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Abstract: Unsaturated nitro fatty acids (NO2-FAs) constitute a category of molecules that may be
formed endogenously by the reaction of unsaturated fatty acids (UFAs) with secondary species of
nitrogen monoxide and nitrite anions. The warhead of NO2-FAs is a nitroalkene moiety, which is
a potent Michael acceptor and can undergo nucleophilic attack from thiol groups of biologically
relevant proteins, showcasing the value of these molecules regarding their therapeutic potential
against many diseases. In general, NO2-FAs inhibit nuclear factorκ-B (NF-κB), and simultaneously
they activate nuclear factor (erythroid derived)-like 2 (Nrf2), which activates an antioxidant signaling
pathway. NO2-FAs can be synthesized not only endogenously in the organism, but in a synthetic
laboratory as well, either by a step-by-step synthesis or by a direct nitration of UFAs. The step-by-step
synthesis requires specific precursor compounds and is in position to afford the desired NO2-FAs
with a certain position of the nitro group. On the contrary, the direct nitration of UFAs is not a
selective methodology; thus, it affords a mixture of all possible nitro isomers.
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1. Introduction

Nitro fatty acids (NO2-FAs) is a class of compounds that are endogenously formed
by the reaction of unsaturated fatty acids (UFAs) [oleic (OA), linoleic (LA), etc.] with
secondary products of nitrogen monoxide (NO.) and nitrite anions (NO2

−) (Scheme 1),
resulting in the formation of a reactive nitroalkene moiety [1–3]. These nitrated lipids have
been detected and characterized in several tissues and biological fluids employing mass
spectrometry-based approaches [4–7]. A recent review article summarizes the applications
of such approaches to identify NO2-FAs and their protein adducts [8]. A very recent study
defines the urine nitrolipidome, highlighting the presence of nitro derivatives of conjugated
linoleic (cLA) and linolenic acid (cLnA) [9].
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Scheme 1. Endogenous formation of nitrogen dioxide, the reactive nitrating agent of UFAs. 
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Scheme 1. Endogenous formation of nitrogen dioxide, the reactive nitrating agent of UFAs.

The endogenous formation of NO2-FAs begins with the formation of a β-nitroalkyl
radical and its reaction to a nitronitrite or a nitrohydroxy intermediate (Scheme 2). The
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formation of NO2-FAs is achieved, when an elimination of nitrous acid of the nitronitrite
ester or a dehydration of the nitrohydroxy compound takes place, respectively [3]. NO2-
FAs have at least one nitrated double bond, granting in this way an electrophilic nature to
the molecule and for that reason NO2-FAs can react with thiol groups very fast to generate
reversible Michael addition products, due to the high reactivity of the electrophilic warhead
of these molecules [10–12]. To clarify the way the cells signal with NO2-FAs and in order to
better understand their pharmaceutical benefits, their biophysical properties and behavior
in water have been studied by Vacek et al. [13].
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NO2-FAs have been reported to form covalent adducts with cysteine residues of Kelch-
like ECH-associated protein (Keap-1), resulting in activation of nuclear factor erythroid
2-related factor 2 (Nrf2). This activation of Nrf2 induces the expression of genes responsible
for an overall antioxidant and cell-protecting function [14–16]. The covalent interactions
between NO2-FAs and the Cys residues are reported to induce anti-inflammatory cell
signaling as well [3]. The formation of covalent adducts between NO2-FAs and the protein
of interest, via the formation of a new C-S bond, causes the protein to change its overall
structure, therefore its function as well. This structural change of the protein is called Post-
Translational Modification (PTM) (Figure 1) [3]. Understanding the way NO2-FAs interact
with specific residues of the catalytic site of several proteins, residues beyond the catalytic
pocket or even non-enzymatic proteins (such as structural proteins or transcriptional
factors) each time, is of paramount importance for the Structure-Activity Relationship
(SAR), in order to maximize the therapeutic benefits of NO2-FAs and minimize the harmful
effects of the diseases.
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NO2-FAs are also reported for alkylating important Cys residues of p65 and p50
subunits of nuclear factor κB (NF-κB), preventing the endogenous formation of a variety
of pro-inflammatory mediators, responsible for diseases, like vascular inflammation and
pro-fibrotic responses [17–19].

Besides the ability of the organism to synthesize by itself NO2-FAs during a state of
inflammation, NO2-FAs can be synthesized in the laboratory. These nitroalkene-bearing
compounds can be synthesized either by a direct nitration of the double bond of the
corresponding UFA, where in that case an approximately 1:1 ratio of nitro regio-isomers
are formed, or by a step-by-step synthesis. The step-by-step approach involves a Henry
reaction between the appropriate aldehyde and the nitro component, depending on the
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desired nitration position. The final step of this synthetic pathway is an E2 elimination for
the formation of the desired nitroalkene moiety, followed by an ester deprotection step.
The various synthetic methods developed so far will be discussed extensively, along with
the pros and cons of each method.

2. Bioactivities of NO2-FAs
2.1. Interaction of Cysteine Residues with NO2-FAs

Cysteine residues of several proteins may react with numerous electrophilic com-
pounds, due to the high nucleophilic reactivity of the -SH group, in order to form covalent
adducts via a Michael addition. The environment where the Cys residue is located plays a
predominant role to define the pKa value of the -SH group, which for the residue Cys in
aqueous solution at pH 7.2 is 8.33 [20]. The acidity of the -SH proton increases significantly
when next to the Cys residue exist basic residues like His, Lys and Arg, metal centers from
different enzymes (e.g. the iron metal center of hemoglobin), and different aromatic amino
acids, such as Tyr and Trp (pi interaction with the thiol group) [20]. The above factors
have as a result the formation of the highly reactive thiolate anion (RS−), which is a much
better nucleophile in comparison with the free thiol group of the Cys residue to undergo
oxidative or Michael reactions [21,22].

The covalent formation of adducts between several Cys residues and NO2-FAs play a
pivotal role to many biochemical pathways with beneficial outcome for the organism. NO2-
FAs exhibit potent anti-inflammatory effects in animal models of inflammation [16–18].
These electrophilic molecules interact with specific Cys residues of many regulatory pro-
teins, like Keap-1, Nrf2, NF-κB, Peroxisome Proliferator-Activated Receptor γ (PPARγ),
Heat Shock Proteins (HSP), 5-Lipoxygenase (5-LO) and others in order to regulate many diseases.

2.2. 10-Nitro Oleic Acid (CXA-10) and Its Derivatives as Anti-Inflammatory and Cytotoxic Agents

One of the most studied NO2-FAs is CXA-10 (1) (10-nitro oleic acid, 10-NO2-OA),
which has entered Phase II clinical trial against Pulmonary Arterial Hypertension (PAH),
Focal Segmental Glomerulosclerosis (FSGS) and asthma, by Complexa Inc., despite that it
was first studied against acute kidney injury [23–25]. CXA-10 is the regio-isomer where the
nitro group is located only at C10 of OA (Figure 2) exhibiting unique biological activity.
Some of the pharmacokinetic (PK) and pharmacodynamic (PD) effects of oral CXA-10 in
healthy and obese subjects were described by Jorkasky, et al. in 2019 [26].
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and asthma.

NO2-FAs exhibit potent therapeutic properties in models of PAH caused by hypoxia
or obesity [27,28]. More specifically, lung macrophage infiltration, expression of pro-
inflammatory cytokines and glucose tolerance were improved significantly when NO2-OA
was administrated to a PAH murine model. Characteristic lesions of PAH, like ventricular
hypertrophy, fibrosis, etc., dropped significantly, unlike some biological markers like
Monocyte Chemotactic Protein-1 (MCP-1), Interleukin-6 (IL-6), Tumor Necrosis Factor
α (TNFα) and some macrophage markers (F4/80, CD68) levels in blood of High-Fat
Diet (HFD) mice were increased. These HFD data showed that inflammation dropped
significantly when 10-NO2-OA was administered, demonstrating once again the anti-
inflammatory potency of 10-NO2-OA. NO2-FAs have been reported, as well to inhibit
significantly the inflammation caused by bleomycin-mediated lung injury in mice by
inhibiting Intratracheal Administration of Bleomycin (ITB)-induced pro-inflammatory
mediators [29].
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Neumann et al. have reported that CXA-10 increases significantly the antiproliferative
effects of some known antineoplastic DNA-damaging agents, such as olaparib, cisplatin,
doxorubicin against triple-negative breast cancer (TNBC) [30]. As a result, TNBC epithelial
cell growth drops significantly by inhibiting the NF-κB signaling pathway. This signaling
inhibition by CXA-10 happens due to the PTM effect on Cys residues to NF-κB subunit
kinase β (IKKβ) and the NF-κB Re-1a protein, preventing this way DNA binding and an
upcoming Re-1 protein-induced degradation of proteins. Moreover, CXA-10 inhibited
TNFα-induced NF-κB activity, having as a result the suppression of harmful target genes,
responsible for the expression of metastasis-related proteins like Intercellular Adhesion
Molecule-1 (ICAM-1) and urokinase-type plasminogen activator [31].

A study in 2018 by Freeman and coworkers reported twenty new nitroalkenes as can-
didates for the activation of Antioxidant Response Element (ARE), which means activation
of Nrf2 and inhibition of the NF-κB signaling pathway [32]. For better understanding of the
importance of the nitroalkene position or the carbon chain length of the tested nitroalkenes,
a variety of nitroalkenes was synthesized. That work aimed to clarify if the synthetic
nitroalkenes activate ARE luciferase or inhibit TNF-α induced NF-κB signaling pathway.
The importance ofthe terminal or interior position of the nitroalkene was examined as
well. The nitroalkenes with the highest ARE activity are shown below, ranked from highest
to lowest activity (Figure 3). It is noted that three out of five nitroalkenes have an ω-12
nitration position. Regarding the NF-κB inhibition, two nitroalkenes showed the same
inhibition rate with NO2-OA and are shown below (Figure 4).
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In 2018, Kühn et al. reported the other regio-isomer of CXA-10, 9-nitro oleic acid (9-
NO2-OA) (9) (Figure 5) as a cytotoxic agent against colorectal cancer cell lines HCT-116 and
HT-29. The cell viability of these cancer cell lines was suppressed significantly by 9-NO2-OA
through a caspase-dependent apoptosis, via the intrisic apoptotic pathway [33]. This effect
against cancer cell lines is based on the antioxidant effects of NO2-FAs and the capability of
9-NO2-OA to target mitochondria and deregulate their membrane and respiration, having
as a result the final apoptosis of the cells. The entire cytotoxic effect is based on the Complex
II inhibition by 9-NO2-OA, which is reversible and pH-dependent. As the pH gets more
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basic, the R-SH of the Cys residue deprotonates to the more reactive thiolate R-S−, giving
this way a higher inhibition rate by 9-NO2-OA, since Michael additions are favored under
basic conditions.
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In order to understand whether the Michael acceptor is enough for the tested molecules
to demonstrate cytotoxic effects against cancer cell lines, the combination of monomethyl
fumarate (MMF) and 15-deoxy-delta-12,14-prostaglandin J2 (PGJ2) with HCT-116 cells was
studied and compared with 9-NO2-OA’s cytotoxic effect [33]. The cell line was treated with
all the three candidates for 48 h and the best results came from 9-NO2-OA, since it showed
the highest cytotoxicity of all (IC50 6.5 µM), followed by PGJ2 (IC5017.6 µM), when MMF
presented no cytotoxicity at all.

Most recently, fifteen NO2-FAs have been studied for their effects on activation of
Nrf2, and inhibition of NF-κB signaling pathway, cyclooxygenase-2 (COX-2), LO and
soluble Epoxide Hydrolase (sEH), as well as for their cytotoxic activity on colorectal cancer
cells [34]. All the new NO2-FAs were compared with the lead compound 9-NO2-OA (9)
(Figure 5).

The structures of NO2-FAs included in this SAR study are shown in Figure 6. The
carbon chain length varies between twelve to twenty-two total carbon atoms and the
nitro group is inserted from position C4 to C11 each time, close or away from the car-
boxylic group.
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The inhibitory activity of these NO2-FAs against the NF-κB signaling pathway (p65
and p50) in colorectal cancer cells was studied in comparison with 9-NO2-OA [34]. The
cytotoxic effect of the tested NO2-FAs against subunit p65 showed that compounds 22
and 23 demonstrated slightly worse activity than 9-NO2-OA. Compounds 14, 15 and 16
exhibited a stronger cytotoxicity than compound 9, with compound 14 being the most
potent agent. The same results were demonstrated against subunit p50, where the only
difference was the fact that compounds 14, 15 and 16 exhibited a slightly lower potency.

All of the tested NO2-FAs induced Nrf2, as it was demonstrated by Western blot and
ELISA [34]. The majority of the tested compounds with a carbon chain length greater than
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sixteen, led to a significant Nrf2 gene expression. Also, NO2-FAs where the nitroalkene
moiety position was greater than six, led to a 3-fold induction of Nrf2. As a negative
experiment control, OA was ascertained that did not affect the Nrf2 gene expression at all.

The SAR study against LOs showed that compound 23 exhibited significant inhibition
of 5-LO with an IC50 value of 0.3 ± 1.2 µM, while alternating the nitroalkene moiety position
did not cause any significant result against 5-LO [34]. Compound 10 exhibited more potent
inhibition of 5-LO (IC50 0.4 ± 1.2 µM) in comparison to 9-NO2-OA (9) (IC50 1.1 ± 1.2 µM).
12-LO was not inhibited at all, while 15-LO showed a weaker inhibition effect in comparison
to 5-LO. The tested NO2-FAs showed an average inhibition of sEH and failed to inhibit
COX-2 [34].

Freeman, et al. reported that invivo administration of NO2-OA at nanomolar levels
led to the inhibition of atherosclerotic lesion formation and promotion of plaque stability
to mice suffering from atherosclerosis [35]. Many antiatherogenic and cardioprotective
ω-3 PUFAs [36], that can be endogenously nitrated by the reactive species of nitrogen
monoxide, as described before, can explain the beneficial results of theseω-3 fatty acids
against cardiovascular diseases. Human atherosclerosis is a typical vessel-derived disease,
so NO2-FAs could be an alternative therapy in that case. NO2-OA has also been reported
by Braumann et al. that can attenuate myocardial fibrosis in a murine model of dilated
cardiomyopathy (DCM) [37].

Several reports state that NO2-OA might exert a beneficial and protective role against
cardiovascular diseases [38–40]. Lipoprotein-associated phospholipase A2 (Lp-PLA2) is a
cardiovascular risk biomarker, due to its link with coronary disease and stroke [41,42]. The
way NO2-OA decreases the levels of Lp-PLA2 biomarker in blood can be explained by the
simultaneous downregulation of cytokines, causing inflammation and the enchancement of
SuperOxide Dismutase (SOD) activity. NO2-OA may be an alternative as a therapeutic com-
pound for encountering Ventricular Tachykardia (VT), since a murine model demonstrated
significantly reduced chance of appearing VT, after NO2-OA was administrated [43].

The induction of resistance to ischemic cardiac injury by NO2-FAs via the modulation
of mitochondrial respiration at Complex II has been reported in 2016 by Schopfer et al. [44].
More specifically, NO2-OA inhibited in a reversible manner the respiration function of
mitochondria cells in rat heart via interactions with Complex II, resulting in downregulation
of the superoxide formation.

Another very important metabolic pathway for the regulation of inflammation is
induced by cycloxygenase-2 (COX-2)-derived prostaglandins (PGs) and by the synthesis
of leukotrienes (LTs), which are dependent on LO [45]. Some eicosanoids, like LTB4 and
PGE2, modulate very strongly the activation of leukocytes, a type of cells of the immune
system responsible for protecting the organism against infectious diseases and foreign
microorganisms [46,47]. In order LTs to be synthesized, arachidonic acid (AA) must be
hydrolysed from the sn-2 position of the membrane phospholipids by phospholipase A2
(PLA2), which is then oxidized by 5-LO giving rise to the synthesis of lipid mediators
including LTs, PGs and lysophosphatidic acid [48,49]. 5-LO was found to be inhibited
by the interaction of some electrophilic lipids with some important catalytic amino acid
residues [50], so Awaad et al. studied if NO2-FAs can interact with 5-LO [51]. The PTM
mechanism of NO2-OA against 5-LO was clarified with extending studies, including
proteomics and mutagenesis. When 5-LO was treated with NO2-OA, covalent adducts
between the nitroalkene and different histidine residues (125, 360, 362, 367 and 432) were
reported. These residues did not show any adduct formation with OA. These His residues,
forming adducts with NO2-OA, do not exist only in 5-LO, but they exist in 12-LO and
15-LO as well, which means NO2-FAs cannot be considered as selective inhibitors over
5-LO. Some Cys residues (159, 300, 416 and 418) consist of a building unit found only
in 5-LO enzyme and are very important for the enzyme’s function [52]. A peptide chain
of 5-LO, containing Cys 416 and 418, was alkylated by NO2-OA, resulting in an overall
enzyme inhibition. In that study, nitro linoleic acid (NO2-LA) was examined as well to
check its inhibitory potency against recombinant 5-LO along with NO2-OA. The IC50s of
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these two compounds against recombinant 5-LO were 0.3 ± 0.06 µM and 0.004 ± 0.002 µM
for NO2-OA and NO2-LA, respectively. These IC50 values show a better inhibition of
NO2-LA over NO2-OA in the case of recombinant 5-LO.

In 2016, Maucher et al. reported the use of CXA-10 against 5-LO [53], as Awwad
did in 2014 [51]. They tested many electrophilic species against 5-LO, including mainly
phenols, quinones, nitroalkenes and other electrophilic lipids [53]. They showed that CXA-
10, as a potent Michael acceptor, has the capability of forming covalent adducts with the
surface residues Cys416 and 418, modulating this way the structure of 5-LO. This structure
modulation has the result of 5-LO inhibition and the prevention of the oxidation of AA
and its upcoming inflammation storm.

2.3. PPARγ-Regulated Diseases Attenuated by NO2-FAs

PPARs consist of a group of nuclear receptor proteins whose role is the regulation
of the expression of genes [54]. More specific, their regulating role is crucial for develop-
ment, metabolism, cellular differentiation and tumorigenesis [55–58]. PPARγ is one of the
four nuclear receptor proteins (PPARα, β/δ, γ) and is responsible for the fatty acid storage
and the metabolism of glucose [59], the regulation of the differentiation of adipocyte [60],
the increase of insulin sensitivity and the M2 macrophage activation in mice [61,62].

NO2-FAs may act as partial agonists of PPARγ [62–64]. PPARγ unit has the Cys285
residue that forms a covalent adduct with NO2-FAs, explaining the interaction between
PPARγ and NO2-FAs. 9- and 10-NO2-OA are potent and selective activating ligands of
PPARγ at physiological concentrations (100 nM), while PPARα and PPARδ require higher
concentration levels of NO2-OA (~300 nM) to be activated. NO2-OA regio-isomers are
reported to be responsible for the induction of PPARγ-dependent adipogenesis and the
uptake of deoxyglucose in preadipocytes.

As stated before, NO2-FAs regulate some very important functionalities of the or-
ganism like metabolism of glucose, insulin sensitivity, regulation of adipocyte tissue and
M2 macrophage activation [59–62]. For example, partial agonists NO2-OA and NO2-LA
activate PPARγ and then CD36 protein expression is regulated, causing the M2 macrophage
activation. Insulin sensitivity is increased by the upregulation of PPARγ-dependent expres-
sion of glucose transporter type 4 (GLUT4) and coactivator 1-alpha by the aforementioned
NO2-FAs. The expression of GLUT4 and coactivator 1-alpha is responsible for the reduction
of fat accumulation, pro-inflammatory cytokines and for the increase of mitochondrial
mass. These are some beneficial properties of NO2-FAs which, as stated before, consist
of partial agonists of PPARγ and not full agonists like rosiglitazone and pioglitazone.
Rosiglitazone and pioglitazone are thiazolidinedione (TZD) drugs, which, during their
administration, cause adverse side-effects like edema, adipogenesis and gaining fat, which
are not caused when NO2-FAs are administrated in mice [40,65].

In 2010, Schopfer et al. showed that NO2-FAs can decrease the insulin and the glucose
levels in mice via PPARγ activation, as TZD rosiglitazone does, but without the severe
side-effects of rosiglitazone, which is mainly gaining weight [62]. The NO2-FAs tested in
this work formed covalent adducts with Cys285 via a Michael addition. Derivatives of
NO2-OA were found to be therapeutically efficient against metabolic syndrome in obese
zucker rats [66]. Obese zucker rats (ob/ob rats) are mutant mice that eat excessively due
to mutations in the gene, which is responsible for the production of leptin, a hormone
responsible for the control of the appetite. Zucker rats are a model of type II diabetes.
NO2-OA derivatives managed to decrease dramatically the food intake of these rats, a
state which lasted during the whole experiment period (~14 days) and caused a significant
decrease of weight in the obese rats. This treatment also decreased the triglycerides found
in plasma and normalized the plasma free FAs.

Non-alcoholic fatty liver disease (NAFLD) is the most dominant disease that the
liver suffers. NAFLD is a common disease to almost 90% of obese adults and correlates
with diseases like obesity, type 2 diabetes and dyslipidemia. The most common mark
that indicates NAFLD is the lipid accumulation inside the liver (steatosis) without con-
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suming significant amount of alcohol. Non-alcoholic steatohepatitis (NASH) can lead
to severe diseases (cirrhosis, hepatic carcinoma, liver failure) and finally to death [67].
The significance of the discovery of new potent drugs to overcome the harmful effects of
NASH has emerged. Based on results from a series of clinical trials, the most potent drugs
against NASH are TZDs as insulin sensitizers [68]. To fight NASH and encounter at the
same time the side-effects of TZDs, electrophilic NO2-FAs have been found to be efficient
agents against NAFLD. Freeman’s work in 2019 shows that the tested electrophilic NO2-
FAs are promising drugs against NAFLD, without the adverse side-effects of TZDs [69].
NO2-OA has also contributed significantly to energy metabolism and to the inhibition of
hepatic triglyceride accumulation [70]. In general, NO2-OA has been reported to benefit
the organism to conditions of steatohepatitis and fibrosis.

In chronic kidney disease (CKD), a variety of harmful mechanisms, including oxi-
dant stress and inflammation, correlated with dysregulation of NF-κB pathway and Nrf2
protein. From the other side, some protective mechanisms of the organism, which can be
activated by NO2-FAs, can decrease these side-effects. In the study of Jorkasky in 2019 [71],
10-NO2-OA was evaluated for the treatment of uni-nephrectomized mice that were receiv-
ing deoxy-corticosterone acetate (DOCA)-high salt diet. 10-NO2-OA increased the heart
and kidney weight of the mouse model, as well as it decreased nephrinuria, glomerular
hypertrophy and glomerusclerosis. In this study, CXA-10 was compared with enalapril, an
anti-hypertensive drug, and it showed some interesting results in which enalapril did not.
Glomerular protection, anti-fibrotic and anti-inflammatory effects were observed in the
case of CXA-10 but were not observed in the case of enalapril. The endogenous interaction
of NO2-FAs with PPARs, whose role is known on the metabolism of glucose and lipids [72],
may be the reason for all these beneficial effects of CXA-10 against CKD. Freeman and
coworkers have reviewed the beneficial effects of NO2-FAs and other electrophilic com-
pounds against several inflammatory and fibrotic diseases, discussing their characteristics
and their pharmacology [73].

In vascular diseases—for example, ischemia-reperfusion injury (IRI or I/R)—it is of
importance to regulate apoptosis. Nie and coworkers have demonstrated that CXA-10 is
able to weaken OGD/R-induced apoptosis [72]. This effect was achieved by inhibition of
Bax translocation and activation and an upcoming mitochondrial apoptotic cascade, and it
was proved to be PPARγ-dependent.

In 2009, Gorczynski and coworkers reported the optimum structural features of NO2-
FAs as PPARγ agonists, in order to activate PPARγ and exhibit all its beneficial effects,
ready to decrease or remove possible inflammation or oxidation stress [74]. The main
result of this work is that a 12-nitrated position of the unsaturated acid is essential for
the optimum activation of PPARγ. Some NO2-FAs exhibited better ligand affinity than
rosiglitazone [75]. Table 1 summarizes the IC50 values of various NO2-FAs measured by a
scintillation proximity competitive binding assay. The structure of the optimum agonist,
which induces the activation of PPARγ, is shown in Figure 7.
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The importance of understanding the mechanism by which PPARγ is activated by
agonists is of great importance for encountering inflammation and many other PPARγ-
dependent systems. For example, PPARγ is reported to inhibit NF-κB dependent tran-
scriptional activation in skeletal muscle [76]. The transcriptional activation of NF-κB in
skeletal muscle is associated with skeletal muscle atrophy and insulin resistance and can
be caused due to long-term NF-κB activation [77–79]. Thus, NO2-FAs could be alternative
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therapeutic agents for this type of disease. Administration of NO2-OA has also been shown
to be beneficial against Abdominal Aortic Aneurysm (AAA), which is one of the diseases
with the highest frequency of death globally [80].

Table 1. NO2-FA-PPAR SAR study. E-12-NO2-18:1 exhibits the highest activity as PPARγ agonist.

Compound
IC50 (µM)

Ref.
PPARγ PPARα

Rosiglitazone 0.25 >15 [75]
E-12-NO2-18:2 0.41 9.6 [75]
E-9-NO2-18:1 0.98 >15 [74]
E-10-NO2-18:1 1.61 >15 [74]

Z-9/10-NO2-18:1 1.73 10.8 [74]
E-9-NO2-16:1 0.83 >15 [74]
E-10-NO2-16:1 0.63 >15 [74]
E-5-NO2-18:1 1.68 >15 [74]
E-6-NO2-18:1 1.72 >15 [74]
E-12-NO2-18:1 0.039 1.6 [74]
E-13-NO2-18:1 0.19 1.1 [74]

In 2002, Karin and coworkers reviewed a correlation between NF-κB signaling path-
way and cancer [81]. Disruption of the physiological regulation of NF-κB by the IKK
protein complex (four subunits: IKKα, IKKβ, IKKγ, IKKδ) leads to NF-κB’s activity, which
causes the transcription of inflammatory-genes, resulting in the generation of many in-
flammatory mediators. The NF-κB-induced triple negative breast cancer was also reported
previously by Woodcock et al. [31]. PPARγ, as a modulator of cellular differentiation and
regulator of tumorigenesis, was found to be expressed in many different types of cancer
cells and its activation by agonists leads to either cell proliferation inhibition or cancel cell
apoptosis [82,83]. The expression of PPARγ in many different types of cancer shows the
complexity and the diversity of the biological action of how nitroalkenes overall attenuate
inflammation and cancer [84].

2.4. NO2-FAs as Regulators of Miscellaneous Targets

NO2-FAs have been found to be responsible for the treatment of vascular endothelial
cells, resulting in a dose-dependent upregulation of correlated HSPs (HSPA6, HPA1A,
DNAJA4, HSPB8) by the expression of Heat Shock Factor 1 and 2 (HSF-1 and HSF-2) [15,85].
Heat Shock Proteins (HSPs) are a family of proteins, which are generated by cells under
stress conditions. First, they were described as proteins associated only with heat shock [86],
but several reports show a correlation with cold, UV light, and with processes of healing or
tissue regeneration [87–89].

Another interesting bioactivity of NO2-FAs, demonstrated in a murine model, is the
inhibition of sEH with the same way presented before, by forming covalent adducts with
Cys521 via a Michael addition to the electrophilic double bond [90]. Administration of
these electrophilic compounds results in the reduction of blood pressure to mice suffering
from hypertension. Inhibition of sEH prevents hydrolysis of the epoxyeicosatrienoic acid
substrates, so their accumulation induces vasodilation lowering blood pressure.

Xanthine oxidoreductase (XOR) is a molybdoflavin protein responsible for the ox-
idation of hypoxanthine to xanthine and finally to uric acid, resulting in the reduction
of NAD+ to NADH [91]. XOR is the enzyme responsible for the regulation of the final
process of purine catabolism and mainly generates oxidants responsible for the generation
of inflammation and secondary species of nitrogen [92–94]. NO2-OA inhibits XOR with
a low IC50 value (0.6 µM) and decreases significantly the generation of superoxide O2

−.
Superoxide is one of the Reactive Oxygen Species (ROS), which in oxidative stress its
formation grows and causes harmful effects to proteins, lipids and nucleic acids [95].
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As reported by Hansen et al. in 2018, NO2-FAs can be formed in response to virus
infection and are able to inhibit stimulator of interferon genes (STING) signaling, leading
this way to an anti-inflammatory activity against several diseases, such as, systemic lupus
erythematosus, Aicardi-Goutiéres syndrome and STING-associated vasculopathy [96].
With this work, 9-NO2-OA, 10-NO2-OA and NO2-cLA are shown to be capable of targeting
STING signaling and reduce the release of type I IFNs in murine and human cells. Thus,
these endogenously formed nitrated compounds can overcome STING-induced inflammation.

NO2-FAs have also been demonstrated to be activators of Sirtuin 6 (SIRT6), a protein
crucial for both glucose and lipid homeostasis, which is found to be actively involved
in maintaining the DNA of the organism stable [97]. In this work, a SAR study using
9-NO2-OA (9), 10-NO2-OA (1), 9-NO2-cLA (25) and 12-NO2-cLA (26) (Figure 8) showed
that these NO2-FAs are significant in vitro activators of SIRT6. The formation of a covalent
adduct between NO2-FA and Cys18 of SIRT6, caused a change to the conformation of the
protein, inducing this way a greater activation of SIRT6 (40-fold at 20 µM). This Cys18
residue is present only at the N terminus of SIRT6 and absent to other isoforms of the
protein, making this the only way SIRT6 is able to react with these electrophilic compounds.
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SIRT6 [97].

Pereckova and coworkers recently have shown that NO2-OA is involved in the regu-
lation of stem cell pluripotency and differentiation of mouse Embryonic Stem Cells (mESC)
via signal transducer and activator of transcription 3 (STAT3) signaling [98]. NO2-OA was
found to modulate pluripotency of mESC via the regulation of STAT3 phosphorylation, as
well as to attenuate cardiac differentiation and to guide mESC into neural fate.

A recent report by Mathers and coworkers demonstrated the effect of NO2-FAs on
psoriasiform dermatitis [99]. Several murine models of psoriasis were employed in order
to study the anti-inflammatory activity of NO2-OA. Oral administration of NO2-OA down-
regulated the formation of inflammatory cytokines in the skin, and in vitro experiments
showed a decrease of the formation of basal IL-6 levels and IL-17A-induced expression of
IL-6, via the NF-κB signaling pathway. Furthermore, NO2-OA downregulated the phos-
phorylation and nuclear translocation of STAT3 by nitroalkylating STAT3 and inhibiting
this way the keratinocyte proliferation. By blocking NF-κB and STAT3, NO2-FAs may
constitute new therapeutic agents to treat psoriasis.

A mammalian enzyme—namely, Prostaglandin Reductase-1 (PtGR-1), able to metabo-
lize NO2-FAs in vivo—has been identified [100]. PtGR-1 reduces fatty acid nitroalkenes to
nitroalkanes, deactivating them and silencing their signaling reactions.

3. Syntheses of NO2-FAs

As described before in Scheme 2, the parent mono- or poly-unsaturated compounds
can be nitrated endogenously by the reactive species of nitrogen monoxide and generate
nitroalkenes [1–3]. However, the importance of NO2-FAs and their potential applications
to treat inflammatory diseases or cancer has led to the development of various strategies
for their synthesis in the laboratory. The different routes, which involve either direct and
non-selective nitration or step-by-step and regioselective nitration, are summarized in
Scheme 3.
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3.1. Direct Nitration of Unsaturated Lipids Yielding Derivatives of NO2-FAs

The first direct nitration of LA or its ethyl ester by exposure to nitrogen monoxide and
oxygen in cyclohexane was reported in 1996 by D’Ischia (Scheme 4) [101].
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Scheme 4. Synthesis of nitro derivatives of ethyl linoleate.

GC-MS and NMR studies showed the synthesis of an inseparable mixture containing
three isomeric compounds: nitroalkenes 28, 29 and nitronitrate derivative 30 (Scheme 4).
The structure of these formed nitro derivatives was based on the characteristic for each
isomer 1H-NMR data (Figure 9). This mixture of isomers started probably by a first addition
of NO2 to one of the double bonds of ethyl linoleate, formed by a possible autoxidation of
NO [102].
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In 2000, D’Ischia studied the possible nitro products and by-products derived by the
nitration of ethyl linoleate (27), yielding different isomers of nitroalkenes (Scheme 5).
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The reactivity of this unsaturated ester over different nitrating conditions was ex-
tensively described; also, the NMR data of the different formed nitro isomers were
recorded [103]. The employed nitrating agents in this work were nitronium tetrafluo-
roborate (NO2BF4), NO or a NO2

− solution. Different regio-isomers of nitroalkenes were
formed (compounds 29, 31–33), as well as different types of nitro by-products like: 3-
nitro-1,5-hexadienes (34 and 35), 1,5-dinitro-1,3-pentadienes (36 and 37) and four different
regio-isomers of nitro alcohols 38–41. In other experiments D’Ischia studied the monoun-
saturated fatty ester methyl oleate for its nitration reaction properties (Scheme 6). Mainly, a
ratio 1:1 of (42 and 43):(44 and 45) was observed by the same nitration procedures followed
for ethyl linoleate.
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In 2008, D’Ischia reported a way to synthesize 9- and 10-NO2-LA, 48 and 52 respec-
tively, by employing PhSeBr, HgCl2 and AgNO2 in dry MeCN, followed by the treatment
of H2O2 in chloroform (Scheme 7) [104].
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Scheme 7. Synthesis of 9- and 10-NO2-LA using selenium-based method [104].

The synthesis of 10-NO2-LA is similar to that applied for the 9-nitro regio-isomer
by only changing the free carboxyl group to an allyl ester, which gets cleaved in a final
step by Pd(PPh3)4 and HCOOH in dry tetrahydrofuran (THF). During these studies, three
decomposition products of 9-NO2-LA were observed, after incubation in a phosphate
buffer of pH 7.4.

All three by-products were UV-Vis active in the TLC and were positive to Griess
reagent, indicating the presence of a nitro group. By-products 53–55 are shown in Scheme 8.
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Scheme 8. Degradation products after incubation of 9-NO2-LA at pH 7.4.

When 10-NO2-LA 52 was exposed to aqueous phosphate buffer pH 7.4, only one
decay product was observed. (12Z)-9-Hydroxy-10-nitrooctadec-12-enoic acid (56) was
fully characterized by 1D and 2D NMR experiments and its structure is shown below in
Scheme 9.
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Scheme 9. Unique decay product of 10-NO2-LA when exposed to pH 7.4.

In 2013, Schopfer reported the synthesis of a mixture of 9- and 10-NO2-OA (9 and 1,
respectively) following a modification of the method described by D’Ischia in 2008, where
NaNO2 was used instead of AgNO2 (Scheme 10) [105]. After the consecutive additions for
the formation of nitro-selenyl intermediates, the oxidative cleavage of PhSe-group takes
place with 30% H2O2 in THF for 1 h.
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Scheme 10. Synthesis of a mixture of 9- and 10-NO2-OA by the nitro-selenylation intermediate
method [105].

The reaction mechanism (Scheme 11) begins with the nucleophilic attack of the double
bond to the selenium atom, which affords the vicinal bromoselenium [106,107]. After
intramolecular nucleophilic attack, a three membered ring, including the positively charged
selenium atom, occurs.
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Scheme 11. Proposed mechanism of the synthesis of 9- and 10-NO2-OA via nitro-selenylation,
followed by oxidative elimination.

Now the nitrating source (AgNO2 or NaNO2) has 1:1 chance to attack the two elec-
trophilic carbon atoms of the three membered ring, resulting in a 1:1 regio-isomer ratio of
the formed nitro-selenyl intermediates. The nitro-selenyl compound reacts with hydrogen
peroxide to give a compound bearing an oxidized form of selenium, which can now un-
dergo an intramolecular elimination, affording phenylselanol and the desired nitroalkene.
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In 2021, Manolikakes and coworkers published a review article summarizing different
nitration procedures of alkenes [108]. In this review, different nitrating and oxidizing
agents are described, for the direct nitration of an alkene leading finally to the nitroalkenyl
moiety, which constitutes the reactive electrophilic moiety of NO2-FAs.

3.2. Step-By-Step Synthesis of NO2-FAs

In 2006, Gorczynski and coworkers reported regio and stereospecific syntheses of
(E)-9-NO2-OA and (E)-10-NO2-OA (9 and 1) in eight and nine steps, respectively [94,109].
The retrosynthetic analysis (Scheme 12) of these nitroalkenes showcases the need for the
corresponding nitroalkanes or aldehydes, depending on the desired position of the nitro
group on the double bond.
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Scheme 12. Retrosynthetic analysis for 9- and 10-NO2-OA.

For the synthesis of 9-NO2-OA (Scheme 13), methyl 9-nitrononanoate (59) was syn-
thesized in three steps by a Henry reaction between nitromethane and the corresponding
aldehyde, an O-acetylation and a reduction using NaBH4 and MeOH (overall yield 74%).
Compound 59 was used for a Henry reaction with nonanal under basic conditions. The
isolated nitro hydroxy compound 62 was acetylated with acetic anhydride (Ac2O) and
4-dimethylaminopyridine (DMAP) in a first step and treatment with excess of DMAP led
to the formation of the nitroalkene moiety. The final step was the acidic hydrolysis of the
methyl ester to obtain 9-NO2-OA (9).
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Scheme 13. Regiospecific synthesis of 9-NO2-OA by Gorczynski [109].

The synthesis of 10-NO2-OA (1) is similar with the synthetic pathway presented
for the 9-regio-isomer. The required precursor compounds for the Henry reaction are
1-nitrononane (60) and methyl 9-oxononanoate (61) (Scheme 14). Compound 60 can
be synthesized from the corresponding precursor aldehyde reacting with nitromethane
to give the nitro hydroxy compound and then a subsequent reduction with NaBH4 af-
fords 1-nitrononane.
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Scheme 14. Synthetic route for 10-NO2-OA [109].

As described in Gorczynski’s work, 9-oxononanoate (61) can be synthesized in three
steps; a reduction of monomethyl azelaic acid with BH3-THF and a PCC oxidation affords
one of the starting materials for the Henry reaction [109]. The reported yields for this
NO2-FA at the late stages of the synthesis are slightly decreased compared with 9-NO2-OA.

In the same year, Branchaud and coworkers reported useful synthetic routes affording
all four isomers of nitro oleic acids: (E), (Z), 9- and 10-NO2-OA [110]. The synthesis of (E)-9-
NO2-OA started from 8-bromononan-1-ol (64), with a Jones oxidation, an esterification with
allyl alcohol (65) and a nitration with AgNO2 in diethyl ether (Scheme 15). The synthesized
nitro allyl ester 66 reacted with nonanal and 1,8-diazabicyclo(5.4.0)undec-7-ene (DBU) to
give the nitro hydroxy ester 67 in a good yield. An acid-catalyzed acetylation using Ac2O
and p-toluenesulfonic acid (TsOH) gave the nitro acetate compound, which under basic
conditions and reflux in benzene afforded nitroalkene 68. A final cleavage of the allyl ester
using Pd(PPh3)4 and HCOOH in THF gave 9-NO2-OA.
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The needed precursors for the synthesis of 10-NO2-OA were synthesized as shown in
Scheme 16. Nitration of 1-bromononane (69) with AgNO2 in diethyl ether gave compound
60. The needed aldehyde 70 was synthesized by ozonolysis of OA (57), followed by reduc-
tive workup with Me2S, resulting in a mixture of aldehydes. 9-Oxononanoic acid was iso-
lated and its Steglich esterification with allyl alcohol using N,N’-dicyclohexylcarbodiimide
(DCC)/DMAP afforded the desired allyl 9-oxononanoate.

A Henry condensation of 60 with 70 afforded the nitro hydroxy product 71 in 85%
yield (Scheme 17). The three final steps of the synthesis are the same as described before
with similar yields (85%, 74% and 95% respectively).
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Scheme 17. Synthesis of 10-NO2-OA by Branchaud’s protocol [110].

In this work, all four possible isomers, (E), (Z), 9-, 10- of NO2-OA were synthesized,
isolated and fully characterized by NMR [110]. The NMR data showed that the (E) ni-
troalkene proton is shifted at 7.10 ppm, unlike the (Z) shift that appears at 5.70 ppm, in
both 9- and 10-NO2-OA. These NMR shifts can be used as a diagnostic tool.

Branchaud’s protocol has the capability of forming (Z) nitroalkenes from their (E)
isomers by first employing Ph2Se2, NaBH4 and acetic acid (AcOH), and in a second step
H2O2, affording this way any isomer of the desired nitroalkenes (Scheme 18). The isomer
ratio of the observed Z:E nitroalkenes was calculated by 1H-NMR. For compound 73, the
isomer ratio was found to be 82:18 and for compound 74 was 85:15.
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In 2008, Pellacani, et al. described a facile and highly stereoselective one-pot synthesis
of either (E)- or (Z)-nitro alkenes by simply changing solvent and temperature [111]. Several
aldehydes and nitroalkanes were combined to give either (E) or (Z) nitroalkenes by the
employment of piperidine and molecular sieves. The first method employed CH2Cl2
at r. t. for 30 min and the second method utilized toluene under reflux for 4 h. This
methodology was applied only for the formation of simple molecules bearing a nitroalkene
moiety without any further functional groups. For example, propanal, pentanal, hexanal
and isobutanal were used for a one-pot Henry condensation reaction with nitroethane or
1-nitropropane to afford either (E) or (Z) nitroalkenes.

In 2010, Zanoni reported a much more efficient synthetic route to (E)-12-nitrooctadec-
12-enoic acid (24) in 4 steps (overall yield 50%), outperforming the previously reported
methodology of Gorczynski [70], which had a 4.8% overall yield (Scheme 19) [112]. This
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high-yield synthesis of nitroalkene 24 began with a one-pot consecutive Henry reaction of
2-nitrocyclododecanone (75) with hexanal (76), followed by a retro-Claisen ring cleavage,
affording this way the resulting nitro hydroxy acid 77. Esterification with diazomethane
(CH2NH2) in CH2Cl2 afforded methyl ester 78, which, after dehydration by treatment
with trifluoroacetic anhydride (TFAA), led to nitroalkene 79. In this final step of synthesis,
Zanoni employed Candida Antartica lipase B (CAL-B) in order to smoothly hydrolyze
the methyl ester and avoid the use of harsh conditions, as Gorczynski does. CAL-B is an
insensitive pH enzyme, so it can cleave the methyl ester in an organic solvent, like methyl
tert-butyl ether (MTBE) [113]. A minimum amount of water exists in the reaction, in order
to cleave the intermediate acyl enzyme [114,115].
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In 2016, Manolikakes and his coworkers presented the synthesis of a plethora of
NO2-FAs [116]. After the preparation of the required starting compounds with either a
Victor Meyer reaction or a Kornblum oxidation, the synthetic route began with a nitroaldol
reaction between the nitroalkane and the used aldehyde each time, using a catalytic amount
of 1,1,3,3-tetramethylguanidine (TMG) as the base (Scheme 20). The dehydration process
was promoted by the Burgess reagent in benzene at 80 ◦C for 2 h, followed by a final
deprotection of the allyl ester for the formation of the final NO2-FA. The E:Z 60:40 isomeric
ratio for almost all examples turned into greater than 86:14, due to the isomerization of the
double bond by the employed Pd(PPh3)4, HCOOH system.
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Scheme 20. Manolikakes’ developed protocol for the synthesis of different NO2-FAs [116].

This final isomerization afforded products with a high selectivity of E isomer over Z,
providing to the method great selectivity with facile means. In total, seventeen different
NO2-FAs, thirteen with the nitro group located close to the carboxyl group, and four
with the nitro group far from it, were synthesized and their biological activity was left to
be discovered.

Very recently Manolikakes and coworkers reported the one-pot synthesis of NO2-FAs
by modifying their pre-existant synthetic methodology to a quicker and easier to use
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protocol (Scheme 21) [117]. In this methodology, prenyl esters and aldehydes were used as
starting materials by using (i) TMG, (ii) TFAA, Et3N and (iii) BF3

.OEt2 and affording the
desired (E) NO2-FAs.
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Scheme 21. One-pot transformation for the selective formation of (E) NO2-FAs by Manolikakes [117].

In 2021, Freeman reported the synthesis of 9- and 12-NO2-LA, as well as 9-nitrorumelenic
acid (Schemes 22–24) [118]. For the synthesis of 9-NO2-LA, starting from ω-bromo car-
boxylic acid 80 by employing oxalyl chloride (COCl)2, N,N-dimethylformamide (DMF) in
tBuOH and then AgNO2 in Et2O, nitro compound 81 was obtained. Then, by employing
non-2-enal (82) and Et3N, nitro hydroxy derivative 83 was obtained in 35% yield, which
then reacted with TFAA, affording compound 84. Treatment of compound 84, first with
Bu4NOAc and then with HCOOH, afforded 9-NO2-cLA (25) in 42% yield. For the synthesis
of 12-NO2-LA,ω-UFA 85 was converted into the corresponding tert-butyl ester, and then
treated with osmium tetroxide, N-methyl morpholine N-oxide (NMO), and NaIO4, to
give aldehyde 86. After a Wittig and a Henry reaction, nitro hydroxy compound 89 was
treated with TFAA to afford compound 90. Treatment with Bu4NOAc in Et2O and finally
with formic acid afforded 12-NO2-cLA (26). 9-Nitrorumelenic acid (96) was successfully
synthesized following similar synthetic steps.
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In 2021, Zhang et al. reported the synthesis of 9-nitroeicos-9-en-19-ynoic acid (99), a
derivative of 9-NO2-OA, where a terminal triple bond exists (Scheme 25) [119]. Compound
99 may serve as a tool of detecting in general which mammalian proteins can form covalent
adducts with the electrophilic center of this NO2-FA. This accessible triple bond suggests a
key to access multiple derivatives of the corresponding NO2-FA. The organic base used
for the Henry reaction is TMG and the formation of the nitroalkene moiety started by
using Ac2O and TsOH. After the initial acetylation reaction was over, Na2CO3 was used in
toluene at 90 ◦C, in order to form the nitrated double bond.
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NO2-FAs constitute a class of anti-inflammatory agents acting through the interac-
tion with various important proteins, such as Keap-1, Nrf2, NF-κB, HSPs or the PPARγ
receptor. Their main mode of interaction is by forming covalent adducts with cysteine
residues of important biological targets via a reversible Michael addition. NO2-FAs can
be endogenously synthesized by the reaction of UFAs with reactive species of nitrogen
monoxide. Despite the endogenous nitration of UFAs, NO2-FAs may be obtained by the
direct nitration of UFAs with several nitrating agents, mainly affording mixtures of the
corresponding nitro regio-isomers. Another efficient way to obtain NO2-FAs, where the
nitro group now has a specific position at the double bond, is by following a step-by-step
strategic synthesis, starting from the required aldehydes and nitroalkanes. Efficient one-pot
syntheses of NO2-FAs have been developed as well, introducing in this way an easier to
use synthetic procedure for the synthesis of a variety of NO2-FAs.
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