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The tumor microenvironment determines development and progression of many cancers.  
Epithelial–mesenchymal transition (EMT) is fundamental to tumor progression and 
metastasis not only by increasing invasiveness but also by increasing resistance to cell 
death, senescence, and various cancer therapies; determining inflammation and immune 
surveillance; and conferring stem cell properties. It does this by enabling polarized epi-
thelial cells to transform into cells with a mesenchymal, and therefore motile, phenotype. 
Tumor-associated macrophages (TAMs) are key cells of the tumor microenvironment that 
orchestrate the connection between inflammation and cancer. Activation of EMT often 
requires crosstalk between cancer cells and components of the local tumor microenvi-
ronment, including TAMs. In this review, clinical and experimental evidence is presented 
for control of TAMs in promoting cancer cell invasion and migration and their interaction 
with the EMT process in the metastatic cascade. The translational significance of these 
findings is that the signaling pathways that interconnect TAMs and EMT-modified cancer 
cells may represent promising therapeutic targets for the treatment of tumor metastasis.

Keywords: tumor microenvironment, tumor-associated macrophages, epithelial–mesenchymal transition, 
metastasis, eMT

iNTRODUCTiON

Tumor metastasis is responsible for 90% of cancer-related mortality but is still one of the most 
poorly understood components of cancer pathogenesis (1). The majority of solid tumors are 
carcinomas, cancers that originate in the epithelial cell population. Successful invasion-metastasis 
cascades require several steps that include epithelial–mesenchymal transition (EMT) of cancer 
cells, invasion through the extracellular matrix (ECM) and stromal cell layers, intravasation into 
the vasculature lumina, transport through the circulatory system, extravasation into parenchyma 
of distant tissues and organs, seeding at the premetastatic niche, and finally survival and growth 
at the metastatic site (1, 2). Chaffer, Weinberg and colleagues have described the complicated and 
multistep metastatic process in two stages. In the first stage, cancer cells translocate physically 
from the primary tumor to the site of dissemination; and in the second stage, colonization occurs 
at the secondary site (3–5). As simple as these processes may sound, the clinical impact of these 
changes is immense. Many of the events involved in these stages are the result of reciprocal and 
evolving crosstalk between the tumor microenvironment and carcinoma cells. The EMT program 
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plays an important role in tumor metastasis by disassembling 
adherens and tight junctions, transforming polarized epithelial 
cancer cells into a mesenchymal cell phenotype, and facilitat-
ing the detachment of mesenchymal cells from initial sites to 
allow passage through dismantled basement membranes (BMs) 
(Chaffer and Weinberg’s stage 1) (4). Once they have reached 
the distant organs (Chaffer and Weinberg’s stage 2), these mes-
enchymal cells may return to an epithelial phenotype through 
a mesenchymal–epithelial transition (MET) and thereby regain 
the ability of cancer cell proliferation and differentiation in 
metastatic sites (4).

Activation of the EMT program for metastasis typically 
requires crosstalk between cancer cells and the local microen-
vironment. Different populations of chronic inflammatory cells, 
some of which mature to be tumor-associated macrophages 
(TAMs), influence the local tumor microenvironment. These 
inflammatory cells play an important role in tumor progres-
sion by promoting tumor cell proliferation, matrix remodeling, 
angiogenesis, suppressed adaptive immunity, and EMT (2, 6). 
Classically, they do this by producing various cytokines such as the 
interleukins (ILs), interferon (IFN), and other tumor-promoting 
factors (7, 8). Research that is more recent has now demonstrated 
that EMT-mediated premetastatic tumor cells are also involved  
in the recruitment, activation, and differentiation of TAMs (5). 
The fundamental concept of EMT stimulating cancer develop-
ment and progression is well accepted, but the links between 
EMT and TAMs in these processes present a gap in research. 
For example, although the tumor inflammatory cell populations 
appear to promote growth and progression of tumors, the exact 
interactive pathways are not well defined.

By defining the roles of EMT and TAMs in cancer develop-
ment, therapeutic strategies that target these processes may be 
developed to benefit cancer patients (9). The purpose of this 
review is to provide an overview of experimental and clinical 
evidence that demonstrates the crosstalk between TAMs and 
cancer cells undergoing EMT during metastasis and develop an 
understanding of the translational significance of this informa-
tion, for development of new diagnostic and therapeutic strate-
gies targeting TAMs and/or EMT.

eMT iN TUMOR MeTASTASiS

Epithelial–mesenchymal transition refers to a series of biologic 
processes that allow polarized epithelial cells, which normally 
adhere to the BM, to undergo multiple biochemical and molecu-
lar changes to transform into mesenchymal-like cells (5, 10, 11). 
The hallmarks of EMT include loss of cell-to-cell adhesion; loss 
of apical–basal polarity; and acquisition of increased migratory 
and invasive properties. There are three different classifica-
tions of EMT: type 1 EMT is involved in embryo implantation, 
embryogenesis, and organ development; type 2 EMT is a process 
involved in wound healing, tissue regeneration, and organ 
fibrosis, initiated by the injury; and type 3 EMT is associated 
with cancer progression and metastasis (12). In a comprehensive 
review of EMT in cancer development, Micalizzi et al. (13) sug-
gest that cancer cell motility may also use a process of non-EMT 

epithelial cell plasticity, termed collective migration. The simi-
larities between EMT and collective migration suggest that the 
epithelial and mesenchymal cell phenotype transition may not 
always involve two absolute and independent cell states. Instead, 
a continuous spectrum of epithelial and mesenchymal proper-
ties may contribute to cancer progression, which typically lacks 
the coordinated and orderly induction of complete EMT. In the 
current review, however, the EMT theory of cancer cell motility 
forms the basis of discussion.

Molecular Characteristics of eMT
At the molecular level, the characteristics of EMT include 
downregulation of epithelial markers, such as E-cadherin, des-
moplakin, and cytokeratins, and upregulation of mesenchymal 
markers, such as N-cadherin, fibronectin, vimentin, and α- 
smooth muscle actin (α-SMA) (8, 14–17). Activation of tran-
scription factors that include Snail, Twist, ZEB1 and ZEB2, and 
others, triggers EMT. These transcription factors repress the epi-
thelial cell phenotype and promote mesenchymal characteristics 
of motility and BM and ECM degradation (14). For example, 
ZEB1 and ZEB2 directly bind to the promoter of target genes 
through conserved zinc finger proteins to downregulate expres-
sion of E-cadherin (epithelial marker) and induce expression of 
vimentin (mesenchymal marker) (15, 16). ZEB1 also enhanced 
the migration of PC-3 human prostate cancer cells through 
the extracellular barrier and increased metastatic colonization 
(16). Snail1 and Snail2, which belong to the Snail zinc finger 
family, are capable of repressing the expression of E-cadherin by 
directly binding to its promoter and activating the expression of 
proinvasive vimentin, fibronectin, and the matrix degradation 
enzymes termed matrix metalloproteinases (MMPs) (17, 18). 
Overexpression of Snail1 induced prostate cancer cells to degrade 
and break through BM barriers, thereby invading into the 
blood system, through directly activating membrane-anchored 
MMPs, MT1-MMP, or MT2-MMP (19). Snail1 also promoted 
angiogenesis, another essential process for tumor invasion and 
metastasis (20). Activated Twist is a member of the basic helix- 
loop-helix transcription factor family, and it plays a role in 
tumor invasion and metastasis via downregulating E-cadherin 
and upregulating N-cadherin (21). Twist also upregulates the 
expression of MMPs and downregulates the expression of tissue 
inhibitor of metalloproteinase, a naturally occurring specific 
inhibitor of MMPs (22).

Circulating Tumor Cells
The movement of tumor cells to distant organ sites requires a 
risky journey with intravasion into the vasculature, immune 
attack, and extravasion to a new site for cancer development. 
Tumor cells that intravasate into the blood vessel lumens and 
disseminate to new sites of colony formation are termed circulat-
ing tumor cells (CTCs) (23). There is limited research on the 
association between CTCs, platelets, and macrophages; controls 
on transendothelial migration; and the molecular mechanisms 
active in these processes. The following section presents some 
information on the role of EMT in CTC production and motil-
ity. Perhaps the pre-eminent molecular pathway involves Notch 
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signaling. The Notch pathway not only acts as a regulator of cell 
survival and cell proliferation but is also involved in cancer cell 
intravasation by stimulating transendothelial migration (23). 
How Notch signaling and EMT control the activity of CTCs is 
largely unknown. Nonetheless, the number of CTCs in blood is 
a significant prognostic factor for lung (23), colorectal (24, 25), 
breast (26), and prostate (27) cancers, and it is likely that CTCs 
feature in development of most carcinomas. They are found only 
rarely in normal healthy people and those with non-malignant 
tumors (28). EMT may help CTCs with cancer dissemination 
by overcoming detachment-induced cell apoptosis or “anoikis” 
and promoting survival in the circulation, but how EMT helps 
the CTCs is still not clear (29). In breast cancer, EMT may pre-
vent CTCs from anoikis by enhancing cancer cell reattachment 
to leukocytes, platelets, and endothelium. EMT does this via 
formation of microtubule-based membrane protrusions on the 
CTCs, called microtentacles, which are formed on the surface of 
detached cells through expression of Twist1 and Snail1 (30, 31). 
In addition, neurotrophin receptor-interacting melanoma anti-
gen (NRAGE) interacts with ankyrin-G, a part of the E-cadherin 
complex, rendering cancer cells sensitive to apoptosis. During 
oncogenic EMT, loss of E-cadherin downregulates ankyrin-G, 
enhancing NRAGE translocation to the nucleus, where the 
NRAGE-TBX2 complex can inhibit p14ARF gene expression to 
protect cancer cells against anoikis (32).

Some of the surviving CTCs that move through the vascular 
lumen and lodge on the vascular endothelium may break through 
the endothelial and pericyte layers and then enter the tissue 
parenchyma at the secondary organ site. During this process, 
the adherent cancer cells must communicate with endothelial 
cells to open their cell junctions, thus allowing the passage of the 
cancer cells to extravasate across the endothelium to the connec-
tive tissue space of the host organ (33). Cancer cells can migrate 
through the endothelial layer of blood vessels in two basic ways: 
paracellular migration, where cancer cells cross the endothelial 
layer by disrupting the cell junctions in the endothelial layer; and 
transcellular migration by which cancer cells cross the endothe-
lial barriers by traversing through the endothelial cell body  
(10, 34). An extravasation assay in zebrafish was used to model 
the roles of EMT in the process of metastasis. Zebrafish are trans-
parent and allow real-time imaging of cell movement in the live 
animal. The results demonstrated that Twist1, a central protein 
in EMT, affects intravascular migration of arrested cancer cells, 
remodels the vasculature, and promotes cancer cell exit from  
the blood circulation through a β1 integrin-independent mecha-
nism (35). On extravasation into a foreign microenvironment, 
tumor cells follow one of three alternative courses: cell death, 
dormancy, or senescence.

Occasionally, EMT-derived mesenchymal cells with CSC-
like properties (less than 1% of disseminated cancer cells) 
undergo MET to be able to initiate cancer cell proliferation and 
differentiation during colonization (34, 36). Downregulation of 
Twist1 at the metastatic site was essential for increased prolifera-
tion and reversal of EMT-induced growth arrest, which clearly 
proves the indispensable role of MET for colonization and 
macrometastasis (37). Figure 1 summarizes the roles of EMT in 
the process of metastasis.

ROLe OF TAMs iN TUMOR MeTASTASiS

The role of macrophages in cancer is controversial, and many 
aspects remain unresolved. Macrophage surveillance is essential 
for preventing the cancer growth, and there is evidence that 
activated macrophages can identify and kill transformed cells. 
However, there is also evidence that macrophage depletion has 
little effect on the host’s susceptibility to cancer (38) and in some 
cases may even be beneficial to the host. Different subpopulations 
of macrophages may be responsible for distinct tumor-promoting 
activities and tumor relapse on different types of therapies.  
Here, the proposal that TAMs have contrasting roles in cancer 
depending on their phenotype is discussed. Figure 2 summarizes 
the role of TAMs in cancer development.

Macrophage Differentiation and 
Polarization
Macrophages are differentiated immune cells of the myeloid 
lineage, found in all tissues (39). Most tissue-resident mac-
rophages originate from the embryonic yolk sac and dem-
onstrate tissue-specific functional properties important for 
the tissue differentiation and homeostasis. To carry out their  
tissue-specific functions, macrophages respond to local signals 
released in their niche. They also act as sentinel cells that con-
stantly monitor their tissues for potential threats, such as infec-
tion, injury, and tumors, and they respond rapidly by initiating 
the inflammatory cascade. During inflammation, macrophages 
also differentiate from circulating monocytes that recruit to 
the site of inflammation and extravasate into the tissue (40). 
Importantly, macrophages also play a fundamental role in 
promoting the resolution of inflammation by clearing apoptotic 
cells/debris and supporting wound healing and tissue repair 
programs (41–43). When resident and recruited macrophages 
activate in response to potentially harmful agents, they can 
acquire different polarization states. Historically, according 
to their activation state, macrophages divide into classically 
activated M1 and alternatively activated M2 macrophages 
(44, 45). This classification reflects the Th1/Th2 paradigm of  
T helper cell activation. M1 macrophages, typically, activate 
with IFN-γ, lipopolysaccharides, viral products, or granulocyte-
macrophage colony-stimulating factor (GM-CSF). In contrast, 
M2 macrophages, typically, activate with IL-4, IL-10, gluco-
corticoids, or macrophage colony-stimulating factor (M-CSF) 
(46, 47). M2-like macrophages have been often further divided 
into M2a (IL-4 induced), M2b (IgG-induced), and M2c (IL-10 
and glucocorticoid-induced). More recently a consensus was 
reached to, instead, define macrophage phenotypes based on 
the activator used (48, 49). It is important to note that these 
polarization states are just extremes of a continuum in  vivo. 
Macrophages display a high degree of plasticity, and the differ-
ent activation states can often coexist or change during disease 
progression (50). Moreover, according to Mills, who originally 
developed the M1/M2 paradigm, what really matters is the 
function that macrophages play within a specific in vivo context: 
M1/kill and M2/repair (51). Therefore, M1 macrophages were 
defined originally in vivo by the production of the functional 
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FigURe 1 | Roles of epithelial–mesenchymal transition (EMT) in the process of cancer metastasis. Triggered by the activation of transcriptional factors, tumor cells 
of epithelial origin that undergo EMT are transformed into a mesenchymal phenotype, lose cell-to-cell adhesion and apical-basal polarity, and acquire migratory  
and invasive properties. After degradation of the underlying basement membrane and extracellular matrix, tumor cells invade the neighboring tissue parenchyma 
(local invasion). The mesenchymal–phenotype tumor cells then invade into the blood or lymphatic vessels (intravasation). ZEB1, Snail, and Notch are involved in  
this process. Circulating tumor cells (within vessel lumens) overcome the harsh conditions in the blood stream and attach to the vessel wall at a distant site to 
prepare for escape from the blood circulation. Transcriptional factors Snail1 and Twist1 play an important role in preventing anoikis and maintaining survival of 
circulating tumor cells. Some of the surviving circulating tumor cells break through the vascular wall and enter the tissue parenchyma at the secondary organ  
site (extravasation). Finally, some of the EMT-derived mesenchymal cells with cancer stem cell-like properties undergo mesenchymal–epithelial transition (MET)  
to initiate proliferation of the metastatic clone.
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molecule nitric oxide that inhibits proliferation. M1 responses 
are linked with IL-12 and IL-8/CCL (C-C chemokine motif 
ligand) production, and cell surface expression of CD80 or 
86 that attract killer cells like neutrophils and/or stimulate 
Th1 responses such as cytotoxic T  lymphocytes (52–54).  
M2 macrophages were defined originally in vivo by the produc-
tion of ornithine that promotes proliferation. Their responses 
are associated with transforming growth factor (TGF)-β and 
other growth factor production, for example, vascular endothe-
lial growth factor (VEGF) or epidermal growth factor (EGF), 
cell surface expression of CD163 or 206, and the propensity 
to stimulate Th2 responses such as antibody production and 
antibody-dependent cell-mediated cytotoxicity. Many mac-
rophage populations express additional cytokines and growth 

factors, including tumor necrosis factor (TNF)-α, IL-6, IL-1, 
IL-10, NADPH oxidases, and MMPs. Changes in the relative 
ratios between pro-inflammatory and immunosuppressive/
remodeling factors characterize a more M1-like or M2-like 
polarization state (55).

Tumor-Associated Macrophages
Tumor-associated macrophages represent the major type of 
immune cells that infiltrate the tumor microenvironment 
(56–58). Over the last decades, many studies have shown a 
significant link between TAM number/density and a poor prog-
nosis in most tumor types, illustrating the clinical significance of 
macrophages in tumor progression (58). For example, there is a 
significant association between higher risk of distant metastasis 
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FigURe 2 | Roles of tumor-associated macrophages (TAMs) in metastasis. Circulating monocytes that are derived from bone marrow progenitors are recruited to 
the tumor site by chemokines and cytokines secreted by tumor and stromal cells. These chemokines and cytokines include C-C chemokine motif ligand 2 (CCL2), 
CCL5, CCL7, C-X-C chemokine motif ligand 8 (CXCL8), and CXCL12, as well as granulocyte–macrophage colony-stimulating factor (GM-CSF), macrophage 
colony-stimulating factor (M-CSF), vascular endothelial growth factor (VEGF), and platelet-derived growth factor (PDGF), of which CCL2 is the most important.  
In the tumor microenvironment, monocytes are differentiated and polarized to TAMs by the cytokines produced by tumor and stromal cells, including M-CSF, 
GM-CSF, interleukin 4 (IL-4), IL-10, and transforming growth factor-β (TGF-β). TAMs play important roles in promoting tumor angiogenesis and invasion through 
releasing various cytokines including VEGF, IL-1β, TGF-β1, matrix metalloproteinases (MMPs), tumor necrosis factor (TNF)-α, basic fibroblast growth factor (bFGF), 
IL-10, urokinase plasminogen activator (uPA), epidermal growth factor (EGF), and others as noted in the figure.
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and poor overall survival with increased density of TAMs in 
renal cell (59), breast (60, 61), bladder (62), and hepatocellular 
(63) cancers, and lymphoma (64, 65). It is now clear that dynamic 
changes in the phenotypes of macrophages occur during the dif-
ferent steps of tumor progression, including invasion, metastasis, 
seeding, and growth (66). Different subpopulations of TAMs are 
responsible for distinct tumor-promoting activities and tumor 
relapse on different types of therapies (for example, irradiation, 
antiangiogenic therapies, some forms of chemotherapy) (67–70). 
Currently, it is not known if TAMs derive from resident or 
recruited macrophages. Small tumors probably interact with the 
surrounding resident macrophages and, only later as the tumor 
mass grows and becomes vascularized, are circulating monocytes 
recruited and differentiate into TAMs. Circulating monocytes 
usually derive from bone marrow progenitors; however, under 

abnormal circumstances, such as during tumor development, 
extramedullary hematopoiesis can also take place in the spleen 
(71). Peripheral blood monocytes consist of two main popula-
tions: inflammatory or classical monocytes (Ly6ChighCX3CR1low 
CCR2high in mouse and CD14++CD16neg in humans) and patrol-
ling or non-classical monocytes (Ly6Clow CX3CR1high CCR2low 
and CD14+CD16++). Many chemokines and cytokines secreted 
by tumor and stromal cells recruit peripheral blood monocytes 
to the tumor site. These include CCL2, CCL5, CCL7, CXCL8, 
and CXCL12, as well as GM-CSF, M-CSF, VEGF, and platelet-
derived growth factor (71, 72). Among these chemokines, CCL2 
is likely the most important in recruitment of TAMs. However, 
the monocyte subset that recruits to the primary tumor and the 
involvement of the CCL2-CCR2 chemokine axis appears to be 
model and tumor type dependent (73).
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Within the tumor microenvironment, monocytes are induced 
to differentiate and polarize into protumoral macrophages 
through complex signaling networks induced by multiple soluble 
mediators, such as M-CSF, GM-CSF, and immunosuppressive 
cytokines such as IL-4, IL-10, and TGF-β (74). TAMs respond by 
modulating cancer cell proliferation, immune regulation, ECM 
remodeling, tumor cell invasion and metastasis, lymphangi-
ogenesis and vascular angiogenesis by secreting IL-10, VEGF, 
prokineticin (Bv8), prostaglandin E2, and MMP-9 (75–77). 
As the tumor progresses, TAMs are more and more polarized 
toward an M2-like phenotype and express a typical M2 signature 
including high levels of MR (CD206), scavenger receptor-A, 
arginase-1, and low MHC-class II antigens. The roles played by 
TAMs in promoting tumor angiogenesis, tumor invasion, as well 
as intravasation, extravasation, and seeding of metastatic tumor 
cells are relevant to this review.

TAMs and Tumor Angiogenesis
There is considerable controversy about whether TAMs pro-
mote tumor progression and metastasis via their stimulation 
of tumor angiogenesis (78). An angiogenic switch is crucial for 
tumor cell survival, proliferation, invasiveness, and metasta-
sis. High levels of TAM infiltration in the primary tumor are 
usually associated with angiogenesis via upregulation and  
release of several pro-angiogenic factors that, typically, pro-
mote new vessel growth. For example, VEGF-A is an important 
pro-angiogenic cytokine secreted by TAMs. Under hypoxic 
conditions, hypoxia-inducible factors (HIF-1α and HIF-2α) 
increase the production of VEGF-A from TAMs and, thus, pro-
mote TAM-induced angiogenesis and metastasis (79). Under 
normoxic conditions, IL-1β and TGF-β1 released by TAMs 
promote the expression of VEGF-A in mouse macrophages 
via HIF-1α/β- and Smad3/4-dependent signaling pathways 
(80–83). Other pro-angiogenic factors secreted by TAMs, 
including TNF-α, basic fibroblast growth factor, thymidine 
phosphorylase, adrenomedullin, and semaphorin 4D, are also 
involved in angiogenesis and metastasis (84, 85). A specific 
subpopulation of pro-angiogenic TAMs was identified, char-
acterized by the expression of the angiopoietin receptor Tie2, 
and endowed with pro-angiogenic and immunosuppressive 
activities (86, 87). Tie2-expressing monocytes/macrophages 
express higher levels of CD163 and CD206, indicating that 
Tie2-expressing myeloid cells show an M2-like phenotype. 
They also express VEGF, IL-10, and MMP-9. Tie2-expressing 
monocytes/macrophages recruit to tumors and are required  
for tumor growth. This makes them excellent candidates for  
the development of new tumor targeted therapies. Indeed, 
targeting the angiopoietin 2 (ANG2)/Tie2 pathway, with an 
anti-ANG2 antibody, inhibits tumor growth and metastasis by 
disabling the pro-angiogenic activity of Tie2-expressing mono-
cytes/macrophages and impeding the emergence of evasive 
resistance to antiangiogenic therapy (88).

TAMs and Tumor invasion
The tumor microenvironment is important for tumor progres-
sion. Among the components of the microenvironment, TAMs 

are thought to be the major inflammatory component of the 
tumor support stroma. However, there remain inconsistent data 
on whether TAMs promote tumor invasion. Here, we present 
some evidence for a positive link between TAMs and tumor 
invasion.

Matrix metalloproteinases are a family of zinc-dependent 
proteases that function to degrade matrix, which includes colla-
genase (MMP-1), gelatinase A (MMP-2), stromelysin (MMP-3), 
matrilysin (MMP-7), gelatinase B (MMP-9). MMPs are 
involved in tumor invasion and metastasis by degra ding the 
BM, activating growth factors, and promoting angiogenesis 
(89, 90). Macrophage-derived TGF-β1 can pro mote MMP-9 
expression in glioma stem-like cells, thereby enhancing the 
invasiveness of tumor cells (81). Moreover, specific ablation 
of MMP-9-positive TAMs with zoledronic acid resulted in 
reduced angiogenesis (91, 92). Macrophages are also effec-
tive producers of additional proteases, including cathepsins 
and serine proteases such as urokinase-type plasminogen 
activator. In many tumors, these proteases function to 
enhance tumor progression and metastasis by proteolytic 
destruction of the matrix to allow tumor cells to escape  
from the confines of the BM and to migrate through the dense 
stoma (93–95).

An important EGFR/CSF-1R paracrine loop exists between 
macrophages and tumor cells in which CSF-1, produced by 
carcinoma cells and bound by macrophages, promotes the 
proliferation, differentiation, and polarization of macrophages 
toward an M2-like phenotype (96). CSF-1 also stimulates 
macrophages to release EGF, which promotes tumor cell pro-
liferation and migration. EGF also stimulates the secretion of  
CSF-1 by tumor cells, thereby forming a positive feedback 
loop between tumor cells and macrophages (97, 98). Recently, 
intravital microscopy was used to investigate tumor cell migra-
tion toward blood vessels in mouse models of breast cancer 
(99). By using live cell imaging, perivascular Tie2-expressing 
macrophages promoted the transient opening of tumor blood 
vessels in a VEGF-dependent manner. Diffusion of plasma pro-
teins from leaky vessels attracts cancer cells that can easily enter 
systemic circulation at the open gates (99). Previous work from 
this group had identified perivascular structures called “tumor 
microenvironment of metastasis” in which a macrophage, a 
specialized cancer cell, and a blood vessel establish tripartite 
contacts. Importantly, “tumor microenvironment of metastasis” 
cell density predicts distant metastatic recurrence in breast 
cancer patients independently of other clinical prognostic 
indicators (100). TAMs are also major contributors in the for-
mation of the metastases at secondary sites of primary tumor, 
where they prepare a suitable microenvironment for successful 
colonization (101).

CROSSTALK BeTweeN TAMs AND eMT 
iN TUMOR MeTASTASiS

The interactions of cancer cells with various stromal cells in the 
tumor microenvironment, as well as the accumulation of intrin-
sic changes in cancer cells, drive progression and metastasis. 
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The tumor microenvironment comprises endothelial cells, 
pericytes, fibroblasts, ECM, and various bone marrow-derived 
cells such as macrophages, neutrophils, and mast cells. As a 
major component of the tumor microenvironment, TAMs act 
in cancer migration, invasion, and metastasis through processes 
such as EMT by producing or activating various factors includ-
ing nuclear factor-κB (NF-κB) and important inflammatory 
cytokines and growth factors, such as IL-6, TGF-β1, TNF-α, 
and IL-8 (102). Information on these co-activating factors is 
now provided.

Factors That Contribute to Tumor 
Metastasis
Nuclear Factor-κB
Nuclear factor-κB consists of a family of transcription factors 
that play pivotal roles in both TAMs and tumor cells to promote 
tumor initiation and growth (103, 104). NF-κB activation is also 
an important event in the acquisition of metastatic potential 
in cancer cells, and its activation can result from the crosstalk 
between TAMs and cancer cells. For example, TAMs prime 
NF-κB activation in both stromal and cancer cells by secreting 
TNF-α, which in turn upregulates Snail expression (105). In the 
process of TNF-α-induced EMT, NF-κB regulates phosphoryla-
tion and degradation of Snail. Knockdown of Snail by shRNA 
was able to inhibit migration and invasion of breast cancer 
cells induced by TNF-α in vitro as well as inflammation factor-
mediated metastasis in vivo (106). TAMs also promoted tumor 
invasion and migration ability and transformation of oral squa-
mous cell carcinoma cells from an epithelial-to-mesenchymal 
phenotype through activation of the Gas6/Axl-NF-κB signaling 
pathway (105).

Interleukin-6
Interleukin-6 is an inflammatory cytokine upregulated in most 
common human cancers, with increased levels of IL-6 in serum 
indicating poor prognosis in most cancers (107). IL-6 decreased 
the expression of E-cadherin in estrogen receptor α-positive 
human breast cancer cells, with constitutively ectopic IL-6-
expressing MCF-7 breast cancer cells (MCF-7IL-6) exhibiting 
an EMT phenotype characterized by decreased expression of 
E-cadherin and upregulation of vimentin, N-cadherin, Snail, 
and Twist (108). In vitro co-culture of human lung adenocar-
cinoma A549 or H1299 cells with THP-1-derived macrophages 
upregulated IL-6 and increased the invasion ability of A549 
and H1299 cells through EMT by repressing the expression  
of E-cadherin and promoting vimentin. In addition, the pres-
ence of additional anti-IL-6 antibody was able to neutralize the 
enhanced invasiveness (109).

Transforming Growth Factor-β1
Transforming growth factor-β1 is an important inflammatory 
cytokine that is involved in inducing EMT, facilitating tumor 
cell evasion of immune surveillance, and promoting cancer cell 
dissemination and metastasis (110). In the tumor microenviron-
ment, TGF-β1 is produced by infiltrating immune cells such as 

TAMs, myeloid-derived suppressor cells and regulatory T cells, 
and cells that are major promoters of EMT (7). TGF-β1 derived 
from TAMs induced and promoted EMT in various cancer 
cells (111, 112). TGF-β1 also promoted cancer stem cells-like 
properties in hepatocellular carcinoma Hepa1-6 cells, which 
underwent EMT and acquired higher invasive ability (113). 
Once secreted, TGF-β1 can function in an autocrine manner to 
sustain the mesenchymal and stem cell traits of cancer cells that 
are undergoing EMT (114).

Tumor Necrosis Factor-α
Macrophages are major producers of TNF-α and are highly 
responsive to TNF-α. High levels of TNF-α can lead to anti-
cancer effects through activating T  cell-mediated immunity, 
whereas low-level, chronic TNF-α produced by cancer cells 
and stromal cells may promote tumor growth and metastasis 
(115). TNF-α can induce EMT and promote tumorigenicity 
of renal cell carcinoma and increase invasion and migration 
activities by inhibiting E-cadherin, upregulating vimentin 
expression and activating MMP-9. The PI3K/Akt/GSK-3β sign-
aling pathway plays an important role in the TNF-α-induced  
EMT processes of in renal cell carcinomas (116). This knowl-
edge may be a key to targeting TNF-α receptors to promote 
antitumor immunity. The design of therapeutic antibodies, 
which engage and activate TNF-α receptors for cancer thera-
peutics but avoid serious immune-related adverse events, is a 
current challenge (117).

Interleukin-8
Interleukin-8, also known as CXCL8, plays a vital role in cancer 
progression by initiating angiogenesis; recruiting monocytes to 
the tumor site; and enhancing the proliferation, survival, and 
metastasis of cancer cells (118, 119). The mechanism of IL-8 
involvement in EMT is that Snail activates the expression of 
IL-8 by binding to its E3/E4 E-box located in the promoter of 
IL-8 (120). There is also a link between IL-8 secreted by TAMs 
and tumor EMT. For example, TAMs induce EMT of hepatocel-
lular carcinoma cells through the IL-8 activated JAK2/STAT3/
Snail signaling pathway (120, 121).

Other Contributors
Tumor-associated macrophages also promote tumor cell inva-
sion and metastasis via the interactions with cancer stem cells. 
For example, during EMT, increased expression of CD90 and 
EphA4 control the cell-to-cell interactions between TAMs  
and cancer stem cells through directly binding with their respec-
tive receptors on the surface of these cells (122). For example, 
Lewis lung carcinoma cells potently activated macrophages 
leading to production of IL-6 and TNF-α through activation 
of the TLR family members TLR2 and TLR6 (123). Endothelial 
activation markers, including vascular cell adhesion mol-
ecule-1 (VCAM-1) and vascular adhesion protein-1 (VAP-1), 
are induced near metastatic tumor cells after their attachment 
to the vascular bed. Embolus formation of tumor cells enhances 
VCAM-1 induction. Blocking endothelial activation, with 
either an anti-VCAM-1 blocking antibody or a VAP-1 inhibitor, 
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resulted in decreased recruitment of macrophages and reduced 
metastatic cell survival (124).

BReAKiNg CROSSTALK BeTweeN TAMs 
AND eMT FOR THe TReATMeNT OF 
TUMOR MeTASTASiS

Are insights gleaned from basic laboratory research useful to 
the diagnosis and treatment of clinical metastatic disease? The 
interaction and crosstalk between TAMs and EMT undoubt-
edly promotes tumor progression, invasiveness, and metastasis, 
at least in some cancers. As mentioned previously, secretion of 
various cytokines and chemokines by TAMs orchestrates the 
crosstalk and promotes adjacent epithelial tumor cells to undergo 
EMT through a paracrine manner. In turn, cytokines produced 
by tumor cells also promote the differentiation process in TAMs, 
thereby forming a positive feedback loop between TAMs and 
EMT in metastasis (125). Thus, breaking the pathways of crosstalk 
between TAMs and EMT is a reasonable option for the treatment 
of tumor metastasis.

In terms of targeting TAMs; several strategies have been 
promising: blocking recruitment of TAMs; depleting numbers 
of TAMs by promoting their removal; reversal of immune 
suppression by switching the M2 to M1 phenotype; and inhib-
iting TAM-induced tumor angiogenesis (126). For example, 
blockade of TAM recruitment by the genetic deletion of CSF-1 
delayed tumor growth, angiogenesis, and reduced metastasis 
in several models of cancer (127). Inhibition of CSF-1 or its 
receptor with antibody, small molecule inhibitors, or antisense 
RNA reduced the recruitment of macrophages, thereby inhib-
iting the proliferation of cancer cells and metastasis (128–130). 
Specific depletion of macrophages in the tumor microenviron-
ment by clodronate-encapsulated liposomes or zoledronic acid 
significantly inhibited tumor proliferation, angiogenesis, and 
distant metastasis in liver, lung, and xenograft models of colon 
carcinoma (131–134). In a breast cancer model, the combina-
tion of CpG with an anti-IL-10 receptor antibody switched 
TAMs from the M2 to the M1 phenotype and triggered an innate 
immune response of debulking of tumors (135). Trabectedin, 
a chemotherapeutic agent approved in Europe for the treat-
ment of sarcomas and ovarian cancer, was selectively toxic for 
TAMs, resulting in reduction of angiogenesis in mouse tumor 
models (136).

Since EMT is a crucial step in the process of cancer metas-
tasis, targeting transcriptional factors of EMT or EMT-related 
pathways by miRNA has proven to be an effective strategy  
for the treatment of tumor metastasis. For example, members 
of the miR-200 family have emerged as pivotal repressors of 
EMT and cancer metastasis through ZEB-dependent and ZEB-
independent mechanisms (137, 138). Delivery of miR-200 
members to different cancer models, including lung, ovarian, 
renal, and basal-like breast cancers, led to significant reduc-
tion in primary tumor burden and distant metastasis (139). 
Cortez et  al. have reported that transiently transfected lung 
cancer cell line A549 with miR-200c resulted in significantly 
more sensitivity to the cytotoxic effects of radiation. Systemic 

delivery of miR-200c enhanced the effects of radiotherapy in 
a xenograft model of lung cancer (140). The miR-34 family 
also plays an important role in reducing the viability of cancer 
stem cells and inhibiting metastasis through downregulat-
ing the expression of Snail in a manner of double-negative 
feedback loop (141, 142). Chen et al. have reported that sys-
temic delivery of miR-34a into experimental lung metastasis 
models of B16F10 melanoma resulted in the downregulation 
of the survivin gene and reduction of tumor load in the  
lung (143).

Given the increasing evidence supporting active crosstalk 
between TAMs and EMT in tumor metastasis, targeting the 
signaling pathways in this process is another option for the 
treatment of invasive cancer. As mentioned above, the signaling 
pathway induced by TGF-β plays an important role in this cross-
talk. Therefore, TGF-β-induced signaling cascades are potential 
therapeutic targets. For example, CX-4945, a potent and selective 
inhibitor of protein kinase CK2, inhibited the EMT-mediated 
migration and invasion of A549 human lung cancer cells by 
blocking the TGF-β1 signaling pathway (144). Ginsenoside 20 
(R)-Rg3, an active component of ginseng, suppressed A549 cell 
migration and invasion through inhibiting the EMT process 
induced by TGF-β1 (145). Sorafenib, a tyrosine kinase inhibi-
tor used for the treatment of primary kidney cancer, advanced 
primary liver cancer, and radioactive iodine-resistant advanced 
thyroid carcinoma inhibited TGF-β released in TAMs; reduced 
TGF-β-induced cancer cell proliferation, metastasis, and EMT 
process in  vitro; and partially blocked macrophage activation 
in vivo (146).

Because NF-κB is another crucial cytokine involved in the 
crosstalk between TAMs and cancer cell EMT, targeting the  
NF-κB pathway has become one of the intensely studied 
strategies for the treatment of TAM-related tumor metastasis. 
Zoledronic acid is a third-generation bisphosphonate for the 
treatment of bone metastasis in breast cancer patients and for 
osteoporosis. Zoledronic acid reversed EMT in triple-negative 
breast cancer cells by inactivation of NF-κB signaling (147). 
A somatostatin derivative (smsDX) can block the paracrine 
loop between TAMs and prostate cancer cells and reduce  
the risk of migration and invasion through inhibiting activa-
tion of NF-κB (148).

CONCLUSiON AND OUTLOOK

A major complication of cancer progression is the metastatic 
spread of cancer cells from the primary tumor. Similarities 
between the process of EMT in embryogenesis and wound 
healing and that seen in spread of epithelial-derived cancers are 
now becoming clear. There is increasing evidence that the tumor 
metastatic cascade relies on a complicated interaction between 
EMT-modified cancer cells and TAMs. Cytokines released by 
tumor cells promote the recruit of macrophages to the tumor 
site and differentiate them into TAMs that then become active 
in the tumor microenvironment. Reciprocally, as a major 
component of solid tumors, TAMs promote cancer cell inva-
sion and metastasis by secreting various cytokines, for example, 
TGF-β, NF-κB, VEGF, and CCL18. Thus, a positive feedback 
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