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Introduction: The gastrointestinal tract (GIT) is vulnerable to various diseases. In this 
study, we explored the therapeutic effects of Brassica rapa flower extract (BRFE) on GIT 
diseases.
Methods: Liquid chromatography–electrospray ionization–tandem mass spectrometry 
(LC-ESI-MS/MS) was used for phytochemical identification of the compounds in 
BRFE. The antibacterial activity of BRFE was investigated, and its impact on the 
bacterial outer and inner membrane permeability and membrane depolarization (using 
flow cytometry) was studied. In addition, the immunomodulatory activity of BRFE was 
investigated in vitro on lipopolysaccharide (LPS)-stimulated peripheral blood mononuc-
lear cells (PBMCs) using quantitative reverse transcription polymerase chain reaction 
(qRT-PCR). Furthermore, the anti-inflammatory activity of BRFE was investigated by 
histopathological examination and qRT-PCR on indomethacin-induced gastric ulcers in 
rats.
Results and Discussion: LC-ESI-MS/MS phytochemically identified 57 compounds in 
BRFE for the first time. BRFE displayed antibacterial activity against bacteria that cause 
GIT infections, with increasing outer and inner membrane permeability. However, mem-
brane depolarization was unaffected. BRFE also exhibited immunomodulatory activity in 
LPS-stimulated PBMCs by attenuating the upregulation of cyclooxygenase 2 (COX-2), 
inducible nitric oxide synthase (iNOS), interleukin (IL)-6, tumor necrosis factor-alpha 
(TNF-α), and nuclear factor kappa B (NF-κB) gene expression compared with untreated 
LPS-stimulated PBMCs. In addition, BRFE exhibited anti-inflammatory activity required 
for maintaining gastric mucosa homeostasis by decreasing neutrophil infiltration with 
subsequent myeloperoxidase production, in addition to an increase in glutathione perox-
idase (GPx) activity. Histopathological findings presented the gastroprotective effects of 
BRFE, as a relatively normal stomach mucosa was found in treated rats. In addition, BRFE 
modulated the expression of genes encoding IL-10, NF-κB, GPx, and myeloperoxidase 
(MPO).
Conclusion: BRFE can be a promising source of therapeutic agents for treatment of GIT 
diseases.
Keywords: antioxidant activity, flow cytometry, GIT diseases, immunomodulatory activity, 
LC-MS/MS, qRT-PCR
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Introduction
Various plants contain many chemical compounds with wide 
structural diversity and good biological activity against dif-
ferent diseases.1 Therefore, many scientists have focused 
their research on elucidation of the biological activity of 
different plant extracts to find new alternative therapeutic 
agents against various diseases. Gastrointestinal tract (GIT) 
diseases are any disorders in the digestive tract that extends 
from the oral cavity to the rectum. GIT diseases, unfortu-
nately, have a relatively high prevalence worldwide.2 Many 
drugs currently available for treatment of GIT diseases have 
disadvantages of low efficacy or high rates of side effects. 
Hence, many studies have investigated the potential thera-
peutic activity of different plants in GIT diseases.3

Brassica rapa L. (turnip; family Cruciferae)) is one of 
the first vegetables to be cultivated worldwide. Due to its 
nutritional characteristics, it is a popular crop for its edible 
components, including leaves, roots, and flowers, which are 
consumed in large amounts. B. rapa L. has been used for 
centuries to cure a number of disorders, including hepatitis, 
jaundice, diabetes, sore throat, constipation, and cholecysti-
tis. In addition, it is used for lung protection and nephropro-
tection in Unani and Arab traditional medicine.4–7

B. rapa L. is reported to have a variety of secondary 
metabolites, such as glucosinolates, isothiocyanates, flavo-
noids, phenylpropanoids, sulfur-containing compounds, phe-
nolics, indoles, and carbohydrates.8–12 Its reproductive organs 
have the largest quantity of glucosinolates and nitrogen- 
containing chemicals, whereas volatile substances (terpenes 
and isoprenoids) are prevalent in seedlings and decrease with 
development. Progoitrin, gluconapoleiferin, gluconapin, 
4-hydroxyglucobrassicin, glucobrassicanapin, glucobrassicin, 
gluconasturtiin, and neoglucobrassicin are the most prominent 
glucosinolates.13 B. rapa L. greens and tops contain flavonoids, 
primarily quercetin, kaempferol, and isorhamnetin 
derivatives.14 These major, active constituents of B. rapa 
L. show diverse bioactivities, including antioxidant, 
hepatoprotective, anticancer, antimicrobial, antidiabetic, 
nephroprotective, cardioprotective, hypolipidemic, analgesic, 
and anti-inflammatory effects.5,15–17

To date, different plant extracts have been established 
as prospective therapeutic agents for the treatment of dif-
ferent GIT diseases. In this study, we evaluated the poten-
tial antimicrobial activity of B. rapa flower extract (BRFE) 
on the bacteria that cause GIT infections. Additionally, 
previous studies have shown the anti-inflammatory and 
gastroprotective effects of some Brassica species,18,19 

which motivated us to conduct in vivo anti–gastric ulcer 
studies on BRFE. Moreover, we also investigated BRFE’s 
in vitro immunomodulatory activity and explored the phy-
tochemical profiling of BRFE’s secondary metabolites.

Materials and Methods
Preparation of BRFE
B. rapa L. specimens were gathered from Al Keram Farms, 
El-Beheira Governorate, Egypt, in February 2021. The plant 
was recognized by Dr. Wafaa Amer at the Plant Taxonomy 
Department, Faculty of Science, Cairo University, Egypt. 
A voucher sample (PG-MF-0089) was deposited at the her-
barium of the Pharmacognosy Department, Tanta 
University, Egypt. The specimens were dried at room tem-
perature for 10 days and then powdered. The powder (350 g) 
was extracted with 80% methanol (3 L × 3 times) using the 
cold maceration method to yield 50.3 g of BRFE.

Chemicals
Indomethacin was obtained from Kahira Pharmaceutical & 
Chemical Industries Co. (Egypt). Other chemicals, including 
dimethyl sulfoxide (DMSO), resazurin, N-phenyl-1-naphthy-
lamine (NPN), o-nitrophenyl-β-D-galactopyranoside 
(ONPG), DiBAC4(3), Roswell Park Memorial Institute 1640 
(RPMI 1640), fetal bovine serum (FBS), L-glutamine, and 
penicillin-streptomycin solution, were obtained from 
Merck (USA).

Animals
In total, 60 Sprague–Dawley rats were acclimatized for 2 
weeks in wire cages with free access to water and a regular 
pellet diet. The rats’ starting weight was 230–250 g, and 
their age was 12 weeks.

LC-MS/MS for Metabolite Profiling
Liquid chromatography–electrospray ionization–tandem 
mass spectrometry (LC-ESI-MS/MS) analysis was con-
ducted at the Children’s Cancer Hospital’s Proteomics 
and Metabolomics Unit (57357). Adopting the criteria 
described by Attallah et al20 for high-performance liquid- 
chromatography separation, a Waters reversed-phase 
X select HSS T3 column (diameter 2.1 mm, length 
150 mm, 2.5μ m), a precolumn (Phenomenex), and in- 
line filter disks (0.5μ m × 3.0 mm) were used. To identify 
chemicals, PeakView TM software was used to compare 
retention duration and m/z values obtained by MS/MS2. 
The XIC Manager in PeakViewTM software was used to 
calculate peak area values. Extracted ion chromatograms 
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(XICs) for each targeted analyte were automatically cre-
ated and compared to a user-defined threshold.20

The sample was prepared by macerating B. rapa 
L. flowers powder in mild petroleum ether at room tem-
perature. The powder was extracted with methanol after 
exhaustion, and then the extract was evaporated under 
vacuum at 45°C. In a 1 mL solution of deionized water: 
methanol: acetonitrile (50:25:25), 50 mg of the dry residue 
was added. The sample was vortexed for 2 min, ultra- 
sonicated for 10 min, and then centrifuged at 1000 rpm 
in this solvent mixture for another 10 min. The sample 
solution was diluted with the reconstitution solvent, and 10 
μL of it was injected at a concentration of 1 μg/L.

Antibacterial Activity
Bacteria
Four standard bacterial strains, Shigella dysenteriae ATCC 
13313, Escherichia coli ATCC 25922, Salmonella typhi-
murium ATCC14028, and Staphylococcus aureus ATCC 
29213, were used as test organisms for examination of the 
antibacterial activity of BRFE. These bacterial strains were 
acquired from the Pharmaceutical Microbiology 
Department, Faculty of Pharmacy, Tanta University.

Antibacterial Susceptibility Testing
The disk agar diffusion method was used for preliminary 
screening of the antibacterial activity of BRFE against the 
tested isolates20 using ciprofloxacin as a positive control 
and DMSO as a negative control.

Minimum inhibitory concentration (MIC) values of 
BRFE against the tested isolates were determined using 
resazurin-based broth microdilution assay21,22 starting 
with a concentration of 1000 µg/mL. All subsequent 
microbiological assays were performed before and after 
treatment of the bacteria with BRFE at 0.5 MIC to main-
tain bacterial viability.

Bacterial Membrane Permeability Studies
Outer membrane permeability was examined in the tested 
isolates using NPN.23 Bacterial suspensions (before and 
after treatment with BRFE at 0.5 MIC) were mixed with 
20 μmol NPN solution and then incubated at 37°C. 
Fluorescence over time was detected at 340/420 nm 
using a spectrofluorometer (Shimadzu Corporation, 
Kyoto, Japan).

Inner membrane permeability was assessed in the 
tested isolates using ONPG as a substrate to detect the 
cytoplasmic activity of the enzyme β-galactosidase.24 

Bacterial isolates were overnight grown in Mueller– 
Hinton broth (MHB) supplemented with 2% lactose and 
then centrifuged. After washing the pellets, they were 
resuspended in 0.5% NaCl. Next, 34 mmol ONPG was 
added to the bacterial suspensions (before and after treat-
ment with BRFE at 0.5 MIC). The optical density (OD) 
was monitored at 420 nm to assess the ONPG degradation 
by β-galactosidase.

Impact on the Bacterial Membrane Depolarization
Membrane depolarization was studied in the tested isolates 
before and after treatment with BRFE at 0.5 MIC using the 
fluorescent dye DiBAC4(3).25 This fluorescent compound 
can enter depolarized cells, where it displays increased 
fluorescence because it binds to intracellular proteins. 
After staining the tested isolates with 5 µg/mL of 
DiBAC4(3), they were examined using a FACSVerse 
flow cytometer (BD Biosciences, USA).

Immunomodulatory Activity
Isolation of Peripheral Blood Mononuclear Cells
Peripheral blood mononuclear cells (PBMCs) were iso-
lated from the blood of healthy donors using Ficoll density 
gradient centrifugation. Then, they were cultured in flat- 
bottom 6-well plates in RPMI 1640 medium supplemented 
with 2 mM L-glutamine, 10% FBS, and 1% penicillin- 
streptomycin solution. They were incubated for 24 h at 
37°C in a humidified atmosphere containing 5% CO2.

MTT Cell Viability Assessment
The toxicity of BRFE (concentrations of 3.125, 6.25, 12.5, 25, 
50, 100, 200, and 400 µg/mL) on PBMCs was assessed using 
the MTT viability test.26 The median inhibitory concentration 
(IC50) of BRFE against PBMCs was determined. In addition, 
the immunomodulatory activity of BRFE was tested in lipo-
polysaccharide (LPS)-stimulated PBMCs at 0.5 IC50.

Quantitative Real-Time PCR
The impact of BRFE on the gene expression of cyclooxygen-
ase-2 (COX-2), inducible nitric oxide synthase (iNOS), inter-
leukin (IL)-6), tumor necrosis factor-alpha (TNF-α), and 
nuclear factor kappa B (NF-κB) in LPS-stimulated PBMCs 
was studied.27 Briefly, 2×106 cells/mL of PBMCs were cul-
tured in flat-bottom 6-well plates in RPMI 1640 medium for 
24 h and then treated with 100 μL of Escherichia coli LPS (20 
ng/mL) for 24 h in the presence and absence of BRFE at 0.5 
IC50. The impact on the gene expression of COX-2, iNOS, IL- 
6, TNF-α, and NF-κB was evaluated by quantitative reverse 
transcription polymerase chain reaction (qRT-PCR; primers 
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are displayed in Table S1). Total RNA was extracted from 
PBMCs using the RNeasy mini kit (Qiagen, Hilden, Germany) 
and then converted to complementary DNA (cDNA) using the 
SensiFAST™ cDNA kit (Bioline, London, UK). 
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was 
used as an internal control gene, and the SensiFAST™ 
SYBR green PCR master mix (Bioline) was used. To calculate 
the fold-change in the gene expression, we used the 2−ΔΔCT 

method.28

In vivo Antiulcer Activity
Ulcer Induction
For ulcer induction, Sprague–Dawley rats were adminis-
tered a single dose of 100 mg/kg of indomethacin dis-
solved in distilled water via gavage. Briefly, the 60 rats 
were randomly divided into 4 groups: group 1 (control, n = 
15), group 2 (ulcer group, n = 15), group 3 (150 mg/kg of 
BRFE, n = 15) and group 4 (300 mg/kg of BRFE, n = 15).

The utilized doses of BRFE were based on previous 
biological investigations for the same species using differ-
ent plant organs.29,30

Groups 3 and 4 (pretreatment groups) were administered 
150 and 300 mg/kg of BRFE, respectively, orally via gavage 
daily for 10 days. On day 10, before administering indo-
methacin, all rats were fasted for 24 h and housed in big wire 
mesh-bottom cages to prevent coprophagia. Water access 
was also restricted for 2 h. The rats were given 100 mg/kg 
of indomethacin by single gavage for ulcer induction 1 
h after treatment. Groups 1 and 2 (given the vehicle instead 
of either drug for the first 10 days) were given the vehicle and 
indomethacin, respectively, at the same time on the final day.

All rats were euthanized using ether, and their sto-
machs were excised before indomethacin dosage and 4 
h after indomethacin/vehicle gavage.

Biochemical Studies
Gastric Glutathione and Malondialdehyde Levels 
Measurement
To prepare tissue for assaying stomach glutathione (GSH) 
and malondialdehyde (MDA) levels, 250 mg of stomach 
tissue was homogenized in 2.5 mL of potassium phosphate 
buffer (pH 7.4) using a PT 3100 homogenizer (Polytron, 
Zurich, Switzerland) and centrifuged at 4000 rpm for 15 
min at 4°C. The level of decreased GSH in the stomach 
tissue homogenate was measured colorimetrically using 
a Biodiagnostics kit (Egypt) according to the manufac-
turer’s instructions.31 Reduced GSH reduces 5,5-dithiobis 
2-nitrobenzoic acid (DTNB) to a yellow product, which 

was detected at 405 nm using a Unico 2100 spectrophot-
ometer (Phoenix, USA). The GSH levels were displayed 
as mg/g tissue using the following equation:

GSH concentration in tissue ¼ ð
A sample � 66:66

Weight tissue usedðgÞ
Þ mg=g tissue 

Colorimetrically, MDA levels in the stomach tissue 
homogenate were measured using a Biodiagnostics kit 
(Egypt), as previously described.32 Thiobarbituric acid 
interacted with MDA in the sample in an acidic medium 
at 95°C for 30 min. Then, the absorbance of the formed 
pink compounds was measured at 534 nm using a Unico 
2100 spectrophotometer. MDA levels were expressed as 
nmol/g using the following equation:

¼
A sample

A standard
�

10
Weight tissue usedðgÞ

nmol=g 

Nitric Oxide Levels Measurement
To assay stomach nitric oxide (NO) levels, 250 mg of 
stomach tissue was homogenized in 2.5 mL of ice-cold 
normal saline (0.9%). Then, 1 mL of absolute ethanol 
was added to 0.5 mL of the homogenate to precipitate 
proteins, and the sample was centrifuged at 3000 rpm for 
10 min at 4°C. The nitrite (an indicator of the original 
NO present) in the stomach was measured to estimate 
the amount of NO present. In a nutshell, 500 µL of the 
homogenate supernatant was combined with an equal 
amount of VCl3 and Griess reagent (0.2% naphthyl 
ethylene-diamine and 2% sulphanilamide in 5% hydro-
chloric acid). After 30 min of incubation at 37°C, the 
absorbance of the mixture was measured at 540 nm using 
a spectrophotometer.33 The nitrite concentration in the 
sample was calculated and expressed as nmol NO/g 
tissue in comparison with sodium nitrite standards.33

Determination of Prostaglandin E2
The prostaglandin E2 (PGE2) level in the stomach tissue 
homogenate supernatant was determined using enzyme- 
linked immunosorbent assay (ELISA; Mouse PGE2 
ELISA Kit NOVA) according to the manufacturer’s 
instructions (Bioneovan Co., China).

qPCR
The relative gene expression of IL-10, glutathione perox-
idase (GPx), NF-κB, and myeloperoxidase (MPO) was 
determined using qRT-PCR, as previously described using 
the B-actin gene as the control gene. Primer sets for genes 
were designed using Primer 3 PLUS software (v. 0.4.0; 163 
http://frodo.wi.mit.edu/; Table S2).
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Histopathological Studies
For histological analysis of the stomach of rats, stomach 
tissue was preserved in 10% formalin for 24 h, embedded 
in paraffin blocks, serially sectioned to 5 mm thickness 
using a RM2135 microtome (Leica, Germany), mounted 
on glass slides, stained with hematoxylin and eosin, and 
examined using a light microscope (Labomed, USA).

Institutional Review Board Statement
The study was conducted according to the guidelines 
approved by the research ethics committee of the Faculty 
of Pharmacy, Tanta University, for the care and use of 
laboratory animals (approval code TP/RE/10-21-P-001).

Statistical Analysis
All tests were repeated thrice, and the results are presented 
as means ± standard deviation using SPSS Statistics ver-
sion 26 (IBM Corp., USA). Parameters that were acquired 
from the different tested groups were compared with each 
other using analysis of variance; p < 0.001 was considered 
statistically significant.

Results
LC-ESI-MS/MS of BRFE
The analysis of BRFE using MS-DIAL in LC-MS/MS 
(negative- and positive-mode ESI) as a modern analytical 
technique tentatively identified 57 secondary metabolites. 
The identified metabolites were classified as anthocyani-
din-3-O-glycosides, alkaloids, aurone derivative, coumar-
ins, flavonoid aglycone, flavonoid glycoside, phenolic 
acid, and carboxylic acid. Table 1 shows the results of LC- 
ESI-MS/MS analysis of BRFE metabolites, and Figure 1 
shows the total ion chromatogram of BRFE.

Identification of Simple Phenols and 
Phenolic Acid Derivatives
Simple phenols are represented by three main classes 
(hydroxy coumarins, hydroxybenzoic acid, hydroxycin-
namic acids) and their corresponding derivatives. Two 
hydroxyl coumarins were identified in negative ion mode 
([M-H]–) as 7-hydroxy-4-methyl coumarin scopoletin and 
daphnetin at m/z 174.95, 177.05, and 193.05, respectively. 
p-Hydroxybenzoic acid was identified in [M-H]–at m/ 
z 137, and the identified hydroxycinnamic acids and their 
derivatives identified were [5, 11, 15, 21, 22, 37]. Caffeic 
acid was found to be the most abundant hydroxycinnamic 

acid in the chromatogram in [M-H]–at m/z 179, followed 
by 1-O-β-D-glucopyranosyl sinapate in [M-H]–at m/z 385.

Identification of Flavonoids
Flavonoid glycosides detected in BRFE were tentatively 
identified as isorhamnetin, baicalein, daidzein, kaempferol, 
luteolin, naringenin, okanin, and rhoifolin glycosides. The 
identified compounds in [M-H]–were [10, 12, 13, 16, 17, 
23, 26, 27, 29, 33, 35, 36, 42, 43, 44, 45] at m/z 445.14, 
449.11, 625.12, 609.15, 447.09, 447.07, 593.12, 623.16, 
415.13, 447.09, 477.1, 479.12, 431.1, 435.13, 577.15, and 
481.10, respectively. Isorhamnetin-3-O-glucoside was the 
major identified compound in [M-H]–according to peak 
area measurements at m/z 477 and MS/MS at m/z 315 
[M-H-glc]–, 299 [M-H-glc-H2O]–, and 285 [M-H-glc- 
OCH3]–(Figure 2A), followed by kaempferol- 
3-O-glucoside, luteolin-3ʹ, and 7-di-O-glucoside in the 
same order. The identified compounds in positive ion 
mode ([M+H]+) were [14, 24, 41, 43, 45] at m/z 627, 
425, 479, 435, and 481, respectively. Isorhamnetin- 
3-O-glucoside was the major identified compound in [M 
+H]+ according to peak area measurements at m/z 479 and 
MS/MS at m/z 317 [M+H-glc]+ and 301 [M+H-glc-H2O]+ 

(Figure 2C). The flavonoid aglycones were represented by 
nine compounds: [31, 49, 50, 51] in [M-H]–and [47, 52, 
53.54, 55] in [M+H]+. The major aglycones were narin-
genin, luteolin, and quercetin.

Identification of 
Anthocyanidin-3-O-Glycosides
Tentative identification of anthocyanidin-3-O-glycosides in 
BRFE provided insights into the compounds responsible for 
the characteristic yellow color of most flowers of the family 
Brassicaceae. Delphinidin, cyanidin, and petunidin glycosides 
were the most abundant anthocyanins [18, 19, 28, 48] in [M 
+H]+ at m/z 611, 479, 449, and 933, respectively, and com-
pounds [25, 30] in [M-H]–at m/z 609 and 449, respectively, 
according to peak area measurement of the spectrum. In addi-
tion, delphinidin-3-O-β-glucopyranoside was the major antho-
cyanidin glycoside detected in [M-2H]–at m/z 463.09 with 
characteristic MS/MS at m/z 271 and 301 [M-2H-glc]– 

(Figure 2B), followed by cyanidin-3-O-(2ʹ’-O-β- 
glucopyranosyl-β-glucopyranoside) in [M-2H]–at m/z 609.15 
with characteristic MS/MS at m/z 227.03, 255.02, 285.03, 
463.08 (Figure 2D). Cyanidin-3,5-di-O-glucoside was the 
major anthocyanidin detected in [M]+ at m/z 611.16 with 
MS/MS at m/z 449 [M-glc]+ and 287 [M-glc-glc]+. The 

Journal of Inflammation Research 2021:14                                                                                          https://doi.org/10.2147/JIR.S345780                                                                                                                                                                                                                       

DovePress                                                                                                                       
7415

Dovepress                                                                                                                                                         Alotaibi et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Table 1 Phytochemical Profiling of BRFE by LC-MS/MS Analysis (Negative and Positive Mode ESI)

Peak 
No.

Identification RT 
(Min.)

m/z Peak 
Height

Peak 
Area

Ion 
Mode

Formula MS/MS Ref

1 a Succinic acid 1.0788 117.02 41,611.6 572,629.8 [M-H]− C4H6O4 73.02, 99.00 [34]

2 a D-(+)-Malic acid 1.0913 133.01 810,402 13,089,116 [M-H]− C4H6O5 71.01, 87.00, 114.63 [35]

3 a Maleic acid 1.0951 115 141,150 2,155,713 [M-H]− C4H4O4 71.01 [36]

4 p.a p-Hydroxybenzoic acid 1.1412 137.02 4951.78 39,562.14 [M-H]− C7H6O3 73.02, 95.64 [37]

5 p.a Caffeic acid 1.2297 179.05 51,602.8 768,577.1 [M-H]− C9H8O4 71.05, 75.00, 161.04 [38]

6 p.a Sinapyl aldehyde 1.2391 208.97 50,736 403,100.7 [M+H]+ C11H12O4 104.10, 191.95 [39]

7 p.a Sinapoyl malate 1.3058 339.07 45,705.9 428,045.8 [M-H]− C15H16O9 115.00, 159.02, 223.06 [39]

8 f.g Syringetin-3-O-galactoside 1.345 507.14 7179.44 46,241.8 [M-H]− C23H24O13 165.03, 299.06, 461.11 [40]

9 ak Nicotinic acid 1.7833 122.02 5104.44 41,389.61 [M-H]− C6H5NO2 78.03 [41]

10 f.g Baicalein-7-O-glucuronide 3.8444 445.14 4576.67 51,547.38 [M-H]− C21H18O11 225.06, 285.100 [42]

11 p.a 3-(4-Hydroxy-3-methoxy phenyl) prop-2-enoicacid 4.1608 195.06 2148.33 35,963.14 [M+H]+ C10H10O4 89.03, 149.02, 163.03, 

177.05

[43]

12 f.g Okanin-4ʹ-O-glucoside 4.2895 449.11 3360.78 46,512.64 [M-H]− C21H22O11 167.03, 361.09, 403.19 [44]

13 f.g Quercetin-3,4ʹ-O-di- β -glucopyranoside 4.5287 625.12 16,840.6 69,874.74 [M-H]- C27H30O17 299.02, 301.031, 463.09 [45]

14 f.g Quercetin-3,4ʹ-O-di- β -glucopyranoside 4.537 627.15 57,862.4 751,368.8 [M+H]+ C27H30O17 127.03, 227.03, 303.04, 

465.09

[45]

15 p.a 3-(4-Hydroxyphenyl) prop-2-enoic acid 4.8291 165.05 3065.56 44,606.8 [M+H]+ C9H8O3 91.01, 119.04 [46]

16 f.g Luteolin-3ʹ, 7-di-O-glucoside 4.9901 609.15 168,158 1,553,536 [M-H]− C27H30O16 285.04, 299.06, 327.04, 

447.09

[47]

17 f.g Quercitrin 5.0023 447.09 1373 9518.728 [M-H]− C21H20O11 357.17889:36,447.07562:71 [48]

18 an Cyanidin-3, 5-di-O-glucoside 5.0564 611.16 62,284.1 621,277.4 [M]+ C27H31O16 109.03, 145.04, 287.05, 
449.10

[49]

19 an Petunidin-3-O- β -glucopyranoside 5.2046 479.1 10,728 79,983.64 [M]+ C22H23O12 229.03, 285.04, 317.06 [49]

20 p.a Rosmarinic acid 5.2738 359.09 5802.67 29,515.36 [M-H]− C18H16O8 151.04201:71,359.09827:71 [50]
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21 p.a 3-(4-Hydroxy-3,5-dimethoxyphenyl)-2-propenoic acid 5.3157 225.08 11,596.3 157,515.5 [M+H]+ C11H12O5 119.05, 174.02, 177.02, 
207.03

[51]

22 p.a 1-O- D-glucopyranosyl sinapate 5.4676 385.18 13,682.3 76,078.68 [M-H]− C17H22O10 112.98, 153.09, 223.05 [52]

23 f.g Luteolin-7-O-glucoside 5.5648 447.07 5537.44 34,358.34 [M-H]− C21H20O11 242.94, 283.03 [53]

24 f.g Hyperoside 5.8922 465.1 4772.11 53,492.11 [M+H]+ C21H20O12 165.02, 177.06, 285.09, 

303.05

[54]

25 an Cyanidin-3-O-(2ʹ’-O- β -glucopyranosyl- β -glucopyranoside) 6.0085 609.15 259,006 2,543,264 [M-2H]− C27H31O16 227.03, 255.02, 285.03, 

463.08

[49]

26 f.g Kaempferol-3-O-(6-p-coumaroyl)-glucoside 6.2881 593.12 4087.11 21,694.75 [M-H]− C30H26O13 285.04, 431.14, 477.10, 

593.13

[55]

27 f.g Kaempferol-7-neohesperidoside 6.3006 593.15 7667.44 84,508.66 [M-H]− C27H30O15 283.04, 315.04, 477.10, 

593.13

[55]

28 an Cyanidin-3-glucoside 6.4017 449.11 17,978.4 105,474.4 [M]+ C21H21O11 85.01, 147.02, 201.02, 

287.05

[49]

29 f.g Isorhamnetin-3-O-rutinoside 6.4247 623.16 25,125.9 303,505.5 [M-H]− C28H32O16 300.04, 315.06,477.09, 

623.16

[56]

30 an Delphinidin-3-O- β -glucopyranoside 6.5616 463.09 375,374 3,329,388 [M-2H]− C21H21O12 271.02,286.93, 301.03, 

461.55

[49]

31 f Hesperetin 6.6146 301.2 4189.44 19,663.35 [M-H]− C16H14O6 175.03, 255.23, 301.19 [57]

32 co Scopoletin 6.9719 190.95 11,402 48,154.79 [M-H]− C10H8O4 117.04, 148.01, 176.008 [58]

33 f.g Daidzein-8-C-glucoside 7.0587 415.13 6371 39,787.53 [M-H]− C21H20O9 207.05, 415.11 [59]

34 p.a Chlorogenic acid 7.1565 355.15 29,842.8 382,730.7 [M+H]+ C16H18O9 147.04, 162.06, 323.08 [60]

35 f.g Kaempferol-3-O-glucoside 7.1817 447.09 758,031 5,389,442 [M-H]− C21H20O11 178.99, 284.02, 357.05 [61]

36 f.g Isorhamnetin-3-O-glucoside 7.2792 477.1 3,955,113 20,922,760 [M-H]− C22H22O12 178.88, 285.04, 299.01, 
313.55, 315.05

[56]

37 p.a 3-(4-hydroxy-3-methoxyphenyl) prop-2-enoicacid 7.4109 195.06 6780.78 70,939.2 [M+H]+ C10H10O4 109.06, 123.03, 149.11, 
177.05

[43]

38 co Scopoletin 7.4590 193.05 29,861.9 409,660.1 [M+H]+ C10H8O4 91.04, 121.02, 161.02 [58]

(Continued)
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Table 1 (Continued). 

Peak 
No.

Identification RT 
(Min.)

m/z Peak 
Height

Peak 
Area

Ion 
Mode

Formula MS/MS Ref

39 au Maritimetin-6-O-glucoside 7.6828 449.11 211,276 2,097,300 [M+H]+ C21H20O11 163.05, 201.06, 241.05, 

269.04, 287.05

[62]

41 f.g Isorhamnetin-3-O-glucoside 7.8179 479.12 1,981,740 24,648,674 [M+H]+ C22H22O12 287.03, 299.05,301.03, 

317.98

[56]

42 f.g Kaempferol-3-O-α-L-rhamnoside 7.8462 431.1 12,659.7 140,206.6 [M-H]− C21H20O10 268.03, 285.08 [63]

43 f.g Naringenin-7-O-glucoside 7.8914 435.13 1898.56 9114.708 [M+H]+ C21H22O10 147.04, 153.01,273.07 [64]

44 f.g Rhoifolin 8.35 577.15 3264.66 34,088.91 [M-H]− C27H30O14 508.84 [65]

45 f.g Gossypin 9.57 481.10 3930.66 50,819.41 [M+H]+ C21H20O13 189.11 [66]

46 f Quercetin 9.6202 301.04 16,805.9 249,482.8 [M-H]− C15H10O7 151.00, 178.99 [67]

47 f Quercetin 9.7925 303.1 11,709.3 132,976 [M+H]+ C15H10O7 153.00, 181.07 [67]

48 an Petunidin-3-O-(6ʹ’-O-(4ʹ’’-O-E-coum)-α-rhamnopyranosyl-β- 

glucopyranosyl)-5-O-β-glucopyranoside

9.805 933.33 7586.56 81,087.66 [M]+ C43H49O23 275.20, 317.06, 771.35, 

903.31

[49]

49 f Naringenin 10.098 271.06 132,825 2,140,767 [M-H]− C15H12O5 177.07, 201.05, 253.04 [68]

50 co Daphnetin 10.52 177.0549 8722.55 108,885.21 [M-H]− C9H6O4 117.03, 133.02

51 f Luteolin 10.939 285.04 78,611.9 946,757.6 [M-H]− C15H10O6 171.04, 220.07 [69]

52 f 3ʹ-Methoxy-4ʹ,5,7-trihydroxyflavonol 11.14 315.05 268,655 2,243,987 [M-H]− C16H12O7 225.10, 271.03, 283.02, 

300.02

[20]

53 f Luteolin 11.401 287.05 16,984.9 139,318.8 [M+H]+ C15H10O6 117.07, 147.04 [69]

54 f Myricetin 11.426 319.13 3581.22 34,352.16 [M+H]+ C15H10O8 319.15 [20]

55 f 3ʹ-Methoxy-4ʹ,5,7-trihydroxyflavonol 11.605 317.07 55,818.1 301,345.8 [M+H]+ C16H12O7 165.01, 179.02, 271.05, 
285.04

[20]

56 f (+)-3 3ʹ 4ʹ 5 7-Pentahydroxyflavan 16.526 291.19 4260.22 52,578.86 [M+H]+ C15H14O6 123.12, 141.07 [70]

57 f 3 3ʹ 4ʹ 5-Tetrahydroxy-7-methoxyflavone 20.093 317.12 96,989 983,757.1 [M+H]+ C16H12O7 201.15, 317.11 [70]

Notes: aCarboxylic acid, akAlkaloid, anAnthocyanidin-3-O-glycosides, auAurone derivative, coCoumarins, fFlavonoid aglycone, f.gFlavonoid glycoside, aPhenolic acid derivative.
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Figure 1 Total ion chromatogram by LC-MS/MS of BRFE labeled with the tentatively identified active metabolites in (A) negative ion mode, (B) positive ion mode.

Figure 2 Base peak charts of major identified phenolic compounds of BRFE by LC-ESI-MS/MS in negative ion mode; (A) isorhamnetin 3-O-glucopyranoside, (B) delphinidin- 
3-O-β-glucopyranoside, and in positive ion mode; (C) isorhamnetin 3-O-glucopyranoside, (D) cyanidin-3, 5-di-O-glucoside.
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other identified anthocyanidin 3-O-glycosides were cyanidin- 
3-glucoside, cyanidin-3-O-(2ʹ’-O-β-glucopyranosyl-β-gluco-
pyranoside), petunidin-3-O-β-glucopyranoside, and petuni-
din-3-O-(6ʹ’-O-(4ʹ’’-O-E-coum)-α-rhamnopyranosyl-β-gluco-
pyranosyl)-5-O-β-glucopyranoside trifluoroacetate salt.

Antibacterial Activity
BRFE showed antibacterial activity against the tested 
isolates, and the MICs are shown in Figure 3. The 
MICs of ciprofloxacin (positive control) against the 
tested isolates ranged from 0.125 to 0.5 µg/mL. 
However, DMSO (negative control) did not exhibit any 
antimicrobial activity.

Impact on Bacterial Membrane 
Permeability: Outer Membrane 
Permeability of Gram-Negative Bacteria
Outer membrane permeability was studied in 
S. dysenteriae, E. coli, and S. typhimurium by detection 
of fluorescent NPN using a spectrofluorophotometer, as 
the fluorescence of NPN is detectable in the hydrophobic 
regions of bacteria, such as cell membranes.23 BRFE (at 
0.5 MIC) significantly increased NPN fluorescence, indi-
cating a substantial increase (p < 0.001) in the outer 
membrane permeability, as shown in Figure 4A (a repre-
sentative example).

Inner Membrane Permeability
If the inner membrane permeability increases, ONPG 
enters the bacterial cells and is converted by β- 
galactosidase, which is present in the bacterial cyto-
plasm, into O-nitrophenol (ONP).24 ONP has a yellow 

color, and its amount can be detected by measuring the 
absorbance at OD = 420 over time. An illustrative 
example is shown in Figure 4B. The inner membrane 
permeability significantly increased (p < 0.001) after 
BRFE treatment (at 0.5 MIC).

Impact on Bacterial Membrane 
Depolarization
The impact of BRFE on membrane depolarization of the 
tested isolates was studied quantitatively using flow 
cytometry after staining the isolates with DiBAC4(3), 
a fluorescent compound that can enter depolarized cells 
and binds to intracellular proteins, resulting in increased 
fluorescence.25 BRFE did not produce any significant 
changes in the membrane depolarization of the tested 
isolates, and an illustrative example is shown in 
Figure 5.

Immunomodulatory Activity
MTT Assay
The effect of BRFE (concentrations of 3.125, 6.25, 12.5, 
25, 50, 100, 200, and 400 μg/mL) on PBMC viability was 
evaluated. The IC50 against PBMCs was 84.9 ± 0.818 μg/ 
mL, as shown in Figure 6.

qRT-PCR
The relative gene expression of inflammation-related 
enzymes (COX-2 and iNOS), cytokines (IL-6 and TNF-α), 
and the transcription factor NF-κB increased in LPS- 
stimulated PBMCs. Remarkably, treatment of LPS- 
stimulated PBMCs with BRFE at 0.5 IC50 attenuated the 
upregulation of the gene expression of IL-6 and TNF-α. In 
addition, it significantly reduced the gene expression of 

Figure 3 Bar chart showing MIC values of BRFE against the tested bacteria.
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COX-2, iNOS, and NF-κB (p ˂ 0.001) in comparison with 
the untreated LPS-stimulated PBMCs as shown in Figure 7.

In vivo Studies
Effect on Oxidative Stress Markers
When compared to the control group (group 1), the ulcer 
group (group 2) had a sharp increase in gastric MDA 
levels but a significant reduction in gastric GSH levels 
(p ˂ 0.001). Pretreatment with either BRFE (150 or 
300 mg/kg: groups 3 and 4, respectively) significantly 
decreased gastric MDA levels compared with group 2 
(p ˂0.001). A significant increase in gastric GSH levels 
was observed in both groups 3 and 4 compared with group 

2 (p˂0.001). The results are displayed in Tables S3 and S4 
and Figure 8.

Effect on Cytoprotective Mediators
Gastric NO and PGE2 levels significantly reduced in 
group 2 compared with group 1 (p ˂ 0.001). Compared 
with group 2, groups 3 and 4 exhibited a substantial 
increase in gastric NO and PGE2 levels (p ˂ 0.001). The 
results are presented in Tables S5 and S6 and Figure 9.

qRT-PCR: Effect on IL-10 Gene Expression
The level of gene expression of IL-10 was 1.25 ± 0.36 in 
group 1 and 0.75 ± 0.18 in group 2 (p ˂ 0.001). Compared 

Figure 4 An increase in the (A) outer membrane permeability in E. coli isolate after treatment with BRFE (125 µg/mL), (B) inner membrane permeability in E. coli isolate 
after treatment with BRFE (125 µg/mL).

Figure 5 Flow cytometric charts showing fluorescence of E. coli isolate (A) dot plot and (B) histogram, before treatment, and (C) dot plot and (D) histogram after 
treatment with BRFE (125 µg/mL).
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with group 2, gene expression of IL-10 significantly 
increased in both groups 3 and 4 (0.96 ± 0.21 and 1.06 ± 
0.2, respectively; p ˂ 0.001). There was a significant dif-
ference in the gene expression of IL-10 between group 4 
and group 1. The results are presented in Table S7 and 
Figure 10A.

Effect on GPx Gene Expression
The level of gene expression of GPx was 1.34 ± 0.39 in 
group 1 and 0.75 ± 0.19 in group 2 (p ˂ 0.001). When 
compared with group 2, both groups 3 and 4 showed 
a marked increase in the gene expression of GPx (1.02 ± 
0.22 and 1.2 ± 0.13, respectively; p ˂ 0.001). There was 

a significant difference in the gene expression of GPx 
between group 4 and group 1. The results are presented 
in Table S8 and Figure 10B.

Effect on NF-κB Gene Expression
The level of gene expression of NF-κB was 0.81 ± 0.08 in 
group 1 and 1.75 ± 0.33 in group 2 (p ˂ 0.001). Compared 
with group 2, there was a considerable decrease in the 
gene expression of NF-κB in both groups 3 and 4 (1.10 ± 
0.25 and 0.83 ± 0.10, respectively; p ˂ 0.001). There was 
no notable difference in the gene expression of NF-κB 
between group 4 and group 1. The results are displayed 
in Table S9 and Figure 10C.

Figure 6 BRFE cytotoxicity on PBMCs using MTT to determine cell viability. IC50 was detected in three independent tests.

Figure 7 Bar chart showing the effect of BRFE on the gene expression of COX-2, iNOS, IL-6, TNF-α, and NF-κB in LPS-stimulated PBMCs. The symbol * represents 
a significant change.
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Effect on MPO Gene Expression
The level of gene expression of MPO was 0.81 ± 0.07 in 
group 1 and 1.86 ± 0.11 in group 2 (p ˂ 0.001). Compared 
with group 2, there was a significant decrease in the gene 
expression of MPO in both groups 3 and 4 (1.07 ± 0.25 
and 0.83 ± 0.10, respectively; p ˂ 0.001). There was no 
substantial difference in the gene expression of MPO 
between group 4 and group 1 (p = 0.97). The results are 
presented in Table S10 and Figure 10D.

Histopathological Studies
The histopathological results of the examined stomach 
tissues of groups 3 and 4 showed limited degenerative 
changes of the gastric mucosa induced by indomethacin 
compared with the positive control group. The area of 
mucosal necrosis and ulceration in the positive control 
group, as a marker of the severity of mucosal and 

submucosal cellular pathological changes, decreased in 
group 3. In addition, complete healing of the mucosal 
tissue was observed in group 4. Moreover, congestion 
and leukocytic cell infiltration were limited in groups 3 
and 4. Mild submucosal edema was observed in group 4, 
as displayed in Figure 11.

Discussion
BRFE exhibited antibacterial potential against the tested 
isolates, which cause for GIT infections. S. dysenteriae 
causes bacillary dysentery, which is the main cause of 
morbidity and mortality among children in many 
countries.71 E. coli can cause intestinal diseases, especially 
enterohemorrhagic E. coli (EHEC), enteropathogenic 
E. coli (EPEC), enterotoxigenic E. coli (ETEC), and enter-
oinvasive E. coli (EIEC).1 S. enterica serovar typhimurium 
is a common foodborne bacterium that can cause intestinal 

Figure 8 Bar chart showing the effect of BRFE treatment on (A) MDA levels and (B) GSH levels in the stomach of the tested rats. The symbol * represents a significant 
change.

Figure 9 Bar chart showing the effect of BRFE treatment on (A) PGE2 levels and (B) NO levels in the stomach of the tested rats. The symbol * represents a significant 
change.
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inflammatory diseases and diarrhea; in addition, it results 
in thousands of deaths worldwide.72 S. aureus can produce 
staphylococcal enterotoxins that cause food poisoning.1 

For a greater understanding of the antibacterial activity 
of BRFE, we investigated its impact on the membrane 
properties of the tested isolates. The outer membrane is 
present only in Gram-negative bacteria, and it plays an 
important role in limiting antibiotic access into bacterial 
cells.73 BRFE resulted in a substantial increase in the outer 
membrane permeability in the tested Gram-negative bac-
teria. The inner membrane is present in both Gram- 
positive and Gram-negative bacteria. Disrupting the inner 
membrane by an antimicrobial agent could inhibit many 
important processes, which would result in a serious 
assault on bacterial cells.74 BRFE significantly increased 
inner membrane permeability in the tested isolates. 
Membrane potential dissipation is a mechanism of action 
of many antimicrobial compounds74; thus, we investigated 
the impact of BRFE on the membrane potential of the 
tested isolates using flow cytometry and found an insig-
nificant change.

PBMCs are blood cells, like lymphocytes and macro-
phages, having round nuclei. LPS is extracted from the 

outer membrane of Gram-negative bacteria and is a strong 
stimulator for macrophages. LPS-stimulated macrophages 
produce inflammatory mediators, such as prostaglandins 
and NO, in addition to many inflammatory cytokines, such 
as IL-6 and TNF-α. Prostaglandins are produced by COX-2 
enzyme activity on arachidonic acid, and NO is produced by 
iNOS activity on the L-arginine amino acid. The production 
of both prostaglandins and NO are produced by LPS- 
activated macrophages increases as a result of upregulation 
of the expression of genes encoding COX-2 and iNOS.75 

Moreover, the NF-κB transcription factor induces pro- 
inflammatory genes to produce high amounts of pro- 
inflammatory mediators in LPS-activated macrophages.76 

Overexpression of these bioactive molecules occurs during 
an inflammatory reaction and could result in detrimental 
effects on tissues. Hence, inhibition of these interactions 
offers a good therapeutic effect by decreasing the harmful 
effects of inflammation, especially GIT inflammatory 
diseases.77

We also investigated the immunomodulatory effect of 
BRFE on LPS-stimulated PBMCs. After determining the 
IC50 of BRFE against PBMCs, the LPS-stimulated 
PBMCs were treated with BEFR at 1/2 IC50 and the 

Figure 10 Bar chart showing the level of expressed genes of ulcer treated groups with 150 mg/kg and 300 mg/kg of BRFE compared to control group and ulcer induced 
group (untreated); (A) IL-10 gene, (B) GPx gene, (C) NF-κB gene and (D) MPO gene. The symbol * represents a significant change.
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relative gene expression of COX-2, iNOS, IL-6, TNF-α, 
and NF-κB was determined using untreated LPS- 
stimulated PBMCs as controls. BRFE attenuated the upre-
gulation of the gene expression of COX-2, iNOS, IL-6, 
TNF-α, and NF-κB.

We aimed to investigate BRFE’s gastroprotective efficacy 
and probable mechanisms of action using an indomethacin- 
induced gastric ulcer model in rats. Indomethacin was our first 
choice of drug to be used as it has a higher ulcerogenic 

potential than other nonsteroidal anti-inflammatory drugs 
(NSAIDs).78 BRFE had a dose-dependent effect and provided 
significant protection against ulcer development. Oral admin-
istration of indomethacin causes gastric ulcers in a variety of 
ways, including suppression of prostaglandin biosynthesis, 
depletion of gastric mucosal blood flow, and increase in the 
local inflammatory response, including the over secretion of 
pro-inflammatory mediators and cytokines, as well as the 
impairment of local defensive factors.79

Figure 11 Microscopic pictures of H&E-stained rats’ stomachs: (A) The control group showing normal glandular gastric mucosa. (B) The untreated positive control group 
induced by indomethacin showing large area of mucosal necrosis and ulceration (thick black arrow) associated with marked submucosal edema (*), congestion (red arrow), 
and leukocytic cells infiltration (black arrow). (C) The treated group with BRFE (150 mg/kg) showing small area of mucosal necrosis and ulceration (thick black arrow) 
associated with milder submucosal edema (*), congestion (red arrow), and leukocytic cells infiltration (black arrow). (D) The treated group with BRFE (300 mg/kg) showing 
very mild submucosal edema (*) and very few leukocytic cells infiltration (black arrow). The left panel is with low magnification X: 100 bar 100 and the right panel is with high 
magnification X: 400 bar 50.
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Neutrophils are innate immune system specialized cells 
that aid in host defense through phagocytosis and the pro-
duction of reactive oxygen species (ROS).80 Neutrophil 
activation and infiltration in the stomach lead to the creation 
of lesions. MPO is a heme peroxidase found in neutrophil 
granules, and its activity reflects the number of neutrophils 
present in tissues.81 IN this study, BRFE inhibited neutrophil 
infiltration in the stomach mucosa by decreasing the activity 
as well as expression of MPO.

The endogenous antioxidant system of GSH and GPx can 
be used to scavenge ROS and keep them at healthy levels.82 

As BRFE treatment did not affect other parameters, it only 
enhanced the activity and gene expression of GPx, an enzyme 
that functions by oxidizing GSH to glutathione disulfide. This 
suggests that BRFE has only a minor antioxidant effect.

The main regulator of transcription of numerous genes 
implicated in inflammation, NF-kB, is activated when 
ROS is produced. NF-kB is activated during the formation 
of a stomach ulcer caused by indomethacin, and it pro-
motes the production of inflammatory cytokines such 
TNF-α, IL-6, and IL-1.81 Inhibiting NF-kB expression, in 
addition to making this transcription factor a target for the 
treatment of inflammatory disorders, is a critical step in 
preventing stomach ulcer formation.83

Our findings showed that BRFE increased the local 
level of IL-10, but not its expression level, and this is 
following Basak and Hoffman84 who found that IL-10 
inhibits the synthesis of inflammatory cytokines suppres-
sing the inflammatory response. In our investigation, 
BRFE partially restored stomach MDA and GSH levels 
with a significant difference from the control values. By 
scavenging hydroxyl radicals BRFE has antioxidant prop-
erties and inhibits lipid peroxidation85 and interacting with 
hypochlorous acid, the most damaging oxidant.86 Our 
findings are consistent with El-Ashmawy et al87 as with 
a single dose of indomethacin causing a large rise in 
gastric MDA and a considerable drop in gastric GSH.

PGE2 and NO, two gastroprotective mediators, were 
shown to be considerably lower in the ulcer group in our 
investigation. On the contrary, rats treated with BRFE 
showed a considerable improvement in stomach levels of 
PGE2 and NO. Reduced PGE2 production and disruption 
of NO may play a role in the development of gastric ulcers 
caused by NSAIDs like indomethacin.88 PGE2 protects the 
stomach mucosa by boosting mucus secretion, lowering 
acid secretion, and preserving the blood flow.89 Due to the 
vasodilatation function of NO, it can control the stomach 
pH and increases the blood flow.90

In our ulcer model, histopathological analysis of gastric 
tissue revealed apparent ulcer injury. The results indicated 
a reduction of pathological degenerative cellular changes of 
mucosal and submucosal tissues especially at the treatment 
dose of 300 mg/kg of BRFE. These findings were in line 
with the considerable increase in stomach levels of the 
inflammatory mediators (NF-κB and MPO). Different 
inflammatory mediators are believed to be involved in the 
pathogenesis of indomethacin-induced stomach ulcers by 
triggering neutrophil infiltration.91 The current histopatho-
logical findings clarified the gastroprotective effects of 
BRFE, showing relatively normal mucosa in treated rats.

According to data of LC/MS, it was found that BRFE 
contained several flavonoids and phenolic compounds as 
isorhamnetin, luteolin, kaempferol derivatives that were 
reported to inhibit NO production and explain the anti- 
inflammatory and gastroprotective effects of BRFE.92 

Luteolin and kaempferol derivatives were reported to have 
strong inhibitory effects on NO production and these results 
are consistent with the inhibition of NO in LPS stimulated 
macrophages.92,93 Our results also were consistent with 
previously reported data about the antimicrobial effect of 
different flavonoids or flavonoid glycosides as quercetin,94 

luteolin,92,93 isorhamnetin,95 naringenin,96 Kaempferol,97 

and anthocyanins derivatives.98

Conclusion
In the current investigation, the phytoconstituents of the 
B. rapa flower extract (BRFE) were identified using LC-MS 
/MS for the first time with identification of 57 compounds. 
BRFE proved to have antibacterial activity against the patho-
genic bacteria that cause GIT infections by increasing the outer 
and inner membrane permeability. It also showed an immu-
nomodulatory activity on lipopolysaccharide-stimulated per-
ipheral blood mononuclear cells. Moreover, BRFE exhibited 
an anti-inflammatory activity required for maintaining the 
gastric mucosa homeostasis in an indomethacin-induced gas-
tric ulcer in rats. Thereby, it could keep the required balance 
between aggressive and defensive factors in the stomach. 
Therefore, BRFE could be a future source for novel therapeu-
tic drugs with an activity on the GIT infections as well as the 
gastric ulcer. Further future studies are recommended to isolate 
the responsible active ingredients of BRFE that has the main 
activity on the peptic ulcer. In addition, it is important to 
formulate BRFE in a pharmaceutical dosage form to max-
imize the practical incorporation of BRFE in the peptic ulcer 
treatment regimens.
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Supplementary Materials
The following data are available online, Table S1: 
Sequences of the utilized primers in the immunomodula-
tory activity, Table S2: Sequences of the utilized primers 
in the in vivo studies. Table S3: MDA level within the 
control and the experimental groups, Table S4: GSH level 
within the control and the experimental groups, Table S5: 
PGE2 level within the control and the experimental 
groups, Table S6: Nitric oxide level within the control 
and the experimental groups, Table S7: IL-10 gene expres-
sion within the control and the experimental groups, Table 
S8: GPX level within the control and the experimental 
groups, Table S9: NF-KB level within the control and 
the experimental groups, Table S10: MPO activity within 
the control and the experimental groups Table S11: B-actin 
level within the control and the experimental groups.
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