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Abstract: Mangrove forests are distributed in intertidal regions that act as a “natural barrier” to
the coast. They have enormous ecological, economic, and social value. However, the world’s
mangrove forests are declining under immense pressure from anthropogenic and natural disturbances.
Accurate information regarding mangrove forests is essential for their protection and restoration.
The main objective of this study was to develop a method to improve the classification of mangrove
forests using C-band quad-pol Synthetic Aperture Radar (SAR) data (Radarsat-2) and optical data
(Landsat 8), and to analyze the spectral and backscattering signatures of mangrove forests. We used a
support vector machine (SVM) classification method to classify the land use in Hainan Dongzhaigang
National Nature Reserve (HDNNR). The results showed that the overall accuracy using only optical
information was 83.5%. Classification accuracy was improved to a varying extent by the addition of
different radar data. The highest overall accuracy was 95.0% based on a combination of SAR and
optical data. The area of mangrove forest in the reserve was found to be 1981.7 ha, as determined
from the group with the highest classification accuracy. Combining optical data with SAR data could
improve the classification accuracy and be significant for mangrove forest conservation.
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1. Introduction

Mangrove forests are swampy, woody plant communities that are distributed in the intertidal
region between sea and land in tropical and subtropical coastlines. They have special sea-land
characteristics and provide a “natural barrier” to the coast [1–3]. Mangrove forests have enormous
ecological, economic, and social value [4–9]. They play an irreplaceable role in maintaining biodiversity,
protecting the coastal environment, strengthening dykes, providing shelter from wind, protecting
banks and inducing siltation, purifying the coastal water environment, and protecting farmland and
villages from natural disasters, such as hurricanes and tsunamis. They are also indicators of global
environmental and climate changes. However, the world’s mangrove forests are declining at an
alarming rate, with 36% lost between 1995 and 2005, which is likely even more rapid than the loss of
inland forests and tropical rainforests, and many of the remaining mangrove forests are in a degraded
condition [10–12]. Due to the rapid development of the social and coastal economy, many mangrove
forests have been converted into aquaculture and cultivated land [13,14]. The existing mangrove
forests are under immense pressure from anthropogenic activities and natural disturbances. In the
future, sea-level rise could be the biggest threat to mangrove ecosystems [15,16].
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Mangrove forests are widely distributed in shallow mudflats between the sea and land. It is
difficult to obtain accurate data by traditional field survey methods in such locations and they
may even be completely inaccessible. Remote sensing, therefore, has significant advantages in the
large-scale monitoring and analysis of mangrove forests and their environment, due to its merits of
wide investigation range, abundant information, high efficiency, low cost, and few restrictions on
ground conditions [17–19]. Remote sensing technology has been widely used in the classification and
mapping of mangrove forests [20–22], dynamic monitoring [23,24], biomass estimation [25], ecological
parameter estimation [18], and the impact of climate change and sea-level rise on mangrove forests [26].

Accurate information of mangrove forests is essential for determining the extent and distribution
of mangroves, analyzing landscape change, identifying the rates and causes of changes in mangrove
forests, and assessing the ecological health of mangroves [18,27–29]. Optical remote sensing, a primary
method of extracting information regarding mangrove forests, records the difference between the
spectral reflection and radiation characteristics of ground objects with a high spectral resolution
and provides large amounts of information of the surface composition, enabling different objects
to be identified [30,31]. However, optical remote sensing data are usually insufficient or missing
due to mangrove forests being distributed in cloudy and rainy tropical and subtropical regions,
which has encouraged the use of other remote sensing datasets, such as synthetic aperture radar
(SAR) data. SAR data have many advantages, such as few limitations by time-weather conditions,
side-looking imaging, high resolution, and good penetrability. It utilizes longer wavelengths than
optical remote sensing and can therefore penetrate the vegetation canopy and better reflect the
spatial structure of mangrove communities to obtain more accurate vegetation information [32].
SAR data have more advantages for estimating vegetation biomass than optical remote sensing [33,34].
Different bands (e.g., X-band, C-band, and L-band) have different backscattering signatures for the
vegetation canopy, soil, and water surfaces, and radar remote sensing can be used to effectively
monitor tree height, average crown width, health, and the degeneration of mangroves based on
the backscatter coefficient [29,35–38]. Some studies had shown that both structural information and
spectral signatures are required for improving the classification accuracy [39,40]. Liu et al used
different fusion methods to fuse Radarsat-1 and Landsatdata for classifying mangrove communities in
Qi’ao Island in Zhuhai. Zhang et al. used WorldView optical data and Radarsat-2 dual polarimetric
SAR data to classify four mangrove species in the Mai Po Marshes Nature Reserve, Hong Kong,
and improved the accuracy by 2–3% compared to results obtained by optical remote sensing data [41].
High-resolution optical data (Rapid Eye and WorldView-1) and L-band SAR data from the Advanced
Land Observing Satellite/Phased Array type L-band Synthetic Aperture Radar (ALOS/PALSAR) was
integrated to map the extent of mangroves along the Red Sea coastline in Egypt [20].

The main objective of this study was to develop a method to improve the classification of
mangrove forests in Hainan Dongzhaigang National Nature Reserve (HDNNR) using C-band
quad-pol polarimetric SAR data (Radarsat-2) and optical data (Landsat 8) and to analyze the spectral
and backscattering signatures of mangrove forests. We used the support vector machine (SVM)
classification method, which is a small sample learning machine that has the advantage of solving the
nonlinear, high-dimensional pattern recognition, and small sample problems [42], to classify the land
use in the HDNNR and its 2-km buffer zone. We also assessed the classification accuracy of different
data categories and mapped the distribution of mangrove forests at a regional scale.

2. Materials and Methods

2.1. Study Area

The HDNNR is the first mangrove wetland nature reserve in China and is located in the northeast
of Hainan Island (between 110◦32′E–110◦37′E and 19◦51′N–20◦1′N), spanning the boundary between
Haikou and Wenchang. It is the biggest and youngest bay in Hainan Island. It was formed by ground
subsidence in a massive earthquake in 1605 and presents an irregular strip approximately in the



Sensors 2018, 18, 4012 3 of 19

south-north direction (long axis spanning 16 km, short axis spanning 8 km, and a width of 8 km at
its widest point), with an area of 100 km2 (Figure 1). Silt and mud were deposited in the gentle and
ladder-like tidal flat along the rugged coastline and funnel-shaped open bay. Mangrove forests and
many zigzag-shaped tidal creeks are distributed in the bay, which is covered by sea water at high tide.
An intersected tidal flat is exposed at low tide.

Sensors 2018, 18, x FOR PEER REVIEW  3 of 20 

 

in the south-north direction (long axis spanning 16 km, short axis spanning 8 km, and a width of 8 km at 

its widest point), with an area of 100 km2 (Figure 1). Silt and mud were deposited in the gentle and 

ladder-like tidal flat along the rugged coastline and funnel-shaped open bay. Mangrove forests and 

many zigzag-shaped tidal creeks are distributed in the bay, which is covered by sea water at high 

tide. An intersected tidal flat is exposed at low tide.  

 

Figure 1. Location of the study area. (a): The location of Hainan province in China; (b): The location 

of study area in Hainan province; (c) The study area in Landsat 8 image (R: Shortwave infrared 1; G: 

Near Infrared; B: Red). 

The HDNNR is located at the northern edge of the tropics and has a tropical oceanic monsoon 

climate, which is characterized by humid warm springs, hot and rainy summers, heavy typhoon 

rainstorms in autumn, and cold wet winters. The annual average temperature is 23.3–23.8 °C, with 

an extreme high temperature of 38.9 °C in July and an extreme low temperature of 2.6 °C in January. 

The annual precipitation is 1676.4 mm, and the beginning and end of the rainy season are in early 

May and late October, respectively. The relative humidity is 85%, with a slight interannual variation 

resulting in a range of 82–88%. Dongzhaigang Bay is often referred to as “one harbor with four green 

rivers” with Yanzhou River to the east, Sanjiang River to the south, Yanfeng River to the east, and 

West River to the west. The four rivers and some short channels supply 0.7 billion m3 of water into 

Dongzhaigang Bay. In the rainy season, the rivers carry large quantities of sediment, which have 

deposited to form a flat swamp that is suitable for mangrove growth and propagation. The study 

area has an irregular semidiurnal tide, with a large tidal scope and a wide intertidal zone that 

provides plenty of growing space for mangrove forests. The dynamic force of the tide can propagate 

seeds for mangrove forests, supporting its growth and reproduction. Mudflats are the main soil type, 

and the soil parent materials are mainly basalts and olivine basalt in the bay, while a typical latosol 

has formed on the land under the zonal climate [43].  

Figure 1. Location of the study area. (a): The location of Hainan province in China; (b): The location of
study area in Hainan province; (c) The study area in Landsat 8 image (R: Shortwave infrared 1; G: Near
Infrared; B: Red).

The HDNNR is located at the northern edge of the tropics and has a tropical oceanic monsoon
climate, which is characterized by humid warm springs, hot and rainy summers, heavy typhoon
rainstorms in autumn, and cold wet winters. The annual average temperature is 23.3–23.8 ◦C, with
an extreme high temperature of 38.9 ◦C in July and an extreme low temperature of 2.6 ◦C in January.
The annual precipitation is 1676.4 mm, and the beginning and end of the rainy season are in early
May and late October, respectively. The relative humidity is 85%, with a slight interannual variation
resulting in a range of 82–88%. Dongzhaigang Bay is often referred to as “one harbor with four
green rivers” with Yanzhou River to the east, Sanjiang River to the south, Yanfeng River to the east,
and West River to the west. The four rivers and some short channels supply 0.7 billion m3 of water
into Dongzhaigang Bay. In the rainy season, the rivers carry large quantities of sediment, which have
deposited to form a flat swamp that is suitable for mangrove growth and propagation. The study area
has an irregular semidiurnal tide, with a large tidal scope and a wide intertidal zone that provides
plenty of growing space for mangrove forests. The dynamic force of the tide can propagate seeds for
mangrove forests, supporting its growth and reproduction. Mudflats are the main soil type, and the
soil parent materials are mainly basalts and olivine basalt in the bay, while a typical latosol has formed
on the land under the zonal climate [43].

The mangrove forests in the HDNNR are the largest coastal tidal forests in China, and their
excellent hydrothermal condition and the variety of habitats they provide encourage many aquatic
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animals (e.g., green crab, Penaeus monodon, and sandworm) to breed and forage in the area,
particularly in the tree roots and tidal flats. The HDNNR has the best preserved and most concentrated,
continuous, and mature mangrove forests and is the most resourceful among all mangrove-type
nature reserves in China. With 25 true mangrove species (nine introduced), the reserve contains
96.2% of all mangrove species recorded in China [44]. It also has 40 species of semi-mangrove- and
mangrove-associated species, generating high biodiversity levels. The tree species include Nypa
fruticans, Lumnitzera littorea, Sonneratia hainanensis, Sonneratia ovata, Sonneratia paracaseolaris,
Xylocarpus granatum, Rhizophora apiculate, and Acrostichum speciosum [45]. In this study,
the HDNNR and its 2-km buffer zone, with an area of about 145 km2, were selected for study by
analyzing remote sensing images and the reserve’s general condition (Figure 1).

2.2. Data

2.2.1. Remote Sensing Data

Optical remote sensing data and polarimetric SAR data were used to accurately map mangrove
forest. (1) Optical remote sensing data: One Landsat 8 satellite image (path/row: 123/46) was
acquired on 21 April 2017 and downloaded from the United States Geological Survey (USGS) website
(http://www.usgs.gov). Landsat 8 ensures the continued acquisition and availability of Landsat data,
and uses a two-sensor payload, the Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS).
These two instruments collect image data for nine shortwave bands (panchromatic (PAN) images, with
a high spatial resolution of 15 m and multispectral (MS) images with rich spectral information but
a low spatial resolution of 30 m) and two longwave thermal bands. Additionally, two GF-2 images,
with a central latitude and longitude (110.4◦E and 19.9◦N, 110.4◦E and 20.1◦N), were acquired on
9 December 2016 and downloaded from the Chinese High-Resolution Earth Observation System in
Hainan Data and Application Center. The GF-2 satellite was designed by the Chinese High-Resolution
Earth Observation System Major Project and carries two high-resolution cameras (PAN images with a
resolution of 1 m and MS images with a resolution of 4 m). It is China’s first self-developed optical
satellite, and has a spatial resolution of more than 1 m (Chinese Resources Satellite Application Center
in Beijing, 2014). (2) Polarimetric SAR data: One Single Look Complex Radarsat-2 image, with HH
(horizontal transmit and horizontal receive), VV, (vertical transmit and vertical receive) HV (horizontal
transmit and vertical receive), and VH (vertical transmit and horizontal receive) polarization modes and
operated in wide fine mode, was acquired over the study area on 18 May 2017. The data had azimuth
and range resolutions of 4.78 and 4.73 m, respectively, and an incidence angle of 27.06◦. The nominal
pixel spacing of the Radarsat-2 data was about 8 m. Landsat 8 optical data and Radarsat-2 polarimetric
SAR data were used to classify the land use in the study area and GF-2 high-resolution data were used
to verify the classification accuracy. The details of the data used in this study are shown in Table 1.

Table 1. Details of the remote sensing data.

Satellite Acquisition Date Spectral/Polarizations Resolution

Landsat 8 21 April 2017

Pan 0.500–0.680 µm 15 m
Coastal 0.433–0.453 µm

30 m

Blue 0.450–0.515 µm
Green 0.525–0.600 µm
Red 0.630–0.680 µm
NIR 0.845–0.885 µm

SWIR1 1.560–1.660 µm
SWIR2 2.100–2.300 µm

GF-2 9 December 2016

Pan 0.45–0.90 µm 1 m
Blue 0.45–0.52 µm

4 m
Green 0.52-0.59 µm
Red 0.63–0.69 µm
NIR 0.77–0.89 µm

Radarsat-2 18 May 2017 HH, HV, VH, VV 8 m

http://www.usgs.gov
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2.2.2. Field Data

The field survey was carried out during the period of 17–25 March 2017 and the survey sites
are shown in Figure 2. We used GPS, GF-2 images, and Google Earth images to collect 117 ground
truth points, including 79 points of mangrove forests and 38 points of other land cover types and
then investigated mangrove forest species, and their distribution, growth conditions, and surrounding
environment. According to the survey results and those of previous studies, we defined nine classes
in the study area (Table 2): mangrove forests (MF), building land (BDL), cultivated land (CL), other
forest (OF), aquaculture ponds (AP), water (WT), bare land (BL), tidal sandflats (TS), and suitable
land for mangrove (SLM). We selected 1863 samples (940 samples for training and 923 samples for
validation) from GF-2 image referring to the field points and Google Earth images. The number of
training samples and validation samples are shown in Table 2.

To analyze the spectrum characteristics of mangrove forests, we used an Analytical Spectral
Devices (ASD) Field Spec Pro spectrometer to collect spectrum information by tilting the optical
probe to about 45 degrees with respect to the crown of the mangrove forests. Measurements were
taken under cloudless and windless conditions between 10:00 a.m. and 15:00 p.m. (Beijing local
time). The spectrometer was operated in the spectral range of 350–2500nm and it has a sampling
interval of 1.4 nm between 350 and 1050 nm and 2 nm between 1050 and 2500 nm. The spectral
resolution is 3 nm at 700 nm and 10 nm at 1400 nm. We used a 40 × 40 cm diffuse white calibration
panel made by BaSO4 to calculate the baseline reflectance with the optimal illumination condition.
Vegetation radiance measurements were taken by averaging 15 scans at an optimized integration time.
A panel radiance measurement was taken before and after the vegetation measurement by two scans
each time. Ninety-seven field spectral samples were collected, including samples of Sonneratia caseolaris,
Bruguiera gymnoihiza, Ceriops tagal, Lumnitzera racemose, Aegiceras corniculatum, shrubs, bamboo, coconut
palm, and mud. Their reflectance values were exported using ViewSpecPro software, large errors
were removed, and the spectral curve was averaged using MATLAB software. The spectral curves of
mangrove forests and non-mangrove forests are shown in Figure 3a.

Mangrove forests have the typical spectral response features of green plants, as shown in Figure 3a.
There are two absorbing regions in the blue and red bands, with center wavelengths of 450 and 670 nm,
respectively, whereas they form a green reflection peak at the center wavelength of 540 nm. A “red edge”
exists from 675 to 750 nm, with the reflection increasing from the red to near-infrared wavelengths.
In the near-infrared wavelength (740–1100 nm), the spectral features of mangrove forests depend on
the inner structures of leaves. The difference in the refractive index between cell walls and the gaps in
leaves forms multiple reflections, resulting in a high reflectance.

Table 2. Definitions of the classes used in this study.

Classes Definition of Support Vector Machine (SVM) Classification Training Samples Validation Samples

Mangrove forests (MF) Tidal marsh covered by both closed and open mangrove forests 177 152

Building land (BDL) Rural residential land, urban construction land, and industrial and
mining areas 80 104

Cultivated land (CL) Land covered by crops 195 176

Other forest (OF) Land covered by forest other than mangrove forests 89 113

Aquaculture ponds (AP) Mainly distributed between the coastline and cultivated land or
forests, e.g., fish ponds, and shrimp ponds 68 65

Water (WT) Areas of open water with no emergent vegetation 105 84

Bare land (BL) Areas devoid of vegetation 93 91

Tidal sandflats (TS) Loose beach consisting of sand or gravel with little vegetation cover 68 72

Suitable land for mangrove (SLM) Coastal or riparian wetland suitable for mangrove forests 65 66
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Figure 2. The verification points in the field. (a) The distribution of verification points overlaid on the
GF-2 image; (b) seed cultivation of mangrove forests; (c) mangrove forest restored after a typhoon;
(d) overlooking the mangrove forests from a wooden path in the reserve; (e) Sonneratia caseolaris;
(f) Kandelia candel.
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Figure 3. Spectral curves of mangrove forests and non-mangrove forests. (a) The spectral curves of different
objects obtained using a field spectrometer; (b) the mean pixel value for each classification target in each
multispectral (MS) band of a Landsat 8 satellite image. WT: water; AP: aquaculture pond; TS: tidal sandflats;
MF: mangrove forests; CL: cultivated land; BL: bare land; SLM: suitable land for mangrove; OF: other forest;
BDL: building land.

It is easy to distinguish between mangrove forests and mud because there is an obvious difference
between their spectral curves. Mangrove forests, bamboo, and coconut palm are all green plants,
and their spectral curves display the same curve trend. Due to the special habitats of mangrove forests,
their underlying surface has a larger heat absorption and lower reflectance than shrubs, bamboo,
and coconut palm [34], and therefore the reflectance of terrestrial vegetation is significantly higher than
that of mangrove forests at 700–1100 nm. Ten typical samples of Landsat 8 image were selected for each
class to analyze their spectral features and are shown in Figure 3b. The spectral curve of mangrove
forests displayed the same trends as other vegetation types (other forests and cultivated land) in both
the visible and near-infrared wavelengths and a lower reflectance in the short infrared wavelength.
Due to the periodic inundation of mangrove forest habitats, the spectral features of mangrove forests at
short infrared wavelengths are similar to those of vegetation-water-mixed pixels and their reflectance
is different from terrestrial vegetation in satellite images [46].

2.3. Methods

2.3.1. Image Pre-Processing

The ENVI 5.3 software was used to pre-process Landsat 8 and GF-2 images. Radiometric calibration,
atmospheric correction, and image fusion and study area subset were conducted for the Landsat
8 image. Additionally, the normalized difference vegetation index (NDVI) was calculated using
the red and near-infrared bands. Orthorectification, radiometric calibration, atmospheric correction,
geometric rectification, and image fusion and study area subset were conducted for the GF-2 image.
Atmospheric correction was conducted using the FLAASH module of ENVI 5.3 [47]. The Gram-Schmidt
fusion method was used to fuse Landsat 8 and GF-2 images to 15 and 1 m, respectively. This is a
high-fidelity fusion method and can maintain the consistency of image spectral information before and
after fusion [48].

The SNAP software, which is provided by the European Space Agency (ESA), was used to
pre-process Radarsat-2 images, including radiometric correction, polarization filter, multi-look,
polarization decomposition, and terrain correction. After radiometric correction, the data were
transformed to dB units. For the purpose of this analysis, it was assumed that HV was approximately
equal to VH, which is typically the case for most natural targets [49–51]. To suppress the uncertainty
due to speckle noise in the Radarsat-2 image, the Refined Lee Filter was applied using a 5 × 5 pixel
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window [52], which avoids the crosstalk between polarimetric channels as well as maintaining the
polarization information and statistical correlations. Multi-look techniques were also conducted, with
one look in the azimuthal direction and two looks in the range direction to obtain a resolution of 9.8 m
in the Radarsat-2 image. The Freeman-Durden [53] and Yamaguchi [54] decompositions were then
conducted. To add geographical information and correct the geometric distortion in the image, a Range
Doppler Terrain Correction was conducted using the Shuttle Radar Topography Mission (SRTM) 30 m
digital elevation model (DEM). Other SAR variables were calculated, including the HH-VV difference,
HV-HH difference, and HH/HV intensity ratios.

We stacked all Radarsat-2 SAR layers (HH, HV, VV, HH-VV, HV-HH, HH/HV, Freeman_dbl,
Freeman_vol, Freeman_surf, Yamaguchi_dbl, Yamaguchi_vol, Yamaguchi_surf, and Yamaguchi_hlx)
and Landsat 8 layers (seven MS bands after image fusion and application of the NDVI) separately
to obtain SAR datasets and optical datasets using the Layer Stacking Tool of the ENVI 5.3 software.
Then, the SAR data were resampled to 15 m and made registration with an optical dataset, with an
error of less than 0.5 pixels. Finally, the two datasets were combined to map mangrove forests using
different variables. Different remote sensing data for the study area are shown in Figure 4.

The methodological framework used in this study is shown in Figure 5.
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Figure 4. Different remote sensing data for the study area: (a) Landsat 8 image (R: 6, G: 5, and B: 4);
(b) the fused images between panchromatic (PAN) and MS images of Landsat 8; (c) Pauli decomposition
of the Radarsat-2 image; and (d) false-color synthetic image of the Radarsat-2 polarimetric channels
(R: HH, G: VV, and B: HV).
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2.3.2. Image Classification

The SVM method is a machine learning method based on Vapnik–Chervonenkis Dimension theory
and the structural risk minimizing principle [55]. It attempts to locate an optimal hyperplane that
maximizes the margin between two classes in high-dimensional space, and has been applied in remote
sensing image classification [56–58]. For two linearly separable samples, this classifier classifies data by
finding an optimal hyperplane that separates all of the data points of one class from those of another
class. The hyperplane only needs a few samples to be determined and constructs support vectors.
For two non-linearly separable samples, the classifier maps the vector from low- to high-dimensional
space using a kernel function [59]. The SVM has good general applicability and can transform
non-linear problems to linear problems by constructing a discrimination function in high-dimensional
space; therefore, it is not influenced by sample dimensions and can avoid dimensional disaster [60].
A radial basis function (RBF) was applied in this study, with the penalty factor set at 100 and Gamma
function set at 0.022. This kernel function maps a single vector to a vector of higher dimensionality
and has good performance regardless of the sample size.

Three classification scenarios were applied in this study. The first scenario (OD–optical data) used
only optical image information, with seven Landsat 8 MS bands (Coastal, Blue, Green, Red, Near
Infrared Shortwave Infrared1, and Shortwave Infrared2) and the calculated NDVI value. The second
scenario (SD–SAR data) used all the SAR information, with three Radarsat-2 SAR bands (HH,
HV, and VV), polarimetric decomposition parameters (Freeman_dbl, Freeman_vol, Freeman_surf,
Yamaguchi_dbl, Yamaguchi_vol, Yamaguchi _surf, and Yamaguchi_hlx), and other SAR variables



Sensors 2018, 18, 4012 10 of 19

(HH-VV, HV-HH, and HH/HV). The third scenario (IOSD–integrated optical and SAR data) combined
both optical image information and SAR information to examine the potential for mapping the extent
of mangrove forests. Table 3 shows the details of each category for the three scenarios.

Table 3. Feature vector selection of the three schemes used for classification.

Scenario Selected Features and Combinations

OD
OD1 Coastal, Blue, Green, Red, NIR, SWIR1, SWIR2

OD2 Coastal, Blue, Green, Red, NIR, SWIR1, SWIR2, NDVI

SD

SD1 HH, HV, VV

SD2 HH, HV, VV, HH-VV, HV-HH, HH/HV

SD3 HH, HV, VV, HV/HH, VV/HH, Freeman_dbl, Freeman_vol, Freeman_surf

SD4 HH, HV, VV, HV/HH, VV/HH, RPC1, RPC2, RPC3, Freeman_dbl, Freeman_vol,
Freeman_surf

IOSD

IOSD1 Coastal, Blue, Green, Red, NIR, SWIR1, SWIR2, HH, HV, VV

IOSD2 Coastal, Blue, Green, Red, NIR, SWIR1, SWIR2, HH-VV, HV-HH, HH/HV

IOSD3 Coastal, Blue, Green, Red, NIR, SWIR1, SWIR2, Freeman_dbl, Freeman_vol, Freeman_surf

IOSD4 Coastal, Blue, Green, Red, NIR, SWIR1, SWIR2, Yamaguchi_dbl, Yamaguchi_vol,
Yamaguchi_surf, Yamaguchi_hlx

IOSD5 Coastal, Blue, Green, Red, NIR, SWIR1, SWIR2, NDVI, HH, HV, VV, HH-VV, HV-HH,
HH/HVFreeman_dbl, Freeman_vol, Freeman_surf

OD: optical data; SD: SAR data; IOSD: integrated optical and SAR data; NIR: near-infrared; NDVI: normalized
difference vegetation index.

2.3.3. Accuracy Assessment

Accuracy was assessed by comparing the real surface data with the classification results and
is an essential part of remote sensing image classification. The Kappa coefficient and a confusion
matrix are usually used for the accuracy assessment of classified images in a remote sensing image
classification accuracy assessment system. In this study, accuracy assessment was carried out for the
classification images using high-spatial-resolution GF-2 image. Firstly, we stacked the 923 validation
samples selected from GF-2 image before the combined datasets to check the validation samples and
make adjustment if necessary. Then, we used the Confusion Matrix using Ground Truth ROIs tool
of ENVI5.3 software to assess the classification results. Finally, the parameters of overall accuracy,
producer accuracy, user accuracy, and the Kappa coefficient were derived from the confusion matrix
and used for an accuracy assessment of the classified images (Table 4).

Table 4. Backscatter statistics for Radarsat-2 data for each class.

Class
HH Backscattering (dB) HV Backscattering (dB) VV Backscattering (dB)

Min Max Mean SD Min Max Mean SD Min Max Mean SD

WT −25.56 −10.33 −19.55 2.17 −36.97 −15.57 −32.47 2.55 −28.62 −11.99 −18.42 2.38
AP −27.43 −7.78 −20.35 3.04 −36.28 −20.48 −32.12 1.82 −29.01 −7.78 −19.54 3.17
TS −24.64 −4.82 −14.30 3.03 −34.45 −19.05 −27.51 2.98 −24.06 −7.78 −16.21 3.12
MF −21.78 −5.25 −12.41 2.56 −25.97 −12.44 −18.18 2.21 −22.47 −5.60 −12.96 2.79
CL −20.05 −1.91 −8.94 2.55 −27.34 −11.47 −16.74 1.68 −19.64 −4.46 −11.43 2.16
BL −21.70 −2.99 −9.88 3.19 −31.37 −12.94 −19.60 3.44 −21.51 −2.50 −10.67 3.23

SLM −20.37 −2.95 −10.12 3.32 −33.93 −13.03 −19.81 3.61 −21.86 −4.51 −10.71 3.03
OF −14.70 −3.90 −9.04 1.58 −20.89 −11.79 −16.14 1.38 −15.83 −4.23 −9.31 1.65

BDL −12.01 15.84 −2.74 5.30 −24.97 −8.80 −17.89 2.56 −15.84 11.18 −8.49 3.00
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3. Results and Discussion

3.1. Analysis of the Backscattering Characterization and Polarimetric Decomposition

The mean backscattering coefficients of the different polarimetric channels (HH, VV, and HV)
of the nine land cover types in the study area were extracted, i.e., MF, BDL, CL, OF, AP, WT, BL, TS,
and SLM. Table 4 and Figure 6a show the variation of the backscattering coefficients for each class at
different polarizations of HH, VV, and HV. The backscattering intensity was lowest for WT, with values
in the ranges of −25.56 to −10.33, −36.97 to −15.57, and −28.62 to −11.99 dB in the HH, VV, and HV
channels, respectively. This was because the radar antenna could not receive echoes when the smooth
water surface produces specular reflections. The backscattering intensity of TS was almost as low as that
of WT due to the specular scattering of microwave radiation by the overlaying water [61]. The mean
backscattering coefficients of MF in the HH, VV, and HV channels were−12.41, −18.18, and−12.96 dB,
respectively. Due to the depolarization of MF, its HV backscattering coefficient was lower than its
HH and VV backscattering coefficients. Due to its distribution in shallow mudflats between the sea
and land, the special underlying surface of MF resulted in the backscattering coefficients in the three
channels being lower than those for OF and CL, and distinguished MF from the other classes. CL and
BL had high backscattered coefficients due to their rough surface, resulting in the tensive scattering of
electromagnetic waves. The highest backscattered coefficients were observed for BL due to its special
geometry and surface materials, with a large dielectric constant. SMF had a high soil water content and
dielectric constant and also had high backscattering values, especially in the HH polarization channel.
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Figure 6. (a) Mean backscattered values of each land use class in the three channels (HH, HV, and VV);
(b) values of the principal components in the three channels (HH, HV, and VV). WT: water; AP: aquaculture
pond; TS: tidal sandflats; MF: mangrove forests; CL: cultivated land; BL: bare land; SLM: suitable land for
mangrove; OF: other forest; BDL: building land.

The target scattering matrix obtained from polarimetric SAR data usually reflects the mean
scattering characteristics of the scattering target. However, polarimetric SAR target decomposition
decomposes the complex scattering process of a surface echo to several single scattering matrices that
are helpful for analyzing radar target scattering properties and interpreting the scattering mechanism
of ground objects. Figure 7 shows the mean power of the three scatterings (surface scattering, double
scattering, and volumetric scattering) for the Freeman and Yamaguchi decompositions of the training
samples of each class on the Radarsat-2 image. MF, CL, and OF were all vegetation types and therefore
volumetric scattering was the most useful approach, with OF having the highest value. MF had the
lowest surface scattering and double scattering values and could be easily distinguished from CL and
OF. The double scattering of BDL was highest in all classes, and was followed by TS. Surface scattering
was the most useful approach for WT, which had low double scattering and volumetric scattering
values, while AP had high surface scattering and volumetric scattering values and lower double
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scattering values. BL and SLM also had high surface scattering and volumetric scattering values and
lower double scattering values due to reflectance from the bare surfaces.Sensors 2018, 18, x FOR PEER REVIEW  13 of 20 
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Figure 7. (a) The three components (surface scattering, double scattering, and volumetric scattering) of
the Freeman polarimetric decomposition for each class; (b) the three components of the Yamaguchi
polarimetric decomposition for each land use class. WT: water; AP: aquaculture pond; TS: tidal
sandflats; MF: mangrove forests; CL: cultivated land; BL: bare land; SLM: suitable land for mangrove;
OF: other forest; BDL: building land.

3.2. Analysis of the Classification Results

An accuracy assessment was conducted for each classified image for the three classification
scenarios. Quantitative evaluation indices (overall accuracy, producer accuracy, user accuracy, and the
Kappa coefficient) were obtained according to the confusion matrix (Table 5). The overall accuracy was
83.5% and 53.4% using only optical information and SAR information, respectively. However, when
using both optical information and SAR information, the overall user accuracy (IOSD5) of MF was
greater than in the other two scenarios at 95.0% and 96.7%. Figure 8 shows the classification results
of IOSD5. The area of each class (WT, CP, TS, MF, CL, BL, SLM, OF, and BDL) in the study area
was 3423.5, 1230.8, 1124.9, 1981.7, 2747, 597.7, 624.3, 1967.0, and 786.2 ha (Figure 9), respectively.
The Dongzhaigang coastline is dominated by strips of MF, while CL, OF, and AP also account for
a large proportion of the land area. The other classes are embedded among these land uses. MF,
including both open and closed forests, account for 13.68% of the land area, while AP account for
8.50%. MF are distributed in areas with a fragile ecology and are degrading throughout the reserve due
to human activities [62,63]. Many natural and human factors currently influence the ecosystems of this
reserve, including typhoons, tides, the discharge of pollutants, reclamation of tidal flats, cultivation,
and overfishing, which exert great pressure on MF [64,65]. Wang et al. conducted an investigation on
the mangrove community in 2012 and 2014 and found the ability of mangrove roots to fix soil had
weakened due to an outbreak of Sphaeroma in the reserve in 2010 [63]. Mangrove degradation was
further aggravated by the influence of typhoon “Rammasun” in July 2014 [66].
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Figure 8. Classification results. (a) Classification results in category IOSD5; (b,c) show the Landsat 8 image
and the classification results in position 1 of (a); (d,e) show the Landsat 8 image and classification results in
position 2 of (a). WT: water; AP: aquaculture pond; TS: tidal sandflats; MF: mangrove forests; CL: cultivated
land; BL: bare land; SLM: suitable land for mangrove; OF: other forest; BDL: building land.
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Figure 9. The area of each land use class in the study area. WT: water; AP: aquaculture pond; TS: tidal
sandflats; MF: mangrove forests; CL: cultivated land; BL: bare land; SLM: suitable land for mangrove;
OF: other forest; BDL: building land.

Table 5 provides a summary of the classification results obtained from all data categories.
In category OD, the overall accuracy of subgroup OD1 was 83.5%, with a Kappa coefficient of 0.80.
After adding the NDVI, the classification accuracy improved slightly to 84.1%, with a Kappa coefficient
of 0.81. There was no significant increase in overall accuracy, but the accuracy of MF and BL were
improved to some extent. The NDVI is the best indicator of vegetation growth status and coverage,
and can effectively distinguish between areas with or without vegetation cover.

In category SD, the overall accuracy of each subgroup was 53.4%, 53.5%, 59.6%, and 63.9%,
respectively. The addition of polarimetric decomposition parameters and other SAR variables to the
three SAR polarizations of Radarsat-2 improved the classification accuracy, while the accuracy was
relatively low when using SAR data only.

In category IOSD (combined optical and SAR data), the overall accuracy of subgroups
IOSD1–IOSD5 was between 88.95% and 95.04%, which was higher than for categories OD and SD.
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In addition, the user accuracies of MF, CL, and OF were significantly improved. From the analysis
in Section 3.1, it was found that the different scattering signatures of different objects in each SAR
channel increased the distinguishability, and improved the classification accuracy in subgroup OISD1.
In subgroup IOSD2 (seven MS bands and HH-VV, HV-HH, and HH/VV), the user accuracy of MF,
and the producer accuracies of BDL and CL were all improved to a certain extent. HH polarization
mainly reflects the backscattering capability of an objects’ surface, while HV polarization is sensitive to
volume scattering, and HH/VV reflects the depolarizing ability. BDL has the highest value at HV-HH
and lowest value at HH/VV, while other land cover classes were similar in these two channels. In the
HH-VV channel, BDL had the highest value and WT had the lowest, while MF were similar to the other
land cover classes. Polarimetric decomposition parameters (Freeman and Yamaguchi decompositions)
were added to subgroups IOSD3 and IOSD4 and the overall accuracies were improved to 93.07% and
92.73%, respectively, which were higher than in category OD.

The highest overall classification accuracy was obtained from subgroup GC5, with an overall
accuracy of 95.04% and a Kappa coefficient of 0.94 based on a combination of SAR backscattering,
polarimetric decomposition parameters, and other SAR variables with surface reflectance of the optical
data. The results indicate that the combination of SAR and optical data can increase the separability
between features, and improve the classification accuracy to some extent.
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Table 5. Classification results of the three categories for each group. WT: water; AP: aquaculture pond; TS: tidal sandflats; MF: mangrove forests; CL: cultivated land;
BL: bare land; SLM: suitable land for mangrove; OF: other forest; BDL: building land.

Group OA
(%)

Kappa
(%)

MF BDL OF WT AP CL TS SLM BL

PA
(%)

UA
(%)

PA
(%)

UA
(%)

PA
(%)

UA
(%)

PA
(%)

UA
(%)

PA
(%)

UA
(%)

PA
(%)

UA
(%)

PA
(%)

UA
(%)

PA
(%)

UA
(%)

PA
(%)

UA
(%)

OD
OD1 83.5 0.80 90.3 90.6 90.3 90.2 67.4 83.9 93.2 97.2 88.4 86.4 86.0 64.8 87.4 87.3 55.5 74.1 73.0 73.4
OD2 84.1 0.81 91.9 92.7 90.8 89.5 67.9 83.8 93.4 97.1 88.8 84.6 86.6 65.5 87.6 87.8 55.8 75.7 76.3 77.3

SD

SD1 53.4 0.46 55.21 57.63 40.45 55.34 72.31 41.73 95.59 63.82 73.81 60.4 49.54 49.96 17.63 63.64 4.36 36.11 14.42 42.62
SD2 53.5 0.46 56.5 57.7 40.3 54.9 71.8 42.1 95.8 63.7 73.6 60.0 49.3 50.6 17.5 64.1 7.1 30.9 13.3 41.9
SD3 59.6 0.53 60.5 67.1 55.0 68.9 79.6 46.4 94.3 64.6 83.9 73.4 49.9 58.6 28.7 83.6 16.8 20.8 28.3 62.2
SD4 63.9 0.58 70.1 67.9 65.3 90.3 79.2 50.0 92.9 65.7 86.3 74.0 55.7 64.6 33.0 86.4 16.1 28.9 37.3 58.4

IOSD

IOSD1 88.95 0.87 87.1 95.5 96.9 94.2 79.8 89.7 95.9 94.1 90.7 88.2 91.8 79.4 90.8 90.7 83.9 84.2 79.9 93.5
IOSD2 91.66 0.90 90.5 96.3 96.9 94.6 81.9 89.6 97.4 96.4 94.3 88.8 92.4 84.0 95.6 96.4 89.3 93.3 87.4 94.2
IOSD3 93.07 0.92 94.3 95.5 95.9 98.5 84.9 92.5 96.3 93.4 93.6 92.2 94.4 88.8 93.8 96.5 89.9 93.1 93.7 93.0
IOSD4 92.73 0.92 93.8 96.8 95.9 98.9 83.3 90.5 95.9 94.0 95.1 90.8 93.7 87.3 93.0 96.5 92.3 93.2 93.9 94.3
IOSD5 95.04 0.94 94.2 96.7 95.5 97.7 91.2 93.7 97.4 98.7 97.2 92.3 95.2 92.6 98.8 98.8 90.9 91.3 93.7 92.7
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4. Conclusions

Accurate classification and mapping of mangrove forests is crucial. In this study, we used optical
remote sensing data from Landsat 8 and full-polarization C-band SAR data from Radarsat-2 to map
the extent of mangrove forests in the HDNNR by applying an SVM classifier with high dimensionality
and the capability of solving non-linear problems. The classification results for different datasets were
assessed through the overall accuracy, producer accuracy, user accuracy, and Kappa coefficient.

Mangrove forests, with the typical spectral response features of green plants, could be easily
distinguished from water, bare land, and built-up land. However, the spectral curve of mangrove forests
displayed the same trend as other vegetation types (other forest types and cultivated land) in both the
visible and near-infrared wavelengths, but there was a certain distinguishability in the short infrared
wavelength. Optical remote sensing could obtain better classification results due to its high resolution and
strong interpretation. Although more accurate spatial information for vegetation can be obtained by radar
remote sensing due to its strong penetration and useful polarization information, the classification accuracy
is not ideal when using SAR data only. In this study, the overall accuracy ranged from 83.5% using only
optical data to 95.04% when combining optical and SAR data. Different variables (NDVI, HH-VV difference,
HV-HH difference, HH/HV intensity ratios and polarization decomposition parameters) derived from
optical and SAR data had improved the accuracy to some extent.

This indicates that multi-dimensional features from different remote sensing images can be
used to map the mangrove forests extend by the SVM machine learning method. SAR data not
only compensate the shortcomings of optical remote sensing, but also are useful for improving the
classification accuracy and mapping the extent of mangrove forests when it is combined with optical
data. Furthermore, optical image with high spatial resolution, combined with SAR image with
high spatial resolution and longer wavelength, will achieve mangrove forests species discrimination.
This combination will provide more accurate information, enabling the study of the spatial distribution
and dynamic changes of mangrove forests, which is important for establishing conservation and
management policies.
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