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In recent years, accumulating evidence suggest that regulatory T cells (Tregs) are of

paramount importance for the maintenance of immunological self-tolerance and immune

homeostasis, even though they represent only about 5–10% of the peripheral CD4+ T

cells in humans. Their key role is indeed supported by the spontaneous development of

autoimmune diseases after Tregs depletion in mice. Moreover, there is also a growing

literature that investigates possible contribution of Tregs numbers and activity in various

autoimmune diseases. The contribution of Tregs in autoimmune disease has opened up a

new therapeutic avenue based on restoring a healthy balance between Tregs and effector

T-cells, such as Treg-based cellular transfer or low-dose IL-2modulation. These therapies

hold the promise of modulating the immune system without immunosuppression,

while several issues regarding efficacy and safety need to be addressed. Systemic

sclerosis (SSc) is an orphan connective tissue disease characterized by extensive

immune abnormalities but also microvascular injury and fibrosis. Recently, data about

the presence and function of Tregs in the pathogenesis of SSc have emerged although

they remain scarce so far. First, there is a general agreement in the medical literature

with regard to the decreased functional ability of circulating Tregs in SSc. Second

the quantification of Tregs in patients have led to contradictory results; although the

majority of the studies report reduced frequencies, there are conversely some indications

suggesting that in case of disease activity circulating Tregsmay increase. This paradoxical

situation could be the result of a compensatory, but inefficient, amplification of Tregs in

the context of inflammation. Nevertheless, these results must be tempered with regards

to the heterogeneity of the studies for the phenotyping of the patients and of the most

importance for Tregs definition and activity markers. Therefore, taking into account the

appealing developments of Tregs roles in autoimmune diseases, together with preliminary

data published in SSc, there is growing interest in deciphering Tregs in SSc, both in

humans and mice models, to clarify whether the promises obtained in other autoimmune

diseases may also apply to SSc.
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REGULATORY T CELLS: GATEKEEPERS OF IMMUNOLOGICAL
TOLERANCE

Human regulatory T cells (Tregs) expressing the transcription factor FoxP3 have a crucial
role for the maintenance of immunological self-tolerance and immune homeostasis (1–3). The
loss of dominant peripheral tolerance, exerted by Tregs, can lead to autoimmune diseases,
immunopathology, allergy or metabolic disease (4, 5).
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The pivotal role of Treg cells in the protection from
autoimmunity is exemplified by spontaneous development of
immunopathology in scurfy mice which are deficient for FoxP3+

Tregs (4, 6). Mutations in the human ortholog result in a similar
X-linked lymphoproliferative disorder characterized by immune
dysregulation, polyendocrinopathy, enteropathy, defined by the
acronym IPEX (7, 8). Moreover, lack of Treg-mediated control
has been shown to play a role in many animal models of
autoimmunity (4) but also in numerous autoimmune disorders
(9–12). In this review, we will focus on CD4+FoxP3+ Treg cell
subset.

CD4+ TREGS: CELL SUBSETS AND
IDENTIFICATION

Human Tregs were first characterized as CD4+CD25+ T cells
in 2001 (13–15) based on the findings by Sakaguchi et al.
that mouse Tregs constitutively express CD25, the α-chain of
the IL2 receptor (16). However, CD25 is also upregulated on
responder T cells upon activation. Therefore, much research
has been focused on the identification of further markers to
precisely distinguish the Treg population from recently activated
T cells. In 2003, the transcription factor FoxP3 was shown to
regulate the generation and function of Tregs in mice (17–19).
Subsequently, in humans, FoxP3 was shown to be expressed
predominantly by CD4+CD25high T cells (20). However, whereas
in mice FoxP3 expression seems to be restricted to Tregs (21,
22), in humans, FoxP3 is also expressed by non-regulatory
CD4+CD25+ T cells (23, 24), restricting the usage of FoxP3 as
a specific marker for human Tregs. Moreover, FoxP3 being an
intracellular protein, it cannot be used for Tregs isolation with
the goal to perform functional studies. Later, it was shown that
low expression of CD127, the α-chain of the IL7 receptor, acts as
an additional marker for the characterization of Treg cells among
CD4+CD25high T cells (25, 26). Indeed, FoxP3 expression and
suppressive capacity are enriched in CD4+ T cells that express
low levels of CD127. However, CD127 expression tends to be
downregulated also in activated conventional CD4+ T cells (27,
28). Moreover, Klein et al. demonstrated that a high percentage
of CD127+ cells expressed FoxP3 and, reciprocally, that there
was a high percentage of CD127low/− cells that did not express
FoxP3. These results suggest that these markers did not represent
the same population of Tregs (29). A number of additional cell
markers for the identification of CD4+ Tregs have been proposed
(30–32) but many of these are also induced upon activation of
non-regulatory CD4+ T cells.

In this context, Miyara and coworkers further delineated
the Treg cell compartment into three subpopulations
using the combination of FoxP3 and CD45RA expression:
(i) CD45RA+FoxP3low resting Tregs (rTregs); (ii)
CD45RA−FoxP3high activated Tregs (aTregs), both of which
are strongly suppressive in vitro; and (iii) non-suppressive
cytokine-secreting CD45RA−FoxP3low non-Tregs (33). In vitro,
CD45RA−FoxP3high aTregs were activated, highly suppressive
and died by apoptosis after exertion of suppression, whereas
rTregs were in a quiescent state, proliferated upon activation

and converted into aTreg cells in vitro and in vivo. A major
stake of this combination is based on the identification of a
non-regulatory FoxP3+ T cell population, enabling to overcome
the contamination by this cell population when studying Treg
cells.

CD49d (α-chain of the integrin VLA-4) was also described as a
marker that could discriminate contaminating effector cells from
immune-suppressive Foxp3+ Treg cells. This marker is present
on the majority of proinflammatory effector cells but absent from
Foxp3+ Treg cells. Therefore, depletion with α-CD49d removes
proinflammatory effector cells from CD25highCD4+ cells and, in
combination with α-CD127, it provides access to hugely pure
populations of Foxp3+ cells (34).

MECHANISMS OF ACTION AND
FUNCTIONAL CHARACTERIZATION OF
CD4+ TREG

The best common way to analyze Treg function is based on
their capacity to suppress target cell proliferation, and consist
of in vitro suppression assays. This method relies on isolation
of effector and regulatory cell populations immunomagnetically
or by fluorescence activated cell sorting (FACS). Effector cells
are then activated in the presence or absence of the regulatory
population. After a defined period of time, their proliferation,
and/or cytokine production are examined. However, FoxP3 being
an intracellular protein, live human Tregs cannot be isolated
using FoxP3 as a marker, and the lack of specific Treg cell surface
markers precludes the isolation of a pure Treg population to test
in these in vitro suppression assays.

Numerous mechanisms have been described as to how
Tregs exert their suppressive function, including cell-cell contact
dependent suppression, inhibitory cytokine release (IL-10, TGFβ,
IL-35, Granzymes A et B), IL-2 deprivation, modulation of
antigen-presenting cell function via CTLA-4, cytolysis and
metabolic disruption of the target cell. These mechanisms have
been extensively reviewed (35–38) and will not be further
discussed in this article.

Defects in the number and/or function of Treg cells could each
lead to a suboptimal T cell regulation, and subsequently to the
development of autoimmunity.

SYSTEMIC SCLEROSIS

Systemic sclerosis (SSc) is an orphan connective tissue disease
characterized by extensive immune abnormalities, microvascular
injury and fibrosis of skin and internal organs (39). It is the
most severe connective tissue disease, associated with a high
mortality risk (40). Patients with SSc are classified according
to skin involvement extent: limited cutaneous SSc (LcSSc),
with skin involvement restricted to the hands, arms, and face;
and diffuse cutaneous SSc (DcSSc), with more extensive skin
thickening (truncal and proximal) and more frequent visceral
involvement (41).

Although the pathogenesis of SSc is complex and remains
incompletely understood (42), research in the area has
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confirmed that immune dysfunction is one of the most
important component of the pathogenesis. Innate and adaptive
immune abnormalities can be observed, and culminate in
auto-antibodies production and activation of cell-mediated
autoimmunity. Moreover, immune cells may trigger the complex
biochemical and molecular changes that promote vasculopathy
and fibrosis. Indeed, there is increasing evidence that places
immune activation as a cause and not a consequence of the
vasculopathy and fibrosis. First, histological studies indicate that
an inflammatory infiltrate is present in the very early stages,
preceding the onset of fibrosis (43). This cellular infiltrates
consist mostly of T cells which are predominantly CD4+ cells
(44). Second, fibroblasts with increased expression of type I and
III procollagen mRNA can often be identified in areas adjacent
to the infiltrating mononuclear cells (45, 46). Third, T cells in
the skin and in the peripheral blood of SSc patients express an
oligoclonal T cell receptor (TCR) repertoire, strongly suggestive
of a proliferation and clonal expansion of these cells in response
to a specific Ag(s) (47, 48). Furthermore, several studies have
demonstrated an association of particular HLA alleles with SSc
(49–52), which supports the concept of an Ag-driven T cell
response in SSc. It should be noted that the genotype varies
particularly strongly according to the presence of different
types of autoantibodies associated with SSc: anti-centromere
antibodies was associated with DRB1∗01:01, DRB1∗01:04,
DRB1∗01:08, DQB1∗05:01, DPB1∗04:02 and anti-topoisomerase
I with DRB1∗11-∗15:02, DPB1∗13:01 and DPB1∗∗09:01 (51, 52).
In a large study of HLA class II genes carried out in 1,300
SSc cases and 1,000 controls, the DRB1∗11:04, DQA1∗05:01
and DQB1∗03:01 haplotypes and the DQB1 allele were the
strongest associations identified (49). The association of
DRB1∗11:04, DQA1∗05:01 and DQB1∗03:01 haplotype with SSc
was confirmed in a similar study (944 Caucasian SSc patients
and 1,320 unaffected controls) (50). Although not specific to SSc,
these HLAs were not found in many other autoimmune diseases.

Therefore, among this aberrant immune response, T
lymphocytes seem to be of particular importance in the
pathogenesis of SSc. These cells are predominantly CD4+ cells,
display markers of activation, with a predominant Th2 cytokine
profile characterized by high levels of IL-4, IL-5, and IL-13 in
skin, lung and peripheral blood (53–56). This key role of T cell
proliferation and cytokine secretion in SSc suggests that this
condition could be associated with a defective control of T cell
activation.

CIRCULATING TREG IN SSc

Evidence for numerical and functional changes of Treg
population in SSc has been obtained in several studies
(Table 1). The majority of the studies reported decreased
frequencies and/or impaired function of circulating Tregs in
SSc patients compared to controls (12, 57–65, 74). Banica et al.
investigated Treg cells in peripheral blood of patients with
different connective tissue diseases, as compared with blood
from healthy controls. They found a reduced percentage of
CD4+CD25hi T cells in SSc compared to controls but also

to other connective tissue diseases (12). Antiga et al. also
reported fewer CD4+CD25brightFoxP3+ cells in SSc patients
naïve to any systemic treatment compared with healthy controls
and with patients having other common immune-mediate
dermatoses (psoriasis, atopic dermatitis) (57). This decrease
was associated with reduced total TGFβ1 and IL-10 serum
levels. The authors concluded that this reduced frequency of
Tregs, together with that of total TGFβ1 and IL-10, may be
responsible for the loss of tolerance observed in SSc. Papp
and coworkers observed decreased CD4+CD25+FoxP3+ T cells
percentages in peripheral blood of patients with SSc associated
with increased Th17 cell percentages and decreased circulating
IL-10 levels (59). In addition, both CD4+ and CD8+ central
memory T-cell percentages were increased representing an
immunologically active state. Similarly, the results of Fenoglio
et al. supported an imbalanced ratio between Th17 and
Treg cell subsets in SSc patients, with increased proportion
of circulating Th17 cells, and decreased proportion of both
CD4+CD25+CD127− and CD8+CD28− Treg cells (60). Lower
frequencies of CD4+CD25+FoxP3+ T cells in SSc patients
were reproducibly reported by other groups (62–64). Kataoka
et al. found reduced frequencies of CD4+CD25+FoxP3+ T cells
in treatment-free SSc patients compared to healthy controls,
particularly in patients with late-stage disease (65).

Among other reports, some studies have reported decreased
frequency of circulating Tregs but not reaching statistical
significance (66, 67, 75).

Some studies have reported an increase in circulating Tregs
(68–73), particularly in early phase and active disease (68–70).
Radstake et al. reported an increase in the frequency of circulating
CD25+FoxP3+CD127− T cells in SSc patients, especially in early
phase of the disease. However, despite this increase, Tregs from
SSc patients harbored a defective suppressive capacity correlated
with a dramatic reduction in CD62L and CD69 expression.
Interestingly, co-incubation of Treg cells from healthy donors
with plasma from SSc patients abrogated suppressive activity,
suggesting the presence of specific soluble factors inhibiting
Treg function in SSc patients (68). Two studies reported higher
number of CD25+FoxP3+ T cells in SSc patients, correlated
with disease activity and severity (69, 70). Three more studies
reported a significantly higher frequency of circulating Tregs in
SSc compared to controls, although no functional studies were
performed (71–73).

These discrepancies reflect the challenge of the phenotypic
characterization of Treg cells and possible contamination by
activated CD25+ T cells. In this context, two studies have used
the combination of markers described by Miyara et al. (33)
discriminating CD4+FoxP3lowCD45RA+ resting Treg (rTreg),
CD4+FoxP3highCD45RA− activated Treg (aTreg) from non-
regulatory Foxp3+ cells. Mathian and coworkers found that
the percentages and absolute counts for both aTreg and rTreg
were decreased in SSc compared to controls, but not those
for non-regulatory FoxP3+ CD4+ T cells (61). Interestingly,
aTreg were decreased at any disease stage while rTreg frequency
declined in late phases of SSc. Moreover, the quantitative
Treg defect was less pronounced in diffuse cutaneous and/or
active disease. Similarly, Liu et al. reported lower proportions
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of aTreg and higher proportions of non-regulatory Foxp3+

cells in SSc patients compared to healthy controls (58). In
the latter study, the frequency of CD4+CD25+FoxP3+ Treg
cells was significantly increased in patients with SSc, suggesting
that the increase in this cell population was mainly due
to elevated CD4+CD25+FoxP3lowCD45RA− non-Treg cells.
These results within the same patient population support the
notion that the complexity of the phenotypic characterization
of this cell population explains conflicting results in the
literature.

However, the discrepancies among these studies cannot be
solely explained by the use of different Treg markers. Indeed,
it should be emphasized that flow cytometry gating is rather
subjective and depends partly on researcher selection. Therefore,
studies using same Treg markers are not necessarily comparable.
Moreover, the patients’ characteristics, such as disease duration,
disease severity and activity, concomitant treatments, might
also contribute to the discrepancy among different studies as
previously stated.

As regards clinical association, most of the studies reporting
increased frequency of circulating Tregs have demonstrated a
correlation with disease activity (69, 70) and severity (69, 72),
and with early disease (68), whereas reduced frequency of Tregs
seemed to be associated with late disease (61, 62, 65). Elevated
Tregs were also reported in patients with a high interstitial lung
disease (ILD) score on computed tomography (72) and with
low DLCO (70, 72). No other clinical association was found, in
particular, no difference was observed between the two subsets of
the disease.

Effect of medications on Tregs frequency have been raised
by some authors. It is of note that most of the patients in
studies reporting increased or similar Tregs frequency received
systemic treatment which may have bias the results, since some
authors reported that immunosuppressive therapy is able to
increase the pool of circulating Treg (76, 77). On the other hand,
immunosuppressive therapy and bosentan showed no significant
effect on the frequency of Tregs in some reports (66, 73). In
contrast, treatment with glucocorticoids and immunosuppressive
therapy in association was associated with reduced Tregs
frequency in the study of Banica et al. (12). Thus, more
investigations are needed to evaluate the impact of therapies on
Treg cells.

Regarding the functional capacity of circulating Tregs, almost
all studies agree that Tregs fail to produce inhibitory cytokines or
suppress the effector T cells in SSc (58–60, 64, 68).

Pulmonary arterial hypertension (PAH) is one of the most
severe complication of SSc. Several studies have investigated
the role of Tregs in PAH. Two studies reported elevated
CD4+CD25+FoxP3+ T cells in the peripheral blood of idiopathic
PAH patients (78, 79), but not in the lungs (78). Huertas et al.
investigated the functional status of CD4+CD25+FoxP3+ Treg
function by measuring Treg STAT3 phosphorylation in patients
with idiopathic PAH, heritable PAH or SSc-PAH, compared to
controls (80). Although Treg cell numbers were similar between
patients and controls, they found that Tregs were dysfunctional
in all these PAH subgroups, including SSc-PAH, with reduced
proportion of Treg-pSTAT3+ cells compared to controls.
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MECHANISMS OF TREGS DYSFUNCTION
IN SSc

Mechanisms of Tregs dysfunction in SSc have been investigated
by several studies. Aberrant epigenetic modifications, such as
microRNA, DNA methylation, histone modifications, affecting
FoxP3 and other key genes in Tregs have been shown to
contribute to disease activity and tissue inflammation in
autoimmune diseases (81). In SSc, Wang et al. reported elevated
methylation levels of the FoxP3 promoter, inversely correlated
with FoxP3 mRNA expression, and accompanied by reduced
proportion of CD4+CD25+FoxP3+ Tregs (63). Furthermore,
treatment of SSc CD4+ T cells with 5-azacytidine, a DNA
methylation inhibitor, reduced the mean methylation levels,
increased FoxP3 expression and induced Treg generation.
Interestingly, the promoter methylation status and expression
level of Foxp3 were significantly associated with disease activity.
D’Amico et al. provide evidence of the association between
rs2294020 FoxP3 polymorphism and disease progression in a
female Italian population (82). Otherwise, it has been reported
a significantly higher frequency of skewed X chromosomal
inactivation in patients with SSc compared with controls,
correlated with lower FoxP3 expression in CD4+CD25+ cells and
less efficient suppressive activity (83). Kataoka and al. reported
reduced expression of the transcription factor Runx1 mRNA
correlated with decreased proportion of Tregs even in early stages
of the disease (65). Semaphorin 3A serum levels along with cell
expression on Tregs were reported to be low in SSc patients (84).

In addition, recent evidence indicate that Tregs could
contribute to SSc pathogenesis by conversion into pathogenic
effector T cells in the presence of appropriate environment. Thus,
because accumulating evidence suggest that Th17 cells could
be responsible for prominent features of SSc (53, 71, 85), it
has been hypothesized that a Treg/Th17 imbalance could be a
pivotal component of SSc pathogenesis. Indeed, Fenoglio et al.
found a significant correlation between increased circulating
Th17 cells and alteration of the Treg compartment (60). One
could argue that the observed decrease in Treg cells could be
the result of conversion to Th17. Several groups have reported
the conversion of Tregs to Th17 cells in both mouse and human
(86–88), supporting this hypothesis. Moreover, IL-6 and IL-1β,
that are highly expressed in inflammatory conditions, have been
shown to convert Tregs to Th17 cells (89, 90). Liu et al. found
that CD4+CD25+FoxP3lowCD45RA− non-regulatory T cells
produced high levels of IL-17 (58). They hypothesized that this
population of FoxP3+ non-regulatory T cells expressing IL-17
could represent a transitional phase in the conversion process
from Treg to Th17 cells. Consistent with this result, T cells that
co-express IL-17 and FoxP3 have been identified by other groups
(91, 92). In contrast, although they reported decreased Tregs
proportions, no IL-17 amplification was observed in blood and
skin of SSc patients in the study of Mathian et al. (61).

More recently, MacDonald et al., using flow cytometry,
analyzed FoxP3 and cytokine expression among skin-resident
T cells isolated from cultured explants (93). They found that
Tregs from SSc-skin produced significant amount of Th2
cell-associated cytokines IL-4 and IL-13 compared to controls.

On the other hand, circulating Tregs of SSc patients did not
produce Th2 cytokines, but they contained a significantly higher
proportion of skin-homing cells expressing Th2 cell-associated
chemokine receptors. The authors also found evidence that
IL-33 might be an important stimulator of tissue-localized loss
of normal Tregs function and polarization into Th2-like cells.
Altogether, these results further support the hypothesis that the
skin of SSc patients provides the appropriate environment for
transdifferentiation of Tregs toward a Th2-like phenotype, that
might contribute to fibrosis in patients with SSc.

TREGS AT THE SITE OF INFLAMMATION
IN SSc

When studying Treg cells in such diseases, one needs to
consider potential differences between Treg cells derived from
the peripheral blood vs. the inflamed organs (skin, lungs) in
terms of function and frequency. In contrast to the lung, skin-
resident Tregs are being actively investigated, probably due to
relative ease of access for tissue samples. Therefore, data from
mice and human subjects have revealed the importance of correct
Treg cell positioning in the skin for the maintenance of immune
homeostasis and prevention of spontaneous autoimmune and
inflammatory disease (94). Contradictory results have been
reported by the few studies investigating the presence of Tregs in
the skin of patients with SSc (Table 2). Earlier studies have found
fewer FoxP3+ cells by immunohistochemistry as compared
to healthy controls or control diseases (psoriasis and atopic
dermatitis) (57, 66). Interestingly, no significant difference was
revealed when comparing lesional and non-lesional skin of SSc
patients (66). This decrease was associated with reduced TGFβ
and IL-10, which are regulatory cytokines involved in Treg
suppressive function, both in skin and blood of SSc patients in the
study of Antiga and coworkers (57). By contrast, in the study of
Yang et al. FoxP3+ Treg cells was reported to be enriched in both
the dermis and epidermis of patients with early SSc compared
with patients with late SSc and healthy controls (75). The authors
hypothesized that this expansion of FoxP3+ cells in early SSc skin
may reflect a regulatory feedback mechanism to restore cellular
tolerance and ameliorate harmful autoimmune responses. It
should be noted that disease duration was not reported in the
two studies that have found fewer FoxP3+ cells. More recently,
MacDonald et al., found that FoxP3+ cells with high IL-4 and
IL-13 production could be detected more frequently in the skin
of SSc patients compared to normal controls (93). This study
provides the first evidence for the differentiation of human Treg
cells into Th2 cytokine-producing cells that might contribute to
fibrosis in patients with SSc.

TREGS IN SSc MOUSE MODELS

Numerous inducible and genetic mouse models of SSc have been
developed and characterized in the last years (95). Conversely
to other autoimmune diseases, very scarce data about Tregs in
SSc mouse models have been produced. In the topoisomerase
mouse model, treatment with topoisomerase I and Freund’s
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TABLE 2 | Regulatory T cells in systemic sclerosis skin.

Study (year)

(Ref.)

Phenotyped

by

Phenotype used

to quantify

Study population Frequencies Functionality and immune

association

INCREASED

Yang et al. (75) IHC FoxP3+ cells SSc: 13

LcSSc: 1

DcSSc: 12

HC: 4

Mean ± SD:

Early SSc: Superficial dermis: 10.5 ±

1.6%; deep dermis: 6.9 ± 1.7%

Late SSc: Superficial dermis: 2.2 ±

1.3%; deep dermis: 1.2 ± 10.8%

HC: Superficial dermis: 0.8 ± 0.4%;

deep dermis: 0.8 ± 0.4%

p < 0.01

Higher in early disease

MacDonald et al.

(93)

FC FoxP3+ cells SSc: 19

HC: 13 Mean ± SD:

SSc: 30.3 ± 2.8%

HC: 23.7 ± 4.5%

p > 0.05

Production of high amounts of Th2

cell-associated cytokines IL-4 and

IL-13 by Tregs from skin

DECREASED

Antiga et al. (57) IHC FoxP3+ cells SSc*: 15

LcSSc: 10

DcSSc: 5

HC: 10

Median (range):

SSc: 2% (1–4.5)

HC: 9% (4.2–10)

Reduced TGFβ+ and Il-10+ cells

Klein et al. (66) IHC FoxP3+ cells

among CD4+ cells

SSc: 12

Psoriasis: 10

Lichen planus: 10

Atopic dermatitis: 10

Median (range):

SSc: 17.2% (9.1–21.7)

Psoriasis: 45.4% (14.9–57.7)

Lichen planus: 51.3 (16.3–78.7)

Atopic dermatitis: 33% (17–55.1)

p < 0.005 (compared with control

diseases)

No significant difference when

comparing lesional and non-lesional

skin biopsies of SSc patients

NA

*Patients not receiving systemic treatment.

DcSSc, diffuse cutaneous systemic sclerosis; FC, flow cytometry; HC, healthy controls; IHC, immunohistochemistry; LcSSc, limited cutaneous systemic sclerosis.

complete adjuvant (CFA) induces SSc-like skin, lung fibrosis
and autoimmune abnormalities with anti-topoisomerase I auto-
antibody production (96). This was associated with increased
IL-6, TGFβ1, and IL-17 production and decreased IL-10
production. In this model, mice treated with topoisomerase I
and CFA exhibited significantly increased frequencies of Th1
cells, Th2 cells, Th17 cells and Treg cells in bronchoalveolar
lavage fluid compared with mice treated with saline or with
topoisomerase I. Functional characteristics of Tregs was not
assessed in this study.

In the mouse model of bleomycin-induced pulmonary
fibrosis, contradictory results have been produced. Birjandi
et al. found that treatment by IL-2 complex, used to expand
CD4+CD25highFoxP3+ cells in the lung, leads to immune
deviation that is dominated by type 2 immune response within
the lung, and associated with exacerbate lung fibrosis (97).
Moreover, they showed that bleomycin had a modifying and
profibrotic effect on the CD4+CD25highFoxp3+ cells. This
was corroborated by adoptive transfer experiments in Rag−/−

mice. The authors concluded that a therapeutic strategy of
expanding CD4+CD25highFoxP3+ in humans may be harmful
via the augmentation of Th2 immune responses in patients with
idiopathic pulmonary fibrosis and other fibroproliferative lung
diseases. On the other hand, adoptive transfer of Tregs on day

14 after a bleomycin challenge significantly reduced pulmonary
fibrosis in another report (98). Moreover, although splenocytes
significantly improved bleomycin-induced pulmonary fibrosis
when they were administered on day 14, this effect was abolished
by depleting Tregs with an anti-CD25 monoclonal antibody.
Finally, another group found that early depletion of Tregs with
an anti-CD25 antibody led to favorable outcomes whereas late
depletion of Tregs led to increased fibrosis, suggesting that Tregs
play a detrimental role in early stages but protective role in late
stages of pulmonary fibrosis in mice (99).

Although these results have to be taken into account in
future therapeutic strategy using Treg cells in such diseases,
it should be noted that extrapolation of these data from a
mouse model to human is challenging since bleomycin may not
accurately recapitulate human SSc ILD or other human fibrotic
lung diseases. Moreover, there remains much controversy in the
field about the actual role of Tregs.

THERAPEUTICS APPLICATION

Taking into account that Tregs are immunodominant
suppressors, there is a huge interest in the therapeutic potential
of Tregs in several immune-mediated diseases. Indeed, adoptive
cellular therapies may offer fewer risks and better efficacy than
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traditional pharmacological strategies. So far, clinical research
has involved mostly hematopoietic stem cell transplantations,
solid organ transplantations, and autoimmunity. Mechanisms of
actions are incompletely understood but Tregs protect from auto-
aggression and damage to tissues; the effect is executed mainly
via cell-to-cell contacts, and also “control by starvation/theft”
of IL-2. In general, what is critical is the balance between Tregs
and effector T cells (Teff). Therefore, changing the balance
between Tregs and Teff is a promising avenue to restore immune
homeostasis and to treat autoimmune diseases. Moreover, since
the recognition of antigen is a central part in Treg function and
their therapeutic use, the modulation of T cell receptor specificity
may be offer very stimulating perspectives (100).

Early reports demonstrated that adoptive transfer of Treg
cells associated with hematopoietic stem cell transplantation
(HSCT) in mice promoted the graft vs. leukemia effect (GvL)
and protected from graft vs. host disease (GvHD). Unfortunately,
this simple strategy cannot be translated to humans, such as the
clinical efficacy requires the administration of a high number
of cells whereas Treg cells represent a very low percentage of
leukocytes in the blood. Thus, manufacturing procedures to
expand Tregs in vitro before administration was developed.
Multiple sclerosis (MS) is a well-defined autoimmune disease
with solid evidence of Treg involvement. Remarkably, remission
or prevention of experimental autoimmune encephalomyelitis
(EAE), was associated with the induction of CD4+CD25+ Tregs.
The adoptive transfer of Tregs further confirmed this hypothesis:
transfer before EAE induction prevented EAE, and transfer to
mice that already had EAE alleviated symptoms (101).

In humans, infusion of Tregs that is the direct approach
to increase Tregs have been used in several phase 1 clinical
trials for the prevention of GvHD or type 1 diabetes.
Currently, several trials are registered in clinicaltrials.gov
website for various conditions, such as liver transplantation
(NCT01624077), autoimmune hepatitis (NCT02704338),
chronic graft vs. host disease (NCT02385019 andNCT01937468),
kidney transplantation (NCT02088931), type 1 diabetes
(NCT01210664), systemic lupus erythematosus (NCT02428309).
Although it is manageable to produce large numbers of
alloantigen-reactive Tregs through selective stimulation by
allogeneic antigen presenting cells, producing a high number
of tissue antigen-specific Tregs for autoimmune diseases is far
more challenging. Indeed, the low frequency of Treg precursor
and the tendency of Tregs to destabilize after repeated in vitro
stimulation impair easy large quantity production (102, 103).

Manipulating Tregs is another avenue that may even be
complementary to adoptive cell transfer. In order to restore a safe
equilibrium between Treg and Teff, anti-CD3 strategies mainly
using antibodies was first developed (104, 105). However, efficacy
was restricted to some patients and only at early stages. Co-
stimulation may also be used and low-dose CTLA4-Ig therapy
can enhance Treg and prevent immune activation (105). Finally,
the most stimulating findings have been reported with IL2 and
relate to the harboring by Tregs of high affinity IL-2 receptor
promoting preferential expansion in conditions of low amounts
of IL-2. Very stimulating data have been reported in humans in
type 1 diabetes (106), GvHD (107), and regrowth of the scalp

and/or body hair could be seen in alopecia areata (108). Patients
with hepatitis C virus-induced vasculitis have a set of symptoms
including fatigue, skin purpura, arthralgia, neuropathy and
kidney involvement. In eight out of ten patients treated with
low-dose IL-2, these symptoms progressively disappeared. It
must be pointed out that in most cases, clinical improvements
started to be observed after the second or third course of IL-2
therapy (109). Systemic lupus erythematosus (SLE) shares with
SSc several immune disturbances. A dysbalance between Treg
and Teff was recently confirmed in SLEwith correlations between
these findings and disease activity. In vitro experiments showed
that lack of IL-2 production by CD4+ T cells accounted for the
loss of CD25 expression in SLE Treg (110). Preliminary data
in few patients receiving low-dose IL2 showed effectiveness to
expand Treg (111). Clinical effects are now under investigations.
Thus, IL-2 therapy is a promising avenue for expanding Treg cells
and improving clinical outcomes for patients with autoimmune
disease and trials are ongoing in connective tissues diseases
including systemic sclerosis (TRANSREG study NCT01988506).

Similarly, anti-CD25 therapy results in prevention of
activation and proliferation of T cells and inhibition of T cell
responses. It is indicated for the prevention of acute organ
rejection in adult and pediatric renal transplant recipients
in combination with other immunosuppressive agents and
has been studied in some immune diseases. Basiliximab is a
chimeric (human/murine) anti-CD25 monoclonal antibody. It
was administered to 10 SSc patients with severe skin involvement
in addition to concomitant immunosuppressive and vasoactive
treatments (112). Outcomes showed a reduction in skin fibrosis
at week 68 and improvement in lung function at week 44.
Treatment with basiliximab was well-tolerated. Although
erythema, transient nausea, fatigue and weakness were common,
severe reactions with significant dyspnea occurred in only one
case. No patient had a documented severe infection and only
one patient needed antibacterial therapy because of suspected
respiratory infection. However, the application of this therapy
in auto-immune diseases could be questionable. Indeed, since
CD25 is also expressed on regulatory T cells, elimination or
inhibition of the functional capacity of this subset using CD25
antibody might be counterproductive.

Use of autologous hematopoietic stem cell transplantation
SCT (aHSCT) has recently gained interest in systemic sclerosis
(64, 113–115) although the right regimen and best patient profile
remain a matter of debate. It must be pointed out that sustained
regression of skin and lung fibrosis has been reported for some
patients. After aHSCT, reappearance of functional B cells, T-cell
development, reconstitution of effector cells and efficient antigen
presentation to reconstitute the pre-transplantation immune
repertoire has been described. In SSc, there is scarce data
about Treg restoration after aHSCT and contradictory results
have been reported. A preliminary report about 7 patients
focused on Treg showing a decrease number of Treg at baseline
and altered suppressive capacity contrasting with restoration
of Treg numbers and suppressive activity 24 months after
aHSCT although a high variability was observed (64). On the
other hand, in another report about 11 patients, both CD4+

activated effector T cells and Tregs did not reconstitute well
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after aHSCT with high dose cyclophosphamide conditioning,
although the patients displayed resolution of clinical SSc (115).
Therefore, the authors concluded that a complete reconstitution
of the immune system, including Tregs, is not necessary for a
treatment effect. Besides reconstitution of Treg numbers and
suppressive capacity, increase in diversity of the TCR repertoire
of Treg could be a crucial mechanism for the re-establishment
of immune tolerance after aHSCT (116). Thus, future research
into the effect of aHSCT on Treg cell compartment in
SSc is required to clarify the underlying mechanisms of
Treg cell pool renewal and the potential link with clinical
outcome.

CONCLUSION

Evidence for numerical and functional changes of Tregs in
SSc has been obtained in several studies. While the majority
of the studies reported reduced frequencies of circulating
Tregs in SSc patients compared to controls, it seems that
some patients, especially in early phase and active disease
have increased number of circulating Tregs. This paradoxical
situation could be the result of a compensatory, but inefficient,
amplification of Tregs in the context of active inflammation.
In addition to diminished suppressive capacity, recent evidence
indicate that Tregs could contribute to SSc pathogenesis by
conversion into pathogenic effector T cells in the presence of
appropriate environment, such as Th17 cells and Th2 cytokine-
producing cells.

Nevertheless, these results should be tempered with regards to
the heterogeneity of the studies in terms of patient’s phenotype,

and of the most importance regarding Tregs definition and
activity markers. Moreover, although most previous studies
analyzed peripheral blood of patients, the studies on Treg cells
investigating phenotype and function in the site of inflammation
are still sparse. Furthermore, conversely to other auto-immune
diseases, very scarce data about Tregs in SSc mouse models
have been produced. Thus, since the available data points
toward a central role of Treg cells in SSc, future research is
definitively needed to clarify the role of this cell population in SSc
pathogenesis.

Finally, since the effect of existing treatment modalities on
Tregs in SSc has not been elaborated sufficiently, gaining a
better understanding of the natural history of Treg function
and the affected mechanisms in SSc will certainly lead to
new avenues in therapy, and will help to clarify whether the
promises obtained in other autoimmune diseases may also apply
to SSc.
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