
fmicb-08-01120 June 16, 2017 Time: 14:0 # 1

ORIGINAL RESEARCH
published: 20 June 2017

doi: 10.3389/fmicb.2017.01120

Edited by:
Pierre-Emmanuel Courty,

Institut National de la Recherche
Agronomique (INRA), France

Reviewed by:
Sergio Saia,

Council for Agricultural Research
and Agricultural Economy Analysis,

Italy
Erika Buscardo,

University of Coimbra, Portugal

*Correspondence:
Jianchu Xu

jxu@mail.kib.ac.cn;
j.xu@cgiar.org

Peter E. Mortimer
peter@mail.kib.ac.cn

Specialty section:
This article was submitted to

Plant Microbe Interactions,
a section of the journal

Frontiers in Microbiology

Received: 22 December 2016
Accepted: 01 June 2017
Published: 20 June 2017

Citation:
Gui H, Purahong W, Hyde KD, Xu J

and Mortimer PE (2017)
The Arbuscular Mycorrhizal Fungus

Funneliformis mosseae Alters
Bacterial Communities in Subtropical

Forest Soils during Litter
Decomposition.

Front. Microbiol. 8:1120.
doi: 10.3389/fmicb.2017.01120

The Arbuscular Mycorrhizal Fungus
Funneliformis mosseae Alters
Bacterial Communities in Subtropical
Forest Soils during Litter
Decomposition
Heng Gui1,2,3,4, Witoon Purahong5, Kevin D. Hyde3,4, Jianchu Xu1,2* and
Peter E. Mortimer1,2*

1 Key laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of
Sciences, Kunming, China, 2 World Agroforestry Centre, East and Central Asia, Kunming, China, 3 Centre of Excellence in
Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand, 4 School of Science, Mae Fah Luang University, Chiang
Rai, Thailand, 5 Department of Soil Ecology, UFZ-Helmholtz Centre for Environmental Research, Halle, Germany

Bacterial communities and arbuscular mycorrhizal fungi (AMF) co-occur in the soil,
however, the interaction between these two groups during litter decomposition
remains largely unexplored. In order to investigate the effect of AMF on soil bacterial
communities, we designed dual compartment microcosms, where AMF (Funneliformis
mosseae) was allowed access (AM) to, or excluded (NM) from, a compartment
containing forest soil and litterbags. Soil samples from this compartment were analyzed
at 0, 90, 120, 150, and 180 days. For each sample, Illumina sequencing was used
to assess any changes in the soil bacterial communities. We found that most of
the obtained operational taxonomic units (OTUs) from both treatments belonged to
the phylum of Proteobacteria, Acidobacteria, and Actinobacteria. The community
composition of bacteria at phylum and class levels was slightly influenced by both
time and AMF. In addition, time and AMF significantly affected bacterial genera
(e.g., Candidatus Solibacter, Dyella, Phenylobacterium) involved in litter decomposition.
Opposite to the bacterial community composition, we found that overall soil bacterial
OTU richness and diversity are relatively stable and were not significantly influenced by
either time or AMF inoculation. OTU richness at phylum and class levels also showed
consistent results with overall bacterial OTU richness. Our study provides new insight
into the influence of AMF on soil bacterial communities at the genus level.

Keywords: arbuscular mycorrhizal fungi, soil bacteria, Illumina sequencing, litter decomposition, soil microbial
community

INTRODUCTION

In terrestrial ecosystems, litter decomposition plays a crucial role in carbon and nutrient cycling,
which consists of complex physical, chemical and biological processes (Berg, 2000). These processes
are driven primarily by microorganisms in the soil using various enzymes to degrade different
components of the litter (e.g., lignin, cellulose, and hemicellulose) (Lynd et al., 2002). Among these
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microorganisms, although soil saprophytic fungi are usually
considered the major decomposers (Hanackova et al., 2015), soil
bacteria also play a major role (Greaves, 1971; Purahong et al.,
2015). For example, DeAngelis et al. (2013) found that many
fast growing bacteria, including Alpha-, Beta-, and Gamma-
proteobacteria, Clostridia and Bacteroidetes were the initial
decomposers in tropical forest soils. In addition, Actinobacteria
are able to degrade cellulose (Schellenberger et al., 2010; Stursova
et al., 2012), and many other bacterial groups have also been
found to be engaged in lignin decomposition (Masai et al., 2007;
Bugg et al., 2011). A recent study provides evidence that complex
litter decay processes are the result of a dynamic cross-kingdom,
functional succession between fungi and bacteria (Purahong
et al., 2016).

Previous studies on litter decomposition have focused on the
role of soil fungal communities, especially saprophytic fungi
(Kuramae et al., 2013; Persoh et al., 2013; Treseder et al., 2014;
Hanackova et al., 2015). However, despite the fact that bacterial
communities and non-saprophytic fungi co-exist in the soil, the
interactions between these two groups and their effects on litter
decomposition has been largely ignored. Arbuscular mycorrhizal
fungi (AMF), from the phylum of Glomeromycota, is the
most common mycorrhizal association between soil fungi and
terrestrial plants, with about 70% of plants forming mycorrhizal
symbioses with AMF (Smith et al., 1997). The essential function
of this symbiosis is acquiring nutrients (e.g., N, P) through its
external mycelium in exchange for carbohydrate from host plants’
photosynthate (Smith and Smith, 2011). Furthermore, AMF are
known to have no saprophytic capacity, but they can affect litter
decomposition, both positively (Hodge, 2001; Cheng et al., 2012;
Herman et al., 2012; Koller et al., 2013), and negatively (Leifheit
et al., 2015). Although the mechanism underlying this effect is
unclear, AMF might impact litter decomposition through effects
on other saprophytic microorganisms in the soil (Nuccio et al.,
2013) or on soil structure (Rillig and Mummey, 2006). Soil
bacteria can obtain C from the exudates released by mycorrhizal
hyphae or by using the hyphae themselves as substrate (Qin et al.,
2014). The plant–AMF–soil bacteria interaction likely occurs
in the mycorrhizosphere: as defined by Oswald and Ferchau
(1968), this is the surface area of the mycelium and consists
of two components, the rhizosphere and hyphosphere, which
provide niches for the growth of bacteria (Toljander et al.,
2006). Additionally, AM fungi are able to enhance the activity of
bacteria associated with soil N availability (for plants, fungi, and
bacteria), either using raw organic material as a substrate or by
influencing the plant N cycle (Saia et al., 2014). In a microcosm
experiment, Hodge et al. (2001) reported that the presence of
AMF increased the decomposition of complex organic matter
and that AMF were able to influence litter decomposition
by altering the activity of hyphosphere bacteria. Furthermore,
Herman et al. (2012) also reported that AM fungal inoculation
altered the C flow as a result of altering the soil microbial
community.

However, using the same experimental design as Herman et al.
(2012), Nuccio et al. (2013) found that the presence of AMF
resulted in a change of about 10% of the relative abundance of
the bacterial community. In addition, Welc et al. (2010) reported

that AMF mycelium could suppress the soil bacterial community.
Furthermore, many specific bacterial taxa are highly associated
with AMF as they colonize and live on the surface of the hyphae
(Cruz and Ishii, 2011; Iffis et al., 2014). For example, certain
Proteobacteria and Firmicutes taxa have been documented as
co-existing with AMF (Bonfante and Anca, 2009; Scheublin et al.,
2010; Lecomte et al., 2011).

In this study, a microcosm with two units separated by an
air-gap was used to study the interaction between the hyphae
of Funneliformis mosseae and soil bacterial communities during
litter decomposition. We applied high-throughput sequencing
techniques to characterize the soil bacterial community during
litter decomposition. Specifically, we aimed to investigate how
F. mosseae temporally altered soil bacterial diversity (i) and
community structure (ii) during litter decomposition. Based on
past studies investigating the interaction between AMF and soil
bacteria (Toljander et al., 2006; Herman et al., 2012; Saia et al.,
2014), we hypothesize that F. mosseae will significantly alter
the bacterial community by stimulating key bacterial groups
associated with litter decomposition.

MATERIALS AND METHODS

Materials Used in the Experiment
(1) AMF Inoculum
Arbuscular mycorrhizal fungi inoculum (F. mosseae) was
provided by The Institute of Plant Nutrition and Resources,
Beijing Academy of Agriculture and Forestry Sciences (Beijing,
China). The inoculum contained approximately 1000 spores per
20 g application and the sterile F. mosseae spores were contained
(pre-mixed) in a rock flour material (20 g).

(2) Soil
The soil (pH = 4.1) used in the microcosms was collected from
a subtropical forest located in southwestern China (N 21◦ 31′
42.13′′, E 100◦ 29′ 41.87′′). The top 5 cm of soil was collected
after first removing the litter layer. The soil was sieved using a
2 mm mesh in order to remove any stones or root material. Soil
properties have been published in Gui et al. (2017).

(3) Litterbags
Litterbags were made of 200 µm nylon mesh. The litter
comprised dried leaves of Calophyllum polyanthum Wall. ex
Choisy, an indigenous tree to Yunnan Province, and one of
the dominant species from the forest used to collect the soil.
The leaves were collected from nursery grown C. polyanthum
saplings, and were oven dried at 65◦C to a constant weight. Then
the dried leaves (Total N = 1.44%) were cut into small pieces (ca.
5 mm∗5 mm), 2 g of which were put into the litterbags. Note that
the purpose of the litterbags was to allow for the monitoring of
the impact of AMF on litter decomposition, the results of which
have been published separately (Gui et al., 2017).

(4) The Host Plant
Trifolium repens L. cv. Milkanova was selected as the host plant.
The seeds of T. repens were sterilized before use.
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Experimental Setup and Validation
Our experiments were conducted in an acrylic microcosm unit,
the design of which has been described in Gui et al. (2017). Briefly,
the microcosm unit consisted of two compartments. The first
compartment (Host), which was designed to pot the host plant,
was filled with sterilized vermiculite and fine gravel (ca. 0.3 cm
diameter), which was evenly mixed in a 1:1 ratio. In order to
test how F. mosseae interacts with soils from a tropical forest, the
soil was placed in the second compartment (Litter). A litterbag
(5 cm∗5 cm) was buried in the soil at a depth of 5 cm so that the
soil microbial community could fully interact with the surface
of the litter. Even though this burying set-up could not exactly
simulate what happens in the field, it did allow for the litter to
be exposed to the microbial communities in the soil. The two
compartments of the microcosm were separated by a plate, which
was drilled with evenly spaced holes (4 mm in diameter) and
covered by 20 µm nylon mesh on both sides, the mesh allows
the hyphae of F. mosseae to pass through, but not plant roots
(Supplementary Figure S1).

The microcosms were divided into two treatments, based on
the host plant being inoculated with F. mosseae (AM) or not
(NM). For NM control, the same amount of sterilized rock flour
(20 g) was added into the host compartment. Four replicates were
set for each treatment. Additionally, four time-phase samplings
were taken at monthly intervals. Thus, in total, 32 microcosms
were set up for the experiment. All the microcosms were
randomly placed in a greenhouse with daily temperature ranging
from 20 to 25◦C. Plants received natural light only and no
rainwater.

Plant Growth and Percentage AMF
Colonization
The 0.2 g of T. repens seeds were planted in the Host
compartment of the microcosm (Supplementary Figure S1). The
Host compartment received 10 ml of distilled water twice a week
and 10 ml of modified Long Ashton nutrient solution once a week
(Hewitt and Bureaux, 1966). The Litter compartment received
10 ml of distilled water once a week in order to maintain the
moisture levels. After 2 weeks the N and P concentrations in
the Long Ashton solution was diluted to 1/10 of the original
concentration (34 mg·L−1 NaNO3 + 21.4 mg·L−1 NH4Cl,
29.2 mg·L−1 NaH2PO4·2H2O + 4.7 mg·L−1 Na2HPO4·12H2O)
according to Leigh et al. (2009) and adjusted to pH 7.0 with
NaOH.

The percentage of T. repens root length colonized by AMF
was determined using fresh root samples. Root pieces (2 cm in
length) were washed in distilled water and then rinsed with 10%
KOH, which was stained with pen ink according to the methods
of Vierheilig et al. (1998). The percentage colonization was
calculated by a modified line intersection method (McGonigle
et al., 1990).

Soil Sampling and Nutrient Analyses
The original soil was collected from the forest as four subsamples
which were bulked into one composite sample and then
preserved at−20◦C for the later analysis and this original soil was

marked as “O.” The first time of sampling from the microcosm
was conducted 90 days (T90) after planting, subsequent sampling
times were at 120 days (T120), 150 days (T150), and 180 days (T180)
after planting. Five grams of the soil around the litterbag was
collected and preserved at−20◦C for further DNA analysis.

Total soil organic carbon was determined by Dumas
combustion (White et al., 1997), and total N using a semi-micro
Kjeldahl apparatus (Yuen and Pollard, 1953). Total phosphorus
(P) and potassium (K) were measured spectrophotometrically
after digesting a mixture of concentrated H2SO4 and H2O2
(Murphy and Riley, 1986). Hydrolysable N was analyzed through
a reaction with iron (II) sulfate and sodium hydroxide in a
diffusion procedure (Mulvaney and Khan, 2001). Available P and
K were determined using ammonium fluoride and ammonium
acetate (Hedley et al., 1982). All the chemical analyses were
conducted in Yunnan Agriculture Academy, Yunnan Province,
China.

DNA Extraction, Illumina Sequencing
Analysis, and Data Processing
Total soil genomic DNA was extracted from 2 g of fresh
soil using OMEGA Soil DNA kit, following the manufacturer’s
instructions and stored at −80◦C until PCR amplification. The
DNA extracts were used to partially amplify the 16S rDNA
genes using barcoded primers 519F and 907R (Biddle et al.,
2008) on the Illumina Miseq platform. Before amplification, DNA
concentration and purity was monitored on 1% agarose gels.
DNA was diluted to 1 ng/µL using sterile water according to
the concentration. The PCR was carried out in 50-µl reaction
mixtures with the following components: 4 µl (2.5 mM) of
deoxynucleoside triphosphates, 2 µl (10 µM) of forward and
reverse primers, 2U of Taq DNA polymerase with 0.4 µl
(TaKaRa), and 1 µl of template containing approximately 50 ng
of genomic community DNA as a template. Thirty-five cycles
(95◦C for 45 s, 56◦C for 45 s, and 72◦C for 60 s) were performed
with a final extension at 72◦C for 7 min. Triplicate reaction
mixtures per sample were pooled, purified using the QIA quick
PCR Purification kit (QIAGEN, Germany) and quantified using
a NanoDrop ND-1000 (Thermo Scientific, United States).

Sequencing libraries were generated using TruSeq R© DNA
PCR-Free Sample Preparation Kit (Illumina, United States)
following the manufacturer’s instructions, and index codes
were added. Library quality was assessed on the Qubit@ 2.0
Fluorometer (Thermo Scientific) and Agilent Bioanalyzer 2100
system. The library was sequenced on an Illumina HiSeq 2500
platform and 250 bp paired-end reads were generated.

Paired-end sequencing reads were assigned to samples based
on their unique barcode and truncated by cutting off the barcode
and primer sequence and then merged using FLASH (V1.2.71;
Magoc and Salzberg, 2011). Quality filtering on the raw tags
(splicing sequences) were performed under specific filtering
conditions to obtain the high-quality clean tags (Bokulich et al.,
2013) using the QIIME (V1.7.02; Caporaso et al., 2010) quality
control process with the default parameters that sequences were

1http://ccb.jhu.edu/software/FLASH/
2http://qiime.org/index.html
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quality trimmed (>25 quality score and 200 bp in length),
and assigned to soil samples based on unique 5-bp barcodes.
Furthermore, UCHIME algorithm (UCHIME Algorithm3; Edgar
et al., 2011) was used to compare the tags with reference database
(Gold database4) to detect and remove chimera sequences and
then to obtain the effective tags according to Haas et al. (2011).
Sequences with ≥97% similarity were assigned to the same
operational taxonomic units (OTUs). Rare OTUs (less than
five sequences), which could potentially have originated from
sequencing errors were removed from the dataset. The most
abundant sequence from each OTU was then selected as a
representative sequence for that OTU. For each representative
sequence, the Green Gene Database5 was applied to annotate
taxonomic information based on RDP 3 classifier algorithm
(Version 2.26). At the end, OTUs abundance information was
normalized using a sequence standard corresponding to the
sample with the least sequences. Subsequent statistical analysis
was performed basing on this output normalized data.

Nucleotide Accession Number
The bacterial 16S rDNA genes Illumina sequencing data are
deposited in the Sequence Read Archive (SRA) of National
Center for Biotechnology Information (NCBI) under the
BioProject number PRJNA353568.

Statistical Analysis
Richness estimator (Chao1) and Shannon diversity index were
calculated to test whether AMF inoculation and time phase
influenced the bacterial OTU richness and diversity. We
calculated these two indices using QIIME (Version 1.7.0) and
displayed with R software (Version 2.15.3). One-way ANOVA
with a general linear model (GLM) procedure (SPSS 18.0) was
applied to determine the significance of different treatments
(AM fungal inoculation or non-inoculation and sampling times)
and their influence on the composition of the soil bacterial
community. The results were expressed as mean values with
standard error, and compared using Duncan’s multiple range
tests. Statistical significance was determined at P < 0.05.

Two-way permutational multivariate analysis of variance
(PERMANOVA) was carried out using the software PAST to
investigate the effect of sampling time and AMF inoculation
treatment on bacterial community structure (Hammer et al.,
2001). Principal Component Analysis (PCA) was performed
to get principal coordinates and visualizations of complex
multidimensional data. A distance matrix of weighted or
unweighted unifrac among samples was transformed to a new
set of orthogonal axes, by which the maximum variation factor
is demonstrated by the first principal coordinate, the second
maximum variation factor by the second principal coordinate,
and so on. PCA analysis was displayed by WGCNA package,
stat packages and ggplot2 package in R software (Version
2.15.3). Goodness-of-fit statistics (R2) of measured factors fitted

3http://www.drive5.com/usearch/manual/uchime_algo.html
4http://drive5.com/uchime/uchime_download.html
5http://greengenes.lbl.gov/cgi-bin/nph-index.cgi
6http://sourceforge.net/projects/rdp-classifier/

to the PCA ordination of the soil bacterial community were
calculated using the “envfit” function in the “vegan package,”
with P-values based on 999 permutations (Oksanen, 2007). We
determined the gradient length of the soil bacterial community
using Detrended Correspondence Analysis (DCA) and the results
show that this bacterial community has short gradient (less than
2.7 SD) (Ramette, 2007). Thus, linear methods such as PCA are
appropriate for analysis of soil bacterial community in this study.

RESULTS

AM Fungal Root Colonization and
Hyphae Development
Rates of root colonization by F. mosseae in the AMF inoculation
treatment increased overtime from 24.9% at first month to 72%
at fourth month and were significantly higher than control
for all sampling times (Supplementary Figure S2). The control
treatment had low levels of root colonization (ranged from 1.5 to
1.75%) that were not significantly different across sampling dates.
Furthermore, the roots of T. repens remained un-nodulated for
the duration of the experiment.

As a separate study we determined the soil fungal community
profile in the Litter compartment using Illumina sequencing
(unpublished data). These results show that the relative
abundance of Glomeromycota in AMF inoculation treatment
was significantly higher than control from T90 to T150
(Supplementary Figure S3). We present this data here as evidence
of F. mosseae activity in the Litter compartment.

Soil Bacterial Community Composition
On average, 41,385 bacterial sequences per sample survived
from quality trimming and chimera removal, which were
subsequently normalized to 27310 sequences per sample and
assembled into 4956 OTUs with >97% similarity. We found
that 729 and 217 OTUs were detected specifically in the
control and AMF inoculation treatments, respectively, and
4002 OTUs were shared between treatments (for detailed
OTU distribution, see Supplementary Table S1). There were
eight bacterial OTUs detected in the original soil collected
from the forest that were not detected in both the control
and AMF inoculation treatments. Most of the obtained
OTUs belonged to the phyla Proteobacteria, Acidobacteria,
and Actinobacteria with a relative abundance of more than
70% per sample on average. Chloroflexi was the fourth most
abundant phyla (5.2% relative abundance on average) followed
by Planctomycetes, Gemmatimonadete, Verrucomicrobia, and
Bacteroidetes (Figure 1B). Detailed information showing how the
relative abundance of the 10 most abundant phyla changed over
time and treatment has been given in Supplementary Table S2.

The relative proportion of the phyla and classes differed
slightly according to sampling time and F. mosseae inoculation.
However, the effects of F. mosseae inoculation on the bacterial
communities were detected at a fine taxonomic resolution
(genera level). The presence of AMF slightly decreased the
relative abundance of Acidobacteria and increased that of
Actinobacteria at each harvest, compared to the non-AM
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FIGURE 1 | The relative abundance of the dominant bacteria class (A) and phyla (B) in soil samples derived from the different treatments and sampling times used in
our study. Abbreviations: AM represents the treatment inoculated with arbuscular mycorrhizal fungi, NM represents the uninoculated treatment, while O stands for
the original soil collected from the forest. Different numbers (1, 2, 3, and 4) represent the different sampling times (T90, T120, T150, and T180, respectively). Relative
abundance (>1%) is based on the proportional frequencies of those DNA sequences that could be classified at the phylum or class levels. Phylogenic groups that
account for less then 1% of all classified sequences are divided into the artificial group “others.”

treatment (Figure 1B). At the class level, the 10 most
abundant bacterial classes, representing over 75% of total
abundance, was also slightly influenced by time and by
F. mosseae inoculation. In each treatment, the class composition
of the bacterial community showed successive changes over
time (Figure 1A). Detailed information showing how the

relative abundance of the 10 most abundant classes changed
over time and treatment has been given in Supplementary
Table S3. F. mosseae inoculation consistently increased the
relative abundance of Actinobacteria and Thermoleophilia and
decreased the relative abundance of Gammaproteobacteria and
Acidobacteria. Additionally, the relative abundance of the most
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dominant class, Alphaproteobacteria, increased in the early stages
(T90 and T120) of litter decomposition but decreased in the later
stages (T150 and T180) (Figure 1A). While the relative abundance
of the other major classes of the bacterial community fluctuated at
different times and with different treatments, no consistent effects
due to F. mosseae inoculation during litter decomposition were
observed.

Analysis of the bacterial community at fine taxonomic
resolution across all samples resulted in the detection of 283
genera. When conducting a significance test of the top 30
genera by relative abundance, significant changes either by
time or AM fungal inoculation were found for 18 of these 30
(P < 0.05) (Figure 2). We found that F. mosseae inoculation
significantly changed the bacterial community dynamics
overtime. Specifically, in the NM treatment, the following genera
demonstrated significant changes over time: Bradyrhizobium,
Burkholderia, Salinispora, Candidatus Xiphinematobacter, Dyella,
Kaistobacter, Phenylobacterium, Alicyclobacillus, Halomonas, and
Stenotrophomonas. Furthermore, the observed changes occurred
in the later stage of litter decomposition for all these genera
except for Burkholderia, Salinispora, and Halomonas. Whereas
changes in the relative abundance of Salinispora and Halomonas
were only noted in the early stage of decomposition. On the
other hand, in the AMF treatment, the relative abundance of
Burkholderia, Candidatus Xiphinematobacter, Phenylobacterium,
Alicyclobacillus, Lactococcus, Telmatospirillum, Candidatus
Nitrososphaera, and Rhodoplanes were found to change
significantly over the sampling time. All the noted changes
occurred in the later stages of litter decomposition, while only
three genera also exhibited significant changes in the early
(Burkholderia) and both early and later stages (Lactococcus and
Rhodoplanes). Bradyrhizobium, Salinispora, Dyella, Kaistobacter,
Halomonas, and Stenotrophomonas, which showed significant
changes overtime in NM treatment, exhibited no changes
overtime in AM fungal inoculation treatment.

When comparing the difference between the two treatments,
F. mosseae inoculation significantly changed the relative
abundance of the following genera: Burkholderia, Cryocola,
Salinispora, Dyella, Kaistobacter, Phenylobacterium, Lactococcus,
Telmatospirillum, Candidatus Nitrososphaera, Stenotrophomonas,
and Halomonas (Figure 2).

The Effect of AMF on the Soil Bacterial
Diversity and Richness
Although we obtained high number of sequence reads per
sample (27310), the rarefaction curves showed that the number
of OTUs still increased with the number of sequences,
without reaching a plateau (Figure 3). Thus, we used both
Shannon diversity index and Chao1 richness estimator as
proxy for bacterial diversity and richness. The presence of
F. mosseae did not significantly change the alpha diversity
and richness of the soil bacterial community, during litter
decomposition. The Shannon diversity remained stable over
time and across the different treatments, with an average
value of 6.18 (Supplementary Figure S4A). The Chao1 richness
estimator showed a similar trend with that of Shannon diversity
(Supplementary Figure S4B).

We assessed the soil bacterial OTU richness at the phyla
and class levels. The results indicated that F. mosseae did
not significantly affect OTU richness at both these levels. At
phylum level, the OTU-rich phyla for the NM control were
phylum Proteobacteria (612 OTUs) followed by, Chloroflexi
(278 OTUs), Acidobacteria (259 OTUs), Actinobacteria (222
OTUs), candidate division AD3 (38 OTUs), candidate division
WPS-2 (43 OTUs). A similar pattern was also found for the
OTU-rich phyla found in the AMF inoculation treatment:
Proteobacteria (620 OTUs) followed by Chloroflexi (289 OTUs),
Acidobacteria (259 OTUs), Actinobacteria (222 OTUs), candidate
division WPS-2 (43 OTUs), and candidate division AD3
(38 OTUs). At the class level, we found that the bacterial
communities from both the control and AMF inoculation
treatments had the highest number of OTUs assigned to
Alphaproteobacteria (control = 266 OTUs; AMF = 263
OTUs) followed by Ktedonobacteria (control = 201 OTUs;
AMF = 205 OTUs), Planctomycetia (control = 194 OTUs;
AMF = 196 OTUs), Gammaproteobacteria (control = 123
OTUs; AMF = 124 OTUs) and, Actinobacteria (control = 98
OTUs; AMF = 95 OTUs). Detailed changes in the richness of
the 10 most abundant OTUs, for each harvest, is shown in
Supplementary Table S4 (phylum level) and Supplementary Table
S5 (class level).

The Effect of AMF on the Soil Bacterial
Community Structure
The PCA and PERMANOVA, based on the relative abundance
of all detected OTUs, showed that sampling time and
AMF treatment significantly affected bacterial community
composition (Pseudo-Fsampling time = 1.70, P < 0.004;
Pseudo-FAMF inoculation = 1.99, P < 0.022). The interaction
between sampling time and AMF treatment was not significant
(Pseudo-Fsampling time x AMF inoculation = 1.09, P < 0.299). The
PCA plot also showed that the first two canonical axes explained
28.7 and 18.1% of the total variability (Figure 4). The strongest
effect of AMF inoculation on bacterial community structure was
observed in T150 (Figure 4). Correlation analysis confirmed that
AM fungal inoculation and sampling time were significantly
correlated with the changes observed in the soil bacterial
communities during litter decomposition. Additionally, none of
the nutrients were correlated with bacterial community structure
in this system (Table 1).

DISCUSSION

Previous studies have used a variety of methods to investigate
the effects of AMF on soil bacterial communities. These include
PLFA analysis (Welc et al., 2010; Leifheit et al., 2015; Gui et al.,
2017) and PCR-denaturing gradient gel electrophoresis (DGGE)
(Marschner and Baumann, 2003; Roesti et al., 2006; Solis-
Dominguez et al., 2011), as well as high-throughput methods
such as 454 Pyrosequencing and Illumina sequencing (Nuccio
et al., 2013; Qin et al., 2014). Our use of Illumina sequencing to
test the effect of F. mosseae on soil bacterial communities during
litter decomposition showed that although bacterial diversity and
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FIGURE 2 | Heatmap and accompanying cluster analysis (x-axis) of the relative abundance of dominant bacterial genera in all the soil samples with different
treatments over different sampling times. Abbreviations: AM represents the treatment inoculated with arbuscular mycorrhizal fungi, NM represents the uninoculated
treatment, while O stands for the original soil collected from the forest. Different numbers (1, 2, 3, and 4) represent the different sampling times (T90, T120, T150, and
T180, respectively). Mean relative abundance is shown for each samples. For each genus, a significant difference either between different sampling times or
treatments is noticed by an asterisk (P < 0.05). Treatments with a letter in common are not different at P < 0.05 according to the Duncan’s multiple range test.
Differences were tested among treatment combinations (harvesting times (0 is not included) and arbuscular mycorrhizal inoculation or not) for each genus (per row).
The relative abundance for each genus in each soil sample is colored in the shades of yellow (low relative abundance) to red (high relative abundance).

FIGURE 3 | Rarefaction curve of soil bacterial OTUs clustered at 97%
sequence identity across different soil samples. Abbreviations: AM represents
the treatment inoculated with arbuscular mycorrhizal fungi, NM represents the
uninoculated treatment, while O stands for the original soil collected from the
forest. Different numbers (1, 2, 3, and 4) represent the different sampling times
(T90, T120, T150, and T180, respectively).

richness remained unchanged, F. mosseae altered the bacterial
community composition and structure at different taxonomical
levels during the litter decomposition process, including some
key genera related to C and N cycling. We also found that the

influence of F. mosseae on soil bacterial communities changed
over time.

Although the effects of AMF on soil bacterial communities
and litter decomposition have been documented in several
studies (Hodge et al., 2001; Welc et al., 2010; Cheng et al., 2012;
Leifheit et al., 2015), the results are not consistent between studies
and the mechanisms by which AMF influences these processes
remain unclear. Specifically, the relationship between AMF and
bacterial richness and diversity are still largely unknown. In
our study, we show that bacterial richness and diversity are not
significantly affected by AMF inoculation and remain relatively
stable during the litter decomposition processes. Despite a lack
of difference in bacterial richness and diversity, 217 bacterial
OTUs were detected in the AM treatment only, and 729
were detected in the NM treatment only. This is likely as
a result of competition between the bacteria associated with
AMF and other general soil bacteria, as reported in several
studies (Welc et al., 2010; Nuccio et al., 2013; Mechri et al.,
2014).

The bacterial community structure investigated in our study
was not strongly influenced by F. mosseae at coarse taxonomic
resolution, such as at the phylum or class levels. However, at
the genus level we found that AMF had significant effects on
bacterial community structure. This result is in agreement with
past studies, which reported changes in the composition of soil
bacterial communities as a result of AMF (e.g., Welc et al., 2010;
Nuccio et al., 2013; Mechri et al., 2014). Furthermore, these
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FIGURE 4 | Principal component analyses (PCA) of soil bacterial community composition structure under different treatments and over different sampling times
based on all the OTUs. Abbreviations: AM represents the treatment inoculated with arbuscular mycorrhizal fungi, NM represents the uninoculated treatment, while O
stands for the original soil collected from the forest. Different numbers (1, 2, 3, and 4) represent the different sampling times (T90, T120, T150, and T180, respectively).
The data is shown at mean value for each axis (±SE, n = 4).

TABLE 1 | Factors corresponding with soil bacterial community structure.

Factor PC1 PC2 R2 P

Sampling date 0.89 −0.46 0.20 0.02

AMF inoculation 0.95 −0.32 0.23 0.02

Soil total carbon 0.09 −1.00 0.00 0.96

Soil total nitrogen 0.11 0.99 0.12 0.14

Soil total phosphate 0.74 0.67 0.03 0.61

Soil total potassium −0.18 0.98 0.012 0.82

Soil available nitrogen −0.58 0.82 0.05 0.45

Soil available phosphate 0.18 −0.98 0.03 0.53

Soil available potassium 0.83 −0.56 0.01 0.81

C:N −0.10 −0.99 0.10 0.19

P-value was based on 999 permutations. Bold font indicates significant differences
(P < 0.05). Abbreviation: C:N (the ratio of total soil carbon to soil total nitrogen). No
axis had an eigenvalue higher than 1 and the relative variance explained.

observed changes were found at each sampling time, but became
more pronounced over time.

The bacterial communities from the forest soils used in our
study were mainly composed of Proteobacteria, Acidobacteria,
Actinobacteria, and Choroflexi, regardless of the sampling time
or treatment. This phylum level profile was found to be similar
to the results of other studies using soil samples from different
environments (Lauber et al., 2009; Li et al., 2014). Furthermore,
for each sample, Proteobacteria was the most common and
abundant phylum in the soil, a result that is also in line with past
studies (Bastian et al., 2009; Li et al., 2014). However, our results

indicated that F. mosseae did influence the relative abundance
of these groups. For example, F. mosseae inoculation increased
the relative abundance of Actinobacteria, and decreased the
relative abundance of Acidobacteria. Actinobacteria is commonly
positively correlated with AMF (Carpenter-Boggs et al., 1995;
Nuccio et al., 2013), and known to inhibit the growth
of other microorganisms (Duraipandiyan et al., 2010). This
suppression of other organisms by Actinobacteria is the likely
cause of the observed decline in the relative abundance of
Acidobacteria. Furthermore, members of Proteobacteria (e.g.,
Alpha-, Beta-, and Gammaproteobacteria) have been identified
as fast-growing bacteria that respond positively to and utilize
AM fungal exudates. This could explain the observed increase
in the relative abundance of Alphaproteobacteria during the
initial harvests. However, a decrease in the abundance of
Betaproteobacteria and Gammaproteobacteria also indicated that
there was rhizosphere competition from other fast-growing
bacteria such as Actinobacteria. This result agrees with that of
Nuccio et al. (2013), which showed a similar decrease in the
Betaproteobacterial family due to AM fungal inoculation.

At the genus level we observed that the relative abundance of
certain bacterial genera were affected by F. mosseae inoculation.
These genera shared the characteristic ability to degrade
organic compounds in the soil (Xie and Yokota, 2005; Pearce
et al., 2012) and included Candidatus Solibacter, Dyella, and
Phenylobacterium. This result indicated that F. mosseae could
influence litter decomposition through its effects on different
bacteria in the soil; however, its effects were not uniform
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across genera. For example, Candidatus Solibacter can produce
enzymes that break down organic carbon (Pearce et al., 2012).
F. mosseae inoculation resulted in a higher relative abundance of
C. Solibacter. Similarly, although Dyella and Phenylobacterium
are both able to degrade organic compounds, F. mosseae
inoculation positively affected the relative abundance of Dyella
only, while the relative abundance of Phenylobacterium was
negatively affected during the later stages of decomposition.
Furthermore, our results indicate that bacteria from the genus
Burkholderia, a rhizosphere-colonizing bacteria with saprophytic
abilities (Roberts et al., 1997), were suppressed at T90. We
also found that Geobacter, which is able to oxidize organic
compounds (Childers et al., 2002) was abundant throughout the
decomposition process, although its relative abundance was not
affected by F. mosseae inoculation.

Our findings agree with those of Ravnskov et al. (2002),
who reported that Rhizophagus irregularis suppressed the
growth and development of Burkholderia cepacia populations.
However, Mansfeld-Giese et al. (2002) showed that the
external mycelia of F. intraradices increased the population
of Pseudomonas chlororaphis in the soil, whereas in
our experiment Pseudomonas abundance did not change
significantly with F. mosseae inoculation. Our work supports
past findings showing that Pseudomonas is frequently
detected in litter decomposition processes (Noll et al.,
2010).

CONCLUSION

Our study confirms previous reports on the influence of AMF
on soil bacterial communities and provides detailed insight
into the changes that occur in bacterial communities due to
the presence of AMF. In addition, we were able to show
how the influence of AMF on bacterial communities changes
over time. AMF significantly altered the bacterial community
dynamics and structures at fine taxonomic resolution, with no

noticeable changes occurring at the phylum and class levels. Our
work demonstrates that analysis of bacterial communities using
high-resolution culture independent methods can significantly
improve our understanding of bacterial richness, diversity and
community dynamics in complex soil environments.
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