros et al., 2009) had 
explored the concept of uncertainty tradeoffs in the modeling of the health effects of groundwater contaminants 
combining the concept of information entropy with Bayesian inference methods; Our subsequent study (Alifa 
et al., 2022) adapted this framework for frequentist inference to study the effect of data increase on the reduction 
of air pollution mortality uncertainty, measured through the metric of information entropy, and visualize the 
tradeoffs in the resulting uncertainty of the mortality model depending on the kind of input data gained. The two 
cases presented in that study (Alifa et al., 2022), one with artificial data for PM2.5 and mortality data used in a 
long-term exposure model, and one with real time-series data used in a short-term exposure model, demonstrated 
the applicability of the method for aiding stakeholders in choosing the most efficient pathway for HIA uncer-
tainty reduction when limited resources (e.g., time, money, computational power) prevent them from investing in 
improvements for both pollution and health outcomes data.

We now seek to explore this framework further by applying it to a more complex case scenario involving 
spatio-temporal data. We use a case-crossover model design (Jaakkola,  2003) to investigate the association 
of short-term PM2.5 exposure with mortality in North Carolina for the years 2001–2016, through the use of 
individual-level mortality data and high-resolution gridded data sets of PM2.5 and weather covariates. This study 
aims to not only illustrate the usefulness of our information entropy tradeoff methodology to generate more robust 
impact assessments, but also to gain new knowledge of the influence of socio-demographic inequalities in the 
dynamics of uncertainty reduction.

2. Methods
2.1. Data

2.1.1. Mortality Data

We use individual-level mortality data for North Carolina from 2001 to 2016. The data was obtained from official 
birth certificates from the North Carolina State Center for Health Statistics, Vital statistics department. Our anal-
ysis utilizes each participant's date of death, precise coordinates for their residential location, and race/ethnicity. 
We studied total mortality (all causes of death except external causes, International Classification of Diseases, 
ICD10, A00-R99). Other individual characteristics not analyzed in this work are also included in the mortality 
data set, such as sex, age at death, education, and marital status. Additional analysis of the correlation of air pollu-
tion mortality with these individual-level variables, as well as that of residential and environmental variables, has 
been performed elsewhere (Son et al., 2020).

2.1.2. Air Pollution Data

We use daily gridded data from a 1 km model of PM2.5 concentration (Di et al., 2021). This ensemble-based model 
utilizes machine learning algorithms and multiple variables from monitoring stations from the EPA, satellite 
measurements, land use terms, chemical transport model output, and others, to predict daily PM2.5 for the entire 
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United States. More details about model development and evaluation are available elsewhere (Di et al., 2019). 
The exposure assigned to each participant is based on the 1 km gridcell that contains their residential location.

2.1.3. Weather Data

We include daily gridded data on mean temperature and dewpoint temperature as covariates in our mortality 
modeling. Inclusion of these covariates is common practice in air pollution-epidemiology studies (e.g., Nhung 
et al., 2017; Son et al., 2020) to control for weather-related mortality. These data are obtained on a 4 × 4 km grid 
from the Parameter-elevation Regressions on Independent Slopes Model (PRISM), which combines ground-based 
measurement station data with a digital elevation model to create gridded climate products for the U.S. Additional 
details are available elsewhere (Daly et al., 2008; PRISM Climate Group, 2004). Similarly to the air pollution 
data, each participant is assigned the weather data of the grid cell containing their residence.

2.1.4. Census Data

We utilize US census data on race for the analysis of disparities in air pollution exposure. We chose the data 
for 2010 since this census year falls around the middle of the range of our analysis (2001–2016). A comparison 
with 2020 census data determined that although North Carolina's population is increasing, the changes in racial 
composition and spatial distribution of the population are small enough for the results of our study to not be 
affected by the choice of census year.

2.2. Census-Tract Level Exposure Disparities

The 2010 US census reports 21.2% of the population of North Carolina was NHB, making them the largest racial 
minority in the state. Therefore, we focus our study of PM2.5 exposure disparities on the NHB population.

We derive the average PM2.5 concentration between 2001 and 2016 for each census tract in the state and compare 
these to the tract's %NHB using quantile regression (Koenker & Bassett, 1978; Koenker & Hallock, 2001). Quan-
tile regression estimates the conditional quantile(s) of interest of the response variable (in this case, PM2.5) as 
a linear combination of the predictor variable (in this case, %NHB). We model the 10th, 25th, 50th, 75th, and 
90th percentile PM2.5 using data from the 1,405 census tracts in the state with NHB residents. Ordinary linear 
regression, in contrast, estimates the conditional mean of the response variable, only giving information about 
the relationship between air pollution levels and the percentage of NHB residents for the “average” census tract. 
Using quantile regression provides more comprehensive results, allowing us to study this relationship for the 
more and least polluted census tracts, as well as the median census tracts, thus exploring racial inequalities in 
exposure at different relative exposure levels.

In addition to state-wide results, we also investigate exposure disparities for the two most populated counties 
in the state: Mecklenburg County (population 923,427 in the 2010 census, 50.5% Non-Hispanic White (NHW) 
and 30.2% NHB) and Wake County (population 906,969 in the 2010 census, 62.2% NHW and 20.4% NHB). We 
report quantile regression results for each county, and we also compare the density function of the %NHB popula-
tion in the least polluted census tracts in each county, determined as those with average PM2.5 in the first quartile, 
to density function of %NHB in the most polluted census tracts (those with average PM2.5 in the fourth quartile). 
This comparison of density functions provides an assessment of the differences in the racial distribution of the 
population between the most polluted and least polluted census tracts in the county.

2.3. Uncertainty Tradeoffs in Mortality Modeling

This study adopts the uncertainty tradeoffs methodology developed in Alifa et al. (2022) for the study of a real-
istic case scenario through the use of spatio-temporal data on pollution, mortality, and demographics. We will 
study how fitting the case-crossover model described below with changing input information on mortality and air 
pollution (Yi and PM2.5 in Equations 1a–1c, respectively) affects the uncertainty of the pollution-mortality coef-
ficient, β, in the model fit. We will also take advantage of the demographic information included in the mortality 
data set to investigate racial differences in uncertainty reduction from improved health data.

2.3.1. Case-Crossover Mortality Model

We model the association between PM2.5 and short-term mortality with a case-crossover design. This model uses 
each individual as their own control, eliminating the need to control for individual-level characteristics and thus 
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greatly reducing the number of necessary covariates for good model specification. This low number of covariates 
presents an advantage for our goal of isolating the influence of increasing input data for a specific variable (in 
this study, either for PM2.5 or mortality) on the uncertainty reduction of the epidemiology model. For a different 
type of model requiring more individual-level controls, the epistemic uncertainty introduced by a high number 
of covariates could obscure the uncertainty reduction achieved by any single variable's information gain. We 
select control days based on the same day of the week of the same month of the individual's death. Each case day 
therefore has more than one control, and we allow for bi-directional sampling of controls (selection of control 
days both before and after the individual's death) to control for bias from temporal trends in the pollution data 
(Navidi, 1998). Temperature and dewpoint temperature are also incorporated as covariates in the model.

The coefficients of the case-crossover model are fit using conditional logistic regression (Pampel, 2020). If we 
describe mortality Yi,t as following a Bernoulli distribution (Equation 1a), where Yi,t can be equal to 1 for the day 
of death or 0 for the control day(s), and the probability that Yi,t = 1 is Pi,t, then we can model the logged-odds 
of Pi,t as a linear relationship between our predictors of interest (Equation 1b), where the i refers to each patient 
and t to the days of case and control data associated to them, α is the intercept and β is the fitted coefficient 
describing the association of PM2.5 with mortality, also called exposure coefficient. We will focus on β for the 
study of uncertainty reduction in the case-crossover model. The coefficients γ and δ describe the association of 
temperature (T) and dewpoint temperature (D), respectively. Solving for the odds by exponentiating Equation 1b 
gives us the expression in Equation 1c, where each exponent term can be interpreted as the odds ratio (OR) for 
the association of each covariate with mortality.

𝑌𝑌𝑖𝑖𝑖𝑖𝑖 ∼ Bernoulli (P𝑖𝑖𝑖𝑖𝑖); (1a)

ln

(

P𝑖𝑖𝑖𝑖𝑖

1 − P𝑖𝑖𝑖𝑖𝑖

)

= 𝛼𝛼 + 𝛽𝛽𝛽𝛽𝛽𝛽2.5𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖𝑖 + 𝛿𝛿𝛿𝛿𝑖𝑖𝑖𝑖𝑖𝑖 (1b)

P𝑖𝑖𝑖𝑖𝑖

1 − P𝑖𝑖𝑖𝑖𝑖

= 𝑒𝑒
𝛼𝛼 × 𝑒𝑒

𝛽𝛽𝛽𝛽𝛽𝛽2.5𝑖𝑖𝑖𝑖𝑖𝑖 × 𝑒𝑒
𝛾𝛾𝛾𝛾𝑖𝑖𝑖𝑖𝑖 × 𝑒𝑒

𝛿𝛿𝛿𝛿𝑖𝑖𝑖𝑖𝑖 𝑖 (1c)

Our main interest lies in the second exponent on the right-hand side, 𝐴𝐴 𝐴𝐴𝛽𝛽𝛽𝛽𝛽𝛽2.5,𝑖𝑖,𝑖𝑖 . This term represents the OR for a 
PM2.5 increment of 1 μg/m 3, which we will refer to as OR1. For consistency with common practice in reporting 
of epidemiology results, we will report the OR for a PM2.5 increment of 10 μg/m 3 (OR10) which can be derived 
from OR1 as:

OR10 = 𝑒𝑒
𝛽𝛽×10 =

(

𝑒𝑒
𝛽𝛽
)10

= (OR1)
10
. (2)

We initially examine the association of mortality with PM2.5 at the day of death (lag 0), 1 day before death (lag 
1), and 2 days before death (lag 2). We also analyze two cumulative lags: lag 01 (the cumulative effect of lags 
0 and 1) and lag 02 (cumulative effect of lags 0, 1, and 2), by fitting mortality against the average of the PM2.5 
levels at the lags of interest. Then we perform stratified analysis to investigate differences in effects between the 
NHB and NHW populations at the aforementioned PM2.5 lags. Since this stratified analysis performs multiple 
tests on subsets of the same data set, we adjust its results for multiplicity by using the Bonferroni correction (Chen 
et al., 2017; Hochberg & Tamhane, 1987). Based on the results of the full model and the stratified analysis, we 
select a single lag of PM2.5 (lag 1) for further investigation of uncertainty tradeoffs. The temperature and dewpoint 
temperature covariates have the same lag as the PM2.5 in each model fit.

2.3.2. Uncertainty Quantification of the Mortality Model

We use the metric of information entropy to characterize the uncertainty of our estimate for the exposure coeffi-
cient, 𝐴𝐴 𝛽𝛽  . Since we can assume 𝐴𝐴 𝛽𝛽  is a continuous random variable, its entropy can be defined as (Christakos, 2012):

H
(

𝛽𝛽
)

= −

∞

∫
−∞

f
(

𝛽𝛽
)

ln
(

f
(

𝛽𝛽
))

d𝛽𝛽𝛽 (3)

where 𝐴𝐴 f
(

𝛽𝛽
)

 is the probability density function of the estimate. As more input information is acquired for 
the model in Equations 1a–1c, the inference becomes more accurate such that 𝐴𝐴 𝛽𝛽 → 𝛽𝛽 in probability, which 
results in a reduction of H(𝐴𝐴 𝛽𝛽  ). Our previous publication (Alifa et al., 2022) demonstrated several methods 
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for deriving entropy both parametrically and non-parametrically. For this study, we derive H(𝐴𝐴 𝛽𝛽  ) parametri-
cally from the standard error of the exposure coefficient, 𝐴𝐴 𝐴𝐴𝐴2

𝛽𝛽
 , output from the conditional logistic regression 

fit. Assuming 𝐴𝐴 𝛽𝛽  to be asymptotically normal, we use the closed form equation for the entropy of a normal 
distribution,

H
(

𝛽𝛽
)

=
1

2
log

(

2𝜋𝜋e�̂�𝜎2

𝛽𝛽

)

. (4)

Additionally, the relative entropy 𝐴𝐴 ∆𝐇𝐇𝛽𝛽 is a useful metric to compare the uncertainty of different information 
stages. We define the vector 𝐴𝐴 ∆𝐇𝐇𝛽𝛽 as:

∆𝐇𝐇𝛽𝛽 = 𝐇𝐇𝛽𝛽 − H𝛽𝛽𝛽ref
𝛽 (5)

where 𝐴𝐴 𝐇𝐇𝛽𝛽 is a vector containing 𝐴𝐴 H
(

𝛽𝛽
)

 for different stages of information, and Hβ,ref is the entropy of the full 
model computed with all information on both air pollution and mortality, meaning that 𝐴𝐴 ∆𝐇𝐇𝛽𝛽 decreases toward  0.

2.3.3. Change in Air Pollution Information

We generate different stages of air pollution information by upscaling the original 1 km PM2.5 model to two 
coarser resolutions, 6 and 12 km. We then fit the model in Equations 1a–1c with the three different resolutions 
and compare 𝐴𝐴 H

(

𝛽𝛽
)

 for the three cases. These different stages of information simulate a situation where stakehold-
ers are currently operating with coarse-resolution output such as that from the EPA's Community Multiscale Air 
Quality Model (CMAQ, 12 km resolution) or other similar gridded products, and want to explore the information 
benefits of downscaling their data to higher resolutions.

2.3.4. Change in Mortality Information

To change the amount of input mortality information, we fit Equations 1a–1c with varying number of mortality 
records. This simulates a case where stakeholders are interested in investigating the benefit of augmenting the 
health outcomes data set used for their assessment, due to known or suspected missing cases in said data set. We 
will investigate the effect of racial bias in the missing data by comparing the uncertainty reduction when cases 
are missing only from the NHW population versus cases missing only from the NHB population. Since NHB 
cases represented about 20% of the study population, this is the maximum number of missing cases we explore 
for both races. Therefore, we initially fit the model with ∼80% of the total mortality data, where the ∼20% of 
missing cases are either all NHW or NHB patients. Then we increase the number of patients and repeat the fit 
again with ∼90% of data, and lastly with 100% data coverage. We select missing cases at random from the pool 
of participants of the race of interest, and repeat each model fit 100 times to obtain ensemble results from which 
we compute the mean and 95% CI of 𝐴𝐴 H

(

𝛽𝛽
)

 at each information stage.

2.3.5. Information Yield Curves

Information yield curves (Alifa et al., 2022; De Barros & Rubin, 2008; De Barros et al., 2009) are a graphical 
device designed to display the tradeoffs in uncertainty reduction between information gain in air pollution and 
health data. This tool plots together, in mirror image, the separate effects of information increase for each of these 
data sets on the uncertainty reduction of 𝐴𝐴 𝛽𝛽  , enabling decision-makers to visualize the most efficient pathway to 
improve their assessment in their particular case scenario. In our previous study (Alifa et al., 2022) the changes 
in input data were first associated with changes in uncertainty for separate pollution and health models which 
when brought together would propagate to the final mortality uncertainty. Therefore, the information yield curve 
compared the changes in entropy for the separate pollution and health models (in the x axis) to the final change 
in entropy of the pollution-mortality assessment (in the y axis). The nature of the data sets in this current study 
requires a modification of the previous method by associating the changes in information for the input data sets 
directly with the changes in the final uncertainty of the case-crossover model fit. This results in an x-axis of 
qualitative nature, since there is no common unit to compare increased number of mortality records to increased 
resolution of the PM2.5 grid. However, decision-makers taking advantage of this method in the future would be 
able to find a common metric for information increase from each data set given their particular case scenario, 
such as cost of added data or time for data computation/procurement.
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3. Results
3.1. Descriptive Statistics

The mortality model had input of a total of 1,065,699 cases with 3,621,521 controls (3.40 controls per case). 
These cases contained more females than males (52.1% vs. 47.9%), and the majority of deaths were from people 
older than 65 years old (75.4%). Most cases were NHW (77.4%), while the second most cases were NHB (20.4%). 
Table S1 in Supporting Information S1 shows the full demographics of the mortality data used in the model.

The median of the PM2.5 in the model was 9.5 μg/m 3, with lower bound (fifth percentile) of 3.8 μg/m 3 and upper 
bound (95th percentile) of 21.5 μg/m 3. These quantiles varied by less than 0.1 μg/m 3 when recomputed separately 
for case days and control days. The median temperature was 15.7°C, with 5th and 95th percentiles of 0.7 and 
27.4°C, respectively. The median dewpoint temperature was 10.5°C and its 5th and 95th percentiles were −8.4°C 
and 21.9°C, respectively.

3.2. Exposure Disparities

The quantile regression for the whole state shows a significant, positive correlation between average PM2.5 and 
percent NHB population across all the quantiles modeled (Figure 1, panel a). This indicates that more polluted 
census tracts tend to have a higher percentage of NHB population across the entire state, regardless of the relative 
exposure level. Localized results from Mecklenburg and Wake counties (Figure 1, panels b and c) show the same 
significant, positive association for most quantiles studied. Figure 2 also shows that in both these counties, the 
majority of the least-polluted census tracts (those ranked in quartile 1 using average PM2.5 as criteria) have a low 
percentage of NHB population, while the most polluted tracts (ranked in quartile 4) tend to have comparatively 
higher percentages of NHB residents.

3.3. Mortality Model

We first present the results of the case-crossover model computed with the full record of mortality and using data 
from the highest resolution PM2.5 gridded data (1 km). We will later compare the changes in uncertainty for that 
model when fit with less data, by either reducing the number of mortality cases in the model or by using data 

Figure 1. Quantile regression between census tract average PM2.5 (years 2001–2016) and census tract percent of Non-Hispanic Black population for (a) all census tracts 
in North Carolina, (b) census tracts in Mecklenburg County, and (c) census tracts in Wake County. The inset in panel (b) provides a color reference for the quantiles 
plotted. Non-statistically significant results are represented with dashed lines. Note the y-axis scale in panel (a) is different from that in panels (b) and (c).



GeoHealth

ALIFA ET AL.

10.1029/2023GH000854

8 of 15

from coarser PM2.5 grids. All the model fits are performed with the same (4 × 4 km) data sets for temperature and 
dewpoint temperature taken at the same temporal lags as the PM2.5 data.

The second column of Table  1 reports the ORs for a 10  μg/m 3 increase in PM2.5 (OR10) and its 95% confi-
dence intervals for the five different lags investigated. The significant associations observed were, in descending 
magnitude: for lag 01, OR10 = 1.016 (95% CI 1.011–1.021); lag 02, OR10 = 1.016 (95% CI 1.010–1.022); lag 0, 
OR10 = 1.013 (95% CI 1.009–1.018), and lag 1, OR10 = 1.012 (95% CI 1.007–1.017). The association for lag 2 
was not statistically significant.

We also fit the case crossover models separately for the NHW and NHB 
cases to investigate effect differences between these population groups. 
Columns 3 and 4 of Table 1 show the OR10 and the (multiplicity adjusted) 
95% confidence interval for each lag and race. The association between PM2.5 
and short-term mortality was significant in the NHW population for all lags 
except lag 2, the same lags where the association was also significant when 
the whole study population was represented. This is a sensible result since 
the majority of the mortality cases studied come from the NHW population 
(77.4%). The results for the NHB population present wider confidence inter-
vals, associated to the relatively lower number of cases that were used to 
fit the model since only 20.4% of the study population is NHB, making the 
multiplicity-adjusted results for NHB not statistically significant. We will use 
the lag 1 model for subsequent analysis since it was the lag with the closest to 
significant association for NHB.

We compute the mean of the lag 1 PM2.5 data associated with cases and 
controls from the NHB population versus that one associated to the NHW 

Lag OR10 OR10 NHW OR10 NHB

Lag 0 1.013 (1.009–1.018) 1.015 (1.010–1.020) 1.006 (0.992–1.021)

Lag 1 1.012 (1.007–1.017) 1.013 (1.007–1.018) 1.010 (0.999–1.022)

Lag 2 1.004 (0.999–1.008) 1.005 (0.998–1.011) No effect

Lag 01 1.016 (1.011–1.021) 1.018 (1.012–1.024) 1.011 (0.998–1.025)

Lag 02 1.016 (1.010–1.022) 1.018 (1.011–1.025) 1.010 (0.994–1.026)

Note. Lags 0, 1, and 2 represent the influence of PM2.5 on the day of death, 
1 day before death, and 2 days before death, respectively, while lags 01 and 
02 represent the combined effect of multiple lags. Non-significant results are 
colored in gray.

Table 1 
Odds Ratios and 95% Confidence Intervals for the Association of PM2.5 
With Mortality at Different Lags for: The Entire Study Population (Column 
2), Non-Hispanic White (NHW) Cases Only (Column 3), and Non-Hispanic 
Black (NHB) Cases Only (Column 4)

Figure 2. Density of percent Non-Hispanic Black for census tracts with average PM2.5 in the first quartile (red) and in the fourth quartile (blue), for (a) Mecklenburg 
County and (b) Wake County.
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population in Figure  3 to investigate differences in the exposure of the 
two groups as seen by the model. We find a significant difference in the 
mean PM2.5, with the mean exposure being higher for the NHB group and 
the confidence intervals not crossing. Although this different in exposure is 
not reflected in significant differences in OR10 between populations, it may 
influence differences in uncertainty reduction between NHW and NHB data, 
which will be expanded on in subsequent sections.

3.4. Uncertainty Tradeoffs From Information Changes

To study uncertainty tradeoffs, we fit the model in Equations  1a–1c with 
varying input of either PM2.5 data or mortality data (Yi.t), in order to compare 
each of these data sets' influence in the final uncertainty of the case-crossover 
model, measured through the entropy of the exposure coefficient β, as 
explained in Section 2.3.

First, we isolate the influence of changing air pollution data on the 
case-crossover model's uncertainty reduction, by fitting the model three times 
with PM2.5 data of different resolutions (1, 6, and 12 km). Fitting the model 
with finer resolution PM2.5 data results in lower uncertainty of β (Figure S2 
in Supporting Information  S1 and right hand side of Figure  4). Since the 
PM2.5 exposure is assigned based on each individual's gridcell of residence, 
a coarser grid may result in more deaths that happened the same day falling 
within the same gridcell, causing multiple cases to have identical PM2.5 data. 
Although weather covariate data may still be different for each case (since 
these are always on the same 4 km grid) making the cases sharing PM2.5 data 
still likely distinct, the repeated sampling of the same PM2.5 values does not 
provide new information to the model, therefore reducing the information 
value of the air pollution data input.

Then, we isolate the effect of changing mortality data in the uncertainty of the case-crossover model by varying 
the number of mortality cases input into the model. We select the missing cases to be either all from the NHW 
population or the NHB population in order to investigate the effect of racial bias in the uncertainty reduction 
dynamics of health data. Fitting the model with a decreasing number of mortality cases increases the final uncer-
tainty for both scenarios, since a smaller sample size of input data will naturally provide less information value 
for inference (Figure S3 in Supporting Information S1 and left hand side of Figure 4). It is worth noting that while 
decreasing the number of mortality cases also decreases the sample size of the patient-associated PM2.5 input into 
the model, this change has an insignificant impact in the distribution of PM2.5, altering its mean, 5th, and 95th 
percentiles by a maximum of 0.07 μg/m 3.

The slope of uncertainty reduction via change in mortality data is steeper when the new cases introduced are from 
the NHB population. The width of the 95% confidence intervals resulting from the 100 different iterations of 
random sampling of case data are in the order of 10 −4 for both series, demonstrating that the random case selec-
tion does not significantly affect the final entropy results. Additionally, the 95% confidence intervals between 
both distributions do not cross, making the mean PM2.5 associated with NHB individuals statistically different 
from that of NHW individuals.

3.5. Information Yield Curve

While we showed in Section 3.4 that increasing air pollution information and health effects information both 
reduce the uncertainty in the final mortality estimate, their contribution to uncertainty reduction is not equal. The 
information yield curve in Figure 4 compares the individual effects of information gain from each data set in the 
model's uncertainty reduction. The dashed light-blue lines illustrate a graphical interpretation that can be used 
for decision-making purposes. If for a case scenario of interest, the target for mortality uncertainty reduction is 

𝐴𝐴 ∆H𝛽𝛽 as indicated by the horizontal dashed lines, the change in the x axis required for the data in each side can be 
compared to find the most efficient pathway for uncertainty reduction. In the case below, increasing health data 

Figure 3. Mean of the lag-1 PM2.5 associated with Non-Hispanic White 
cases (red) and Non-Hispanic Black cases (blue) in the case-crossover model 
(Equations 1a–1c) computed with state-wide data, and its 95% confidence 
interval.
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seems to reduce the uncertainty in the model more efficiently, since the same 𝐴𝐴 ∆H𝛽𝛽 can be achieved with a smaller 
change in x. However, the figure below presents a qualitative x-axis, as there is no common basis of comparison 
between increasing patient data and downscaling pollution model resolution. For a real-world scenario, stake-
holders would be able to apply a common metric to these data improvements, such as cost or time, making the 
x-axis quantitative and potentially altering the decision-making outcomes presented here.

4. Discussion and Conclusion
The results of this study illustrate the usefulness of our information entropy tradeoff methodology to not only 
generate more robust impact assessments, but also to gain new knowledge about the role of data from minority 
populations in the dynamics of uncertainty reduction.

We found associations between short-term PM2.5 exposure and mortality for years 2001–2016 in North Caro-
lina that were statistically significant despite the state's relatively low and decreasing air pollution levels. Our 
results were very similar to those of a previous study that used the same model design and mortality data (Son 
et al., 2020), with minor (and statistically non-significant) differences attributable to differences in sources and 
averaging techniques for the pollution and temperature data (comparison can be found in Figure S1 in Supporting 
Information S1).

North Carolina had a state-wide average PM2.5 concentration of 13.5 μg/m 3 in 2002, and state-wide decreases in 
concentrations resulted in the whole state presenting annual mean PM2.5 below the EPA's standard of 12 μg/m 3 
by 2016 (Bravo et al., 2022). Despite this improving trend in pollution concentrations, our findings add to the 
mounting evidence that particulate matter has detectable health effects even at pollution levels formerly seen as 
safe, motivating ongoing updates of air quality guidelines such as the EPA's proposal in January of 2023 to reduce 
the PM2.5 standard to between 9 and 10 μg/m 3.

The choice to investigate the pollution-mortality association in the short-term is motivated by the type of health 
data available for this study. We use a data set where cases have been selected based on health outcome (in this 

Figure 4. Information yield curve comparing the effect of information gain in mortality (left side) versus air pollution (right 
side) on the uncertainty reduction of the exposure coefficient in the case crossover model. The dashed light-blue lines provide 
graphical interpretation of the information yield curve by illustrating the different data increases necessary to achieve a fixed 
risk uncertainty reduction.
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case, mortality), making the data suitable for a short-term study using a case-control design and further, for a 
case-crossover design since we do not have data on other individuals who did not experience the outcome of 
interest (Belbasis & Bellou, 2018; Jaakkola, 2003). Since air pollution has been widely recognized to have both 
short-term and long-term effects, the same information tradeoffs methodology presented here could be applied 
to a different epidemiology model in the presence of health data suitable for a long-term study. For example, a 
long-term study could be performed using a cohort design, where participants are selected based on their degree 
of exposure to air pollution and placed into the “exposed” or “unexposed” group, and then health outcomes for 
these groups are observed and compared over a specified period of time (Belbasis & Bellou, 2018).

We also explored tradeoffs between data increases in air pollution or health outcomes in the uncertainty reduction 
of the case-crossover model used to investigate the pollution-mortality relationship. While both data types reduce 
uncertainty in the case-crossover model when information is increased, the uncertainty change in the model from 
upscaling air pollution data between 1 and 12 km is equivalent to the change from removing only approximately 
3% of the patient data, thus suggesting that investing in patient data may lead to more efficient uncertainty reduc-
tion. However, since information increase was achieved using different methods for each data set, the comparison 
of information change here is merely qualitative as there is no common variable in the x-axis of the information 
yield curve. If this method were applied to a scenario where information increases are associated to costs, time, 
or, as done in our previous study (Alifa et al., 2022), pollution/health model uncertainties, the comparison could 
be done qualitatively and the decision-making outcomes of the information yield curve may change. The goal of 
this work is not to provide an absolute answer to the choice between investing in pollution versus health infor-
mation, but to develop a framework applicable to any data set and environmental exposure scenario used in any 
epidemiological model.

The positive relationship between average PM2.5 and %NHB population found at the census tract level through 
quantile regression is consistent with previous findings of disparities in exposure for the NHB population in 
both nationwide (Miranda et al., 2011; Tessum et al., 2021; Woo et al., 2019); and regional (Bravo et al., 2016; 
Servadio et al., 2019; Stuart et al., 2009) studies. Our study of Mecklenburg and Wake counties further illustrated 
the presence of this inequality for the most populated areas of the state, which experience relatively higher levels 
of air pollution. However, the state-wide positive association found with respect to all the concentration quantiles 
also reveals that exposure inequalities can be detected not only among counties such as Mecklenburg and Wake 
with high emissions (placed in the high PM2.5 quartiles), but also among counties with lower emissions (those in 
the low PM2.5 quartiles), indicating that these racial inequalities may be independent from the relative difference 
in pollution levels between counties that have different emission types or levels of urbanicity, agreeing with 
recent nationwide findings (Liu et al., 2021; Tessum et al., 2021). These findings of exposure disparities are not 
reflected in the results of the stratified case crossover model, possibly due to the relatively low PM2.5 levels in the 
state that result in relatively small magnitude of exposure disparities.

A key finding of this paper is that disparities in PM2.5 exposure can affect model uncertainty reduction. If expo-
sure from a certain minority subpopulation (in this case, the NHB population) is significantly different than that 
of the majority population, as shown in the uncertainty tradeoffs analysis, then data from this minority have rela-
tively higher information value resulting in a faster rate of uncertainty reduction in the mortality model. The anal-
yses performed both at the census-tract level in Section 3.2 and at the individual level in Section 3.3 confirm that 
the NHB population is exposed to a statistically significant, higher levels of PM2.5 than the NHW majority. This 
differential exposure leads to a higher diversity of pollution data input in the model when a previously overlooked 
minority is included in the analysis. At the lowest stage of information the model is fit with ∼80% of the data, 
the majority of which comes from NHW individuals, so adding more data from NHW individuals will introduce 
samples from the PM2.5 distribution that is already known the most. In contrast, new data from NHB individuals 
introduces information from a distribution of PM2.5 that is different from the majority distribution, providing new 
information to the model and generating a faster uncertainty reduction. This result is not caused by the higher 
magnitude of the mean PM2.5 for NHB shown in Figure 3, but by the fact that the NHB are a minority population 
with a statistically different PM2.5 exposure distribution from that of the NHW population. Therefore, uncertainty 
reduction should have been steeper with new NHB data even if this subpopulation was exposed to less pollution 
than the NHW population, as long as the mean PM2.5 between subpopulations remained statistically different.

The authors also hypothesize that this result is transferrable to the study of any minority subpopulation (by race, 
income, residential location, etc.) that experiences a different exposure from the majority, implying that minority 
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representation in environmental research benefits not only the minorities in question, but also the researchers and 
stakeholders performing the research. In a situation where there is a known or suspected environmental exposure 
difference between sub-populations, ensuring the representation of all groups in the data used for the environ-
mental impact assessment will result in a wider sampling of the problem's information space, providing the quan-
titative advantage of reduced uncertainty. Since minority groups have been found to be both over-exposed and at 
times under-monitored (Stuart et al., 2009), the application of this framework will also provide researchers with 
increased awareness of both exposure and information disparities by design, contributing to the ongoing work of 
environmental justice.

There still remain multiple interesting opportunities for future expansion of the uncertainty reduction framework 
proposed in our first study (Alifa et al., 2022) and further expanded in this present work. One possible next step 
in future work is considering a case scenario where the assessment goes from an initial baseline of comparatively 
scarce pollution, epidemiology, or demographic information to subsequent stages of more information, via data 
augmentation methods such as assimilation, disaggregation, and/or downscaling. This work would require the 
integration of multiple data sets (e.g., by combing air pollution monitoring station data, gridded CTM output, and 
area-based demographic and health outcomes data), introducing new kinds of epistemic uncertainties, such as 
those stemming from errors in pollution and exposure measurements, model specification, data aggregation, and 
extrapolation of exposure-response functions, among others (Nethery & Dominici, 2019). These uncertainties are 
different from the one addressed in our framework in that they increase monotonically with the increase of input 
data, having the potential to obscure any uncertainty reduction from information gain if the epistemic errors in 
the  data are too high (Rao, 2005). For this reason, our work so far has taken advantage of full data sets and simu-
lated information scarcity by modeling only subsets of this data, which has allowed us to explore the proposed 
framework without having to deal with the epistemic uncertainties introduced by data assimilation errors.

The choice of North Carolina for this case study was prompted by the unique availability of high-resolution 
mortality data, but the relatively low PM2.5 levels in the state prevented us from incorporating true data assimi-
lation into this project, since the noise introduced by multiple PM2.5 data sources would have been greater than 
the signal of the PM2.5 data itself. This limitation speaks to the wider issue of data scarcity in air pollution, health 
outcomes, and demographics for the regions of the world that are most in need of epidemiology and exposure 
disparities studies.

The framework developed here could still be useful, however, for a case of interest where there is availability of 
pollution data only. As mentioned in the introduction, multiple methods to augment air pollution observations 
through assimilation of other data sets such as CTMs, satellite data, citizen-science observational networks have 
been devised in recent years. In a scenario where stakeholders want to augment their observational network but 
are unsure of which method to choose for the task, studying the information entropy tradeoffs between different 
data assimilation methods may be an efficient way to inform a decision. Furthermore, if demographic data is 
also available (such as census data), stakeholders would be able to investigate how information increases from 
different air pollution sources have different effects in the uncertainty of the estimates of exposure inequalities 
between different subpopulations, and whether focusing on augmenting data in regions with high versus low 
concentrations of minority populations yields different effects in uncertainty reduction.

As the scientific community continues efforts to improve characterization of environmental exposure effects for 
overlooked areas and populations around the world, the framework presented here gives researchers a new oppor-
tunity to elevate minority representation from a qualitative afternote in a study's discussion section to a center-
piece of the study's design, aiding a quantitatively more accurate analysis and producing confident estimates of 
the true effects of environmental pollution.
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of Notre Dame. The data may be accessed through a collaboration request to CEHI: https://www.cehidatahub.
org/collaborate. The 1 km gridded air pollution data was obtained from NASA's SEDAC (Di et al., 2021). The 
4 km gridded temperature and dewpoint temperature was obtained from the PRISM Climate Group at Oregon 
State University (PRISM Climate Group, 2004) and can be downloaded by navigating to the “Recent Years” 
tab. The 2010 census data can be downloaded from the Census Bureau, https://data.census.gov/, where the user 
can find census tract-level information on race by filtering for Year 2010, Geography → Census Tract → North 
Carolina → All Census Tracts, and selecting product “P9 HISPANIC OR LATINO, AND NOT HISPANIC OR 
LATINO BY RACE, 2010: DEC Summary File 1.” All analyses were performed using R Statistical Software (v 
4.2.3, R Core Team, 2023).
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