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A B S T R A C T

The dependence between pairs of time series is commonly quantified by Pearson's correlation. However, if the
time series are themselves dependent (i.e. exhibit temporal autocorrelation), the effective degrees of freedom
(EDF) are reduced, the standard error of the sample correlation coefficient is biased, and Fisher's transformation
fails to stabilise the variance. Since fMRI time series are notoriously autocorrelated, the issue of biased standard
errors – before or after Fisher's transformation – becomes vital in individual-level analysis of resting-state func-
tional connectivity (rsFC) and must be addressed anytime a standardised Z-score is computed. We find that the
severity of autocorrelation is highly dependent on spatial characteristics of brain regions, such as the size of
regions of interest and the spatial location of those regions. We further show that the available EDF estimators
make restrictive assumptions that are not supported by the data, resulting in biased rsFC inferences that lead to
distorted topological descriptions of the connectome on the individual level. We propose a practical “xDF”method
that accounts not only for distinct autocorrelation in each time series, but instantaneous and lagged cross-
correlation. We find the xDF correction varies substantially over node pairs, indicating the limitations of global
EDF corrections used previously. In addition to extensive synthetic and real data validations, we investigate the
impact of this correction on rsFC measures in data from the Young Adult Human Connectome Project, showing
that accounting for autocorrelation dramatically changes fundamental graph theoretical measures relative to no
correction.
1. Introduction

Resting-state functional connectivity (rsFC), defined as similarity
between measured brain activity between brain regions in absence of any
external instructed task, has become an essential technique for under-
standing the human brain. Many rsFC methods make use of correlation
estimated with the Pearson's product-moment correlation coefficient (bρ),
often after Fisher's transformation (F) and standardised to a Z-score (Z).
These Z-scores are used to find significant correlation or are used as a
standardisedmeasure, for example, in graph analysis where they are used
to create weighted networks or are thresholded to create binary net-
works. However, standard results for the variance of Pearson's correla-
tion (before or after Fisher's transformation) depends on independence
between successive observations. Blood Oxygen Level Dependent (BOLD)
time series exhibit autocorrelation which can in turn inflate the sampling
variance of bρ. Ignoring this variance inflation – equivalently, reduction in
niversity of Oxford, UK.
(S. Afyouni), steve@fmrib.ox.ac.u

rm 2 May 2019; Accepted 6 May

vier Inc. This is an open access a
effective degrees of freedom (EDF) – will inflate Z-scores and produce
excess false positives when testing H0 : ρ ¼ 0, and corrupt the interpre-
tation of Z as a standardised effect. These biases can vary both over in-
dividuals and pairs of brain regions under consideration.

Although the impact of autocorrelation has been thoroughly investi-
gated in task fMRI analysis (Friston et al., 2000; Woolrich et al., 2001;
Lund et al., 2006), there is much less work on resting-state analyses. The
first reference we are aware of directly addressing the issue in
resting-state is Fox et al. (2005) which refers to ”Bartlett's Theory”, citing
Watts and Jenkins (1968). Later, Van Dijk et al. (2010) uses the same
approach, labeled “Bartlett's Correction Factor”, describing it as the
“integral across time of the square of the autocorrelation function”; as
discussed below, this “integral” is of course a sum for discretely sampled
fMRI data and, while not necessarily implied, must include both positive
and negative lags of the autocorrelation function (ACF). The nominal N is
divided by this BCF to give an EDF (see Section 2.2.1).
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While these previous works use an arbitrary ACF, other authors have
used an order-1 autoregressive (AR(1)) model. For example, the FSLnets
toolbox (Smith et al., 2011) uses a Monte Carlo approach to estimate the
variance of sample correlation coefficients (see Section 2.2.2). However,
it only considers a single autocorrelation parameter over all nodes. More
recently, Arbabshirani et al. (2014) made a thorough study of Pearson's
correlation variance for AR(1) time series, where, crucially, the AR(1)
coefficient can vary between the pair of variables and non-null correla-
tions were considered.1

Other authors have used a Wavelet representation of time series to
handling autocorrelation, as Patel and Bullmore (2015) and V�a�sa et al.
(2018) use wavelet EDF-estimators initially proposed by Percival and
Walden (2006) in analysis of functional connectomes obtained via
wavelet transformation coefficients (Leonardi and Van De Ville, 2011).

Further, Fiecas et al. (2017) proposes an inference framework for
group-level analysis of functional connectomes which accounts for the
autocorrelation via the variance estimator of Roy (1989). Roy's estimator
is unique among the previous methods as it directly accounts for
dependence within and between the time series, and is closely related to
our method (see Section 2.2).

Alternatively, other studies have proposed pre-whitening on the
resting-state BOLD time series (Christova et al., 2011; Lewis et al., 2012;
Bright et al., 2017). For example, Bright et al. (2017) used pre-whitening
methods, inherited from task fMRI analysis (Bullmore et al., 1996), to
account for autocorrelation in resting-state analysis. Although
pre-whitening is a well-established technique in task fMRI, its application
in rsFC is yet to be fully investigated. Firstly, pre-whitening flattens the
power spectrum which, in case of fMRI, means low frequency compo-
nents are attenuated while high frequencies are amplified (Chatfield,
2016); this seems poorly suited to the resting-state analysis were the
natural focus of the frequencies are on low bands, more specifically on
0.01HZ to 0.1HZ (Biswal et al., 1995). Secondly, choosing an optimal
model for autocorrelation, in absence of a task paradigm, appears to be
troublesome (see Bright et al. (2017)). Finally, spatial regularisation used
in some neuroimaging toolboxes (e.g. FSL's FILM) are designed for vox-
elwise or vertex wise analyses and would need to be adapted to Region of
Interests (ROIs) data.

The concern about effect of autocorrelation on Pearson's correlation
has a long history in spatial statistics (Haining, 1991), econometrics
(Orcutt and James, 1948) and climate sciences (Bretherton et al., 1999),
but the fundamental work is Bartlett (1935), who first asserted that the
lack of independence (between observations) is a bigger challenge than
non-Gaussianity. In his 1935 paper, Bartlett proposes a variance esti-
mator of sample correlation coefficients based on a AR(1) model, but he
acknowledges that a limitation of the work is that it assumes zero
cross-correlation. In later work he proposed a more general estimator
which accounts for higher order AR models (Bartlett, 1946) but still
fails to account for cross-correlation. Two extensions to the work has
been proposed by Quenouille (1947) and Bayley and Hammersley
(1946) where the former adapts the estimator to the cases where the
autocorrelation functions are different for the two time series and the
latter down weights the autocorrelation of long lags. Several years later
Clifford et al. (1989) also proposed a reformulation of Bayley and
Hammersley (1946). We have found little comparative evaluation of
these methods in the literature, save Pyper and Peterman (1998) that
compared False Positive Rates on low order autoregressive models of
uncorrelated time series.

Importantly, save for the work of Roy (1989), all of the methods we
have discussed so far have been derived under the rsFC null hypothesis
(i.e. independence between the two series). This null encompasses both
zero instantaneous and lagged cross-correlations. This is problematic for
1 While not the topic of this work, Arbabshirani et al. (2014) also discuss bias
in sample correlation coefficients (bρ) due to autocorrelation. In contrast, our
derivation (Appendix B) finds no such bias; see Section 4.
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rsFC, as typically the challenge is not only to detect edges but also to
measure the strength of the connectivity.

In this work we show how autocorrelation strongly influences the
variance of Pearson's correlation, breaking the variance-stabilising
properties of Fisher's transformation. We show that existing methods to
adjust the variance of Pearson's correlation for autocorrelation fail when
ρ 6¼ 0, and can be severely biased if there is no or only very weak auto-
correlation. To address these problems we propose a variance estimator
for Pearson's correlation that imposes no assumptions aside from statio-
narity, and that accounts for both autocorrelation within each time series
and instantaneous and lagged cross-correlations between the time series.
We call this approach “xDF”, as it comprises an effective degrees of
freedom estimator that accounts for cross-correlations.

To motivate and introduce our results, as an example, we fist show
how ignoring the autocorrelation may corrupt inference of correlation
coefficients. Fig. 1 shows the correlation of a BOLD time series in the
Left Dorsal Prefrontal Cortex (PCFd) from one HCP subject to all 114
ROIs of the Yeo atlas of a different HCP subject (we call this inter-subject
scrambling; see Section S3.6 of Supplementary Materials). Due to the
random nature of resting-state BOLD time series between subjects, we
expect up to 5% of the 114 correlation coefficients turn out significant
(i.e. � 6 regions) on average; instead, the Naive Z-scores (see Section
2.4) finds � 35% of the regions (i.e. 40 regions) significant while xDF-
corrected Z-scores only finds 2.6% of the regions significant (i.e. 3 re-
gions; Fig. 1.D). After application of our xDF correction, no regions
survive FDR correction (2.6% significant at level 5% uncorrected). A
plot of xDF-adjusted Z-scores against Naive Z-scores shows the dramatic
difference in values (Fig. 1.D). Observe how the connection with L-
SoMotCent (blue marker) is incorrectly detected; this ROI is highly
auto- and cross-correlated (blue ACF, Fig. 1.E), and results in a strong
correction and the Z-score being greatly reduced. In contrast, R-Insula
(red marker) connection has essentially the same Naive and xDF-
adjusted Z-score due to its nearly zero autocorrelation (red ACF,
Fig. 1.E).

The remainder of the work is as follows. We first present a concise
overview of the model and the proposed estimator. Second, we demon-
strate the importance of accounting for unequal autocorrelation between
each pair of variables, i.e. node-specific autocorrelation, by showing how
the autocorrelation structures are spatially heterogeneous and dependent
on each parcellation scheme. Third, we discuss how ignoring such effects
may result in spurious significant correlations and topological features.
Fourth, using Monte Carlo simulations and real data, we show how xDF
outperforms all existing available variance estimators. And finally, we
show how using xDF may change the interpretation of the rsFC of the
human brain. The potential impact of such corrections on interpretation
of rsFC is investigated for conventional thresholding method (i.e. sta-
tistical and proportional) as well as un-thresholded functional connec-
tivity for binary and weighted networks.

2. Methods

2.1. Notation

Without loss of generality, we assume to have mean zero and unit
variance time series X ¼ fx1;…; xNg and Y ¼ fy1;…;yNg, each of length
N, withVðXÞ ¼ ΣX andVðYÞ ¼ΣY ; we write the cross-correlationmatrix
between X and Y as ΣXY ¼ Σ>

YX . We assume stationarity, and thus have
Toeplitz ΣX , ΣY and ΣXY , and denote autocorrelation of X

ððΣXÞÞi;j ¼ ρXX;k

Let i and j be row and column of the covariance matrix, then k ¼ i� j,
and likewise for Y. The cross-correlations between X's time point i and Y's
time point j is

ððΣXYÞÞi;j ¼ ρXY;k :



Fig. 1. Analysis of null resting state functional
connectivity to illustrate the problem of inflated
correlation coefficient significance. Panel A
shows standardised BOLD data for the Left Dorsal
Prefrontal Cortex (PFCd; 421 voxles) of HCP one
subject (HCP-1). Panel B illustrates the stand-
ardised BOLD time series of R-Insula (red; 35
voxels) and L-SomMotCent (blue; 773 voxels),
illustrating the dramatically different degree of
autocorrelation. Panel C maps the Z-scores of
correlation between this PCFd region and time
series from a different HCP subject (HCP-2), par-
cellated with the Yeo's atlas and overlaid on an
MNI standard volume. Panel D compares Z-scores
accounting for autocorrelation vs. naive Z-scores,
showing apparent significance (in this null data)
with naive Z-scores and expected chance signifi-
cance with xDF-adjusted Z-scores. On the hori-
zontal axis are naive Z-scores that ignore
autocorrelation, while on the vertical axis are Z-
scores adjusted according to xDF. Uncorrected
critical values (�1:96) are plotted in dashed lines.
Panel E shows autocorrelation of each time series
(left). Horizontal solid lines indicate the confi-
dence intervals calculated as described in Section
2.3. The difference in magnitude and form of
autocorrelation among the three time series is
evident, with PFCd exhibiting strong, long-range
autocorrelation and R-Insula showing virtually
no autocorrelation. Also shown is the cross-
correlation (right panels) between HCP-1's PCFd
and HCP-2's Left Central SomatoMotor Cortex (L-
SomMotCent) (top), and HCP-1's PCFd and HCP-
2's Right Insula (R-Insula) (bottom).
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The key rsFC parameter is ρXY;0, the cross-correlation at lag 0, which
we refer to as simply ρ going forward. Note that the cross-correlation
matrix is not symmetric, and so ρXY;k and ρXY ;�k are distinct.
2.2. Variance of sample correlation coefficients

For the sample correlation coefficient of mean zero data, bρ ¼ X>Y=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X>XY>Y

p
, we can derive a general expression for its variance (Appendix

B):

VðbρÞ ¼ N�2

�
ρ2

2
tr
�
Σ2

X

�þ ρ2

2
tr
�
Σ2

Y

�
þρ2trðΣYXΣXY Þ þ tr

�
Σ2

XY

�þ trðΣXΣY Þ
�ρ2trðΣXΣXYÞ � ρtrðΣYXΣXÞ � ρtrðΣXYΣY Þ � ρtrðΣYΣYXÞ

�
:

(1)

For a stationary covariance (see Appendix C), we can rewrite Eq. (1)
as

VðbρÞ ¼ N�2
h
ðN � 2Þ�1� ρ2

�2
þρ2

XM
k¼1

wk

�
ρ2XX;k þ ρ2YY;k þ ρ2XY;kρ

2
XY;�k

�

�2ρ
XM
k¼1

wkðρXX;k þ ρYY;kÞðρXY;k þ ρXY;�kÞ

þ2
XM
k¼1

wkðρXX;kρYY;k þ ρXY;kρXY;�kÞ
�
;

(2)

where wk ¼ N� 2� k. While Eq. (2) takes the same form as the estimator
of Roy (1989), we obtain our result from finite sample as opposed to
asymptotic arguments (see Appendix B).
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It is also useful to discuss two special cases of Eq. (1). First, suppose
two time series X & Y are both white but correlated such that ΣX ¼ ΣY ¼
I, and ΣXY ¼ Iρ. Eq. (1) then reduces to

VðbρÞ ¼ N�1
�
1� ρ2

�2
; (3)

the well-known result for the variance of the sample correlation co-
efficients between two white noise time series (see Lehmann (1999b),
x5.4).

Second, suppose X and Y are autocorrelated but are uncorrelated of
each other, with non-trivial ΣX and ΣY but ΣXY ¼ 0. Then, Eq. (1) re-
duces to

VðbρÞ ¼ N�2trðΣXΣY Þ; (4)

a result on the variance inflation of bρ proposed by Clifford et al.
(1989) and also discussed as the variance of the inner product of two
random vectors in Brown and Rutemiller (1977). Written in summation
form (see Appendix C) this expression is

VðbρÞ ¼ N�2
�
1þ 2

XN�1

k¼1

ðN � kÞρXX;kρYY;k
�
; (5)

which is a result proposed much earlier by Bayley and Hammersley
(1946) and which has found use in neuroimaging (Nicosia et al., 2013;
Valencia et al., 2009). A closely related form (Dutilleul et al., 1993) that
adjusts for mean centering has also been used in neuroimaging (Nevado
et al., 2012; Pannunzi et al., 2018), though for typical time series lengths
(i.e. N ≫ 20) there should be little difference from the original result.

2.2.1. Effective degrees of freedom for the correlation coefficient
One way of dealing with autocorrelation is to modify a variance result



Table 1

Summary of the EDF (bN) estimators for sample correlation coefficients. For
simplicity, we refer each method by initials of the authors.

Method Equation Reference Neuroimaging
Applications

Naive bN ¼ N� Fisher (1915) Bassett et al. (2011)
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that assumes no autocorrelation, replacing N with a deflated EDF bN .
This can be done in terms of bρ (e.g. Eq. (3)) or after Fisher's trans-
formation; here we consider EDFs for bρ and return Fisher's trans-
formation in Section 2.4.

Different corrections have been proposed to estimate bN . One of the
earliest results is due to Bartlett (1935), who proposed an EDF for un-
correlated (ρ ¼ 0) AR(1) time series:

bN ¼ N
	
1þ ρXX;1ρYY;1
1� ρXX;1ρYY;1


�1

: (6)

We refer to this EDF estimator as B35.
Building on work of Bartlett (1946), Quenouille (1947) proposed a

more general EDF that allowed for any form of autocorrelation,

bN ¼ N
� X∞
k¼�∞

ρXX;kρYY;k
��1

; (7)

though still assuming ρ ¼ 0. We refer to this EDF estimator as Q47.
In neuroimaging, a global form of Eq. (7) has been used, where a

single ACF ρGG;k is computed averaged across voxels or ROIs for each
subject, or even over subjects (Fox et al., 2005; Van Dijk et al., 2010); it
takes the form

bN ¼ N
� X∞

k¼�∞

ρ2GG;k
��1

: (8)

We refer to this EDF as G-Q47.
Finally, the variance result due originally Bayley and Hammersley

(1946) and Clifford et al. (1989) (Eqs. (4) and (5)), gives EDF

bN ¼ N
	
1þ 2

XN�1

k¼1

ðN � kÞ
N

ρXX;kρYY ;k


�1

; (9)

still under an independence assumption ρ ¼ 0. We refer to this EDF as
BH.

Whether defined with infinite or finite sums, some sort of truncation
or ACF regularisation is required to use these results in practice, which
we consider in Section 2.3.

2.2.2. Monte Carlo parametric simulations
The one other approach we evaluate is Monte Carlo parametric

simulation (MCPS) (Ripley, 2009). In this approach the variance of the
sample correlation is estimated from surrogate data, simulated to match
the original data in some way. If a common autocorrelation model and
parameters are assumed over variables and subjects, this can be a
computationally efficient approach. For example, the FSLnets2 toolbox
for analysis of the functional connectivity assumes an AR(1) model with
the AR coefficient chosen globally for all subjects and node pairs. While
MCPS avoids any approximations for a given model, it can only be as
accurate as the assumed model.

We evaluate the method used by FSLnets, which chooses the number
of realisations set equal to the number of nodes. We refer to this as
AR1MCPS.
3 & Gonzalez-Castillo et al.
(2014)
& Cao et al. (2014)

B35 Eq. (6) Bartlett (1935) Not found
BH Eq. (4) Bayley and Hammersley

(1946) & Clifford et al.
(1989)

Nicosia et al. (0000) &
Valencia et al. (2009)
Nevado et al. (2012) &
Pannunzi et al. (2018)
Simas et al. (2015)

Q47 Eq. (8) Quenouille (1947) &
Bartlett (1946)

Fox et al. (2005) & Zhang
et al. (2008)

xDF Eqs. (1) & Roy (1989) & the current Fiecas et al. (2017)
2.3. Regularising autocorrelation estimates

All of the advanced correction methods described depend on the true
ACFs ρXX;k and ρYY ;k, and some on the cross-correlations ρXY;k. We expect
true ACFs and cross-correlations to diminish to zero with increasing lags,
but sampling variability means that non-zero ACF estimates will occur
even when the true values are zero. Thus all ACF-based methods use a
strategy to regularise the ACF, by zeroing or reducing ACF estimates at
2 http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets; visited on 18 September 2015.
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large lags.
Several arbitrary rules have been suggested for truncating ACF's,

zeroing the ACF above a certain lag. For example, Anderson (1983)
suggests that the estimators should only consider the first N

4 lags or Pyper
and Peterman (1998) has found that truncating at N5 lags is optimal. Since
the latter study provides a thorough empirical evaluation, we choose N

5 as
the cut-off lag for methods Q47 and B46.

For the xDF method we considered a range of regularisation ap-
proaches. Smoothly scaling ACF estimates to zero with increasing lag is
known as tapering. Chatfield (2016) suggests tapering methods using
Tukey or Parzen windows. For example, for Tukey tapering, the raw ACF

estimate is scaled by 1
2

	
1þ cos

	
πk
M




for k <¼ M and zeroed for k > M.

Similar to truncating, finding the optimal M appears to be cumbersome;
Chatfield (2016) suggests an M of 2

ffiffiffiffi
N

p
while Woolrich et al. (2001)

propose the more stringent
ffiffiffiffi
N

p
; for a detailed comparison of tapering

methods in fMRI see Woolrich et al. (2001).
For computation of the xDF correction we consider fixed truncation

and Tukey tapering, as well as an adaptive truncation method. For our
adaptive method, we zero the ACF at lags k � M, whereM is the smallest
lag where the null hypothesis is not rejected at uncorrected level α ¼ 5%,
based on approximate normality of the ACF and sampling variance of
1 =N. We base the truncation of the cross-correlation ρXY ;k on the ACFs of
X and Y, choosing the larger M found with either time series. Unless
stated otherwise, the adaptive truncation method is used with xDF. For
summary of regularisation methods, please see Table 2.

2.4. Fisher's transformation

It is typical to apply Fisher's transformation to correlation estimates,
FXY ¼ arctanhðbρÞ, which has approximate variance

VðFXY Þ ¼ VðbρÞ�1� ρ2
��2

: (10)

Fisher's transformation is derived to cancel the effect of ρ on VðbρÞ in
the absence of autocorrelation; recall VðbρÞ � ð1� ρ2Þ2=N (Eq. (3)) for the
no-autocorrelation case. (Fisher derived a more precise variance in this
setting, VðFXY Þ ¼ ðN � 3Þ�1, but this is yet still an approximation (Fou-
ladi and Steiger, 2008).) In the presence of autocorrelation, the variance
of FXY remains dependent on ρ (more generally ΣXY , as well as ΣX and ΣY )
and FXY cannot be regarded as a variance-stabilised quantity. Only with
an accurate estimate of VðFXYÞ, that considers auto- and
cross-correlation, can the final Z-score be considered “stabilised”.

We focus the remainder of our evaluations on Z-scores of the form
(2) work
AR1MCPS Sec. 2.2.2 Smith et al. (2011) &

Ripley (2009)
Nomi and Uddin (2015);
Smith et al. (2015)

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets


Table 2
Summary of the regularisation methods for autocorrelation function of time se-
ries X.

Method Cut off lag Window Type Reference

Truncation M ¼ N=4 &
M ¼ N=5

N/A Anderson (1983) &
Pyper and Peterman
(1998)

Adaptive
Truncation

H0 : ρXX;k ¼
0

N/A N/A

Tapering M ¼ ffiffiffiffi
T

p
&

M ¼ 2
ffiffiffiffi
T

p Parzen & Single
Tukey

Chatfield (2016) &
Woolrich et al. (2001)
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ZXY ¼ FXYffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðF Þp ¼ arctanhðbρÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 �2
q : (11)
XY VðbρÞð1� bρ Þ

Each particular correction method used determinesVðbρÞ. For xDF we
use Eq. (1), while for all other methods we use the nominal variance with

an EDF, i.e. VðbρÞ ¼ ð1� ρ2Þ2=bN ; Naive has bN ¼ N� 3, and each other

EDF method uses their respective estimate bN , as described in Section
2.2.1 and Table 1.

2.5. Simulations and real data analysis

The xDF is validated and compared with other existing estimators via
series of Monte Carlo simulations and real data experiments. We simulate
time series with various autocorrelation structures (see Section S3.1),
under both uncorrelated and correlated conditions, using ACF parame-
ters estimated from one HCP subject (see Section 3.4). We generate null
realisations with real data by randomly exchanging the nodes between
subjects (see Section S3.6). From both of these sources of null data we
evaluate the distribution of Z-scores and false positive rates.

To investigate sensitivity and specificity, we simulate correlation
matrices, transformed to Z-scores with each method, with 15% of edges
considered as signal (i.e. assigned with ρ > 0). Briefly, sensitivity refers
to the proportion of true positives (i.e. edges which were assigned with a
non-zero correlation and also rejected null hypothesis, H0 : ρ ¼ 0) over
all positives (i.e. all edges which have rejected H0). Specificity is defined
as proportion of true negatives (i.e. edges which were assigned with zero
correlation and also failed to reject H0) over all negatives (i.e. all non-
detected edges). Accuracy is defined as the summation of two measure
described (see Section S3.5).

We consider graph metrics computed on real data, based on Z-scores
from each method. We use one session of resting state data from each of
the 100 unrelated HCP subjects. This data was pre-processed (Section S4)
and we created P� P resting-state functional connectivity matrices (Z-
scores), where P is number of ROIs, depending on the choice of parcel-
lation scheme; we use the Yeo, Power and Gordon atlas in their volu-
metric form and ICA200 and Multimodal Parcellation (MMP) in surface
mode (see Section S4.1). The rsFC matrices were then thresholded using
two conventional thresholding methods; statistical thresholding (where
FDR corrected α ¼ 5% is used to test the significance of each edge; see
Section S4.3) and proportional thresholding (where matrices are
thresholded on population cost-efficient density so all matrices have
identical density; see Section S4.4). Finally, the effect of the autocorre-
lation corrections on two centrality measures (weighted degree and
betweenness) and two efficiency measures (local and global) are inves-
tigated (see Section S4.5.3).

In all our evaluations we estimate the ACFs from the time series,
incorporating this important source of uncertainty (Algorithm S2 in
Supplementary Materials). An exception are “Oracle” simulations in
which the true ACF parameter values are used when estimating the
variance (see Algorithm S1 in Supplementary Materials).

2.6. Autocorrelation index

To summarise the strength of autocorrelation in time series X, we use
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τX ¼
XN�1

ρ2XX;i; (12)

i¼0

which we call the autocorrelation index (ACI).

3. Results

3.1. Autocorrelation and parcellation schemes

We find that the degree of autocorrelation of resting state data is
highly heterogeneous over the brain. Fig. 2.A shows a maps of voxel-
wise and ROI ACI, averaged across subjects (15 for voxelwise, 100 for
ROIs), showing that ACI vary widely. We found that using parcellation
schemes not only fails to reduce the spatial heterogeneity, but instead
magnifies the autocorrelation effects: Fig. 2.B shows autocorrelation
indices for three ROIs of Yeo's atlas, for each voxel in an ROI and as ROI
averages: Left posterior cingulate (LH-PCC; 1091 voxels), Left somato-
sensory motor (LH-SomMot; 4103 voxels) and Left dorsal prefrontal
cortex (LH-PFC; 19 voxels). We find a dramatic increase in autocorre-
lation with averaging within ROIs (see Appendix E for the likely origin
of this effect).

More generally, we find that the size of ROIs predicts autocorrelation
of the ROI in both volumetric and surface-based parcellation schemes
(Fig. 2.C). Further, not only the size of the ROI, but the location of the
ROI influences autocorrelation. Using the Power atlas, where all ROIs
have identical volume (81 2mm3 voxels), the autocorrelation in
subcortical structures is weaker than in cortical structures, as summa-
rized by plotting autocorrelation index vs. distance to Thalamus
(Fig. 2.D). While differences in BOLD characteristics between subcortical
and cortical voxels could contribute to the autocorrelation structure, it is
more likely the higher noise levels (far from the surface coils, and more
susceptible to problems of acceleration-reconstruction, in this HCP data)
explain the lower autocorrelation index in subcortical regions.

Using an ANOVA with either node or subject as the explanatory
variable, we quantify the heterogeneity of autocorrelation index as the
variance explained by variable (Fig. 2.E). For time series extracted using
Power atlas, 36% of inter-subject ACI variance is explained, while for
ICA200 time series up to 73% of inter-subject is explained, showing that
the severity of autocorrelation is very subject-dependent regardless of
atlas used. The ACI variance explained by node is smaller, but above 12%
for all four parcellation schemes, suggesting the importance of node-
specific autocorrelation adjustment.
3.2. Real data and Monte Carlo evaluations

We use inter-subject scrambling of 100 HCP subjects, parcellated with
Yeo atlas, to create null realisations with realistic autocorrelation struc-
ture. Using these realisations we compare different EDFmethods in terms
of FPR and distribution of Fisher's Z-scores, both visually via QQ plots
and by Kolmogorov-Smirnov (KS) statistics of observed Z-scores vs. a
standard normal distribution. Results on node-specific autocorrelation
corrections in Fig. 3A show that Naive and B35 have greatly inflated FPR,
while BH and its approximation, Q47, successfully preserve the FPR level
at the 5% level while distribution of the both methods closely follow
normal distribution (i.e. -log10(KS) ¼ 2:54). Similar results for other FPR
levels (%1 and 10%) are also illustrated in Fig. S4.

Since the majority of methods used are not node-specific but instead
consider the autocorrelation as a global effect (Fox et al., 2005; Zhang
et al., 2008; Hale et al., 2016), we evaluate them under their homoge-
neity assumption using simulated correlation matrices comprised of un-
correlated time series with strong autocorrelation measured from one
particular HCP subject (see Section S3.5 for details). Fig. 3.B shows
comparison of node-specific methods (B35 excepted, due to its poor FPR
control) to global methods AR1MCPS and G-Q47. Both global correction
methods fail to achieve the desired FPR level and the KS statistics of the



Fig. 2. Variation in strength of autocorrelation over space within an atlas, and between atlases. Panel A maps the autocorrelation index (ACI) voxelwise and for 3
different atlases, averaged over subjects (15 for voxel-wise, 100 for ROIs); variation is particularly evident for Yeo and Gordon; Power atlas is more homogeneous (but
see Panel D). Panel B shows the impact of averaging within ROIs on autocorrelation. Left, shows ACI of individual voxels (blue dots) of a single subject across three
regions of interests (ROIs) from the Yeo atlas. Right panel illustrates the ACI of ROI-averaged time series (blue dots) for 100 subjects, showing dramatic increase in
ACI; red lines indicates the median. ROIs are Left Posterior Cingulate (LH-PCC), Left Somatosensory Motor (LH-SomMot) and Left Dorsal Prefrontal Cortex (LH-PFC).
Panel C plots the ACI, averaged over subjects of the HCP 100 unrelated-subjects package, vs. region size for ACI time series and three atlases, where ICA and one atlas
(MMP) are surface-based. There is a strong relationship between ACI and ROI size. The “ROI size” for ICA is defined as number of voxels in each component above an
arbitrary threshold of 50. For MMP, the ROI size is defined as number of vertices comprising an ROI. Panel D considers the Power atlas, which has identically sized
spherical ROIs, plotting ACI vs. distance to a voxel in the thalamus. Cortical ROIs have systematically larger ACI than subcortical ROIs. Panel E shows variance
explained by inter-subject and inter-node ACI profiles for the Gordon, ICA200, Power and Yeo atlases; the large variance explained by inter-subject mean indicates
substantial consistency in ACI over subjects.
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two methods are also amongst the lowest; this poor performance is likely
due to the simple AR correlation model used by each of these methods.
On the other hand, the node-specific methods (xDF, BH and Q47)
remarkably improves the FPR and KS statistics. However, for uncorre-
lated time series, BH and GQ47 outperform the xDF. Similar results for
other FPR levels (%1 and 10%) are illustrated in Fig. S5.

We also repeated the FPR and KS analysis of correlation matrices for
another set of simulated correlation matrices, this time with autocorre-
lation structures drawn from a different subject than above. Results
suggest similar FPR and KS statistics except for AR1MCPS which almost
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meet the FPR-level. This clearly suggests that the performance of the
global measures, especially AR1MCPS, are subject-dependent.

We further complement the validation methods with FPR and ROC
analysis. Using the same simulation techniques, discussed in section S3.1,
we compare the FPR levels for pair-wise uncorrelated time series. Fig. 3.C
illustrates the FPR of eachmethod for level α ¼ 5%. Fig. 3.C suggests that
the Naive correction (first column) can only maintain the desired FPR
level when at least one of the time series are white, otherwise, the FPR
level can approach 50%, in cases where the both time series are highly
autocorrelated. Second and third columns of Fig. 3.C shows the FPR



Fig. 3. Evaluation of false positive rate control for testing ρ ¼ 0 with different autocorrelation correction methods. Panel A shows results using real data and inter-
subject scrambling of HCP 100 unrelated subjects with the Yeo atlas ROIs, comprising 235,500 distinct Z-scores (see Fig. S6 for same results with other atlases). Left
shows the QQ plot of Z-scores of each method, top right shows the �log10 KS statistics (larger is better, more similar to Gaussian), and bottom right the FPR, all of
which show that Naive and B35 have very poor performance. Panel B depicts a similar evaluation with simulated data, where a single ACF is used to simulate all time
series with identical autocorrelation (see Section S3.5), again under the null; we additionally consider two “global” correction methods that assume common ACF
between the nodes, G-Q47 and AR1MCPS. Here the Naive and the two global methods have poor false positive control. Panel C shows the FPR at the nominal 5% α
level across five methods (columns) for identical (top row) and different (bottom row) ACFs, over a range of time series lengths. Naive (note different y-axis limits) and
B35 have poor FPR control, while BH, Q47 and xDF all have good performance for long time series, with xDF having some inflation for the most severe autocorrelation
structures with short time series. The setting of each simulation is coded by plotting symbol and colour, as shown at the bottom of the figure.
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levels after the degrees of freedom are corrected via BH and Q47methods
where results suggest a remarkable improvement. Despite both methods
having a conservative FPR level on short time series, both successfully
maintain the FPR level on larger N. The FPR results for xDF suggest that
for short time series, the method fails to contain the FPR level, especially
on highly autocorrelated time series, however as N grows, the FPR levels
approaches the nominal level α until N ¼ 2000 where the xDF has the
closest FPR level. We finally, evaluate the FPR of B35 where, for majority
of the autocorrelation structures, the method has failed to control the FPR
level regardless of the sample size. For example, for time series with AR1-
AR14 structure, the FPR level is as conservative as 2% while for AR14-
AR20 the level exceeds 7%.

Results presented in Fig. 3 are for highly autocorrelated, yet
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uncorrelated, time series (ρ ¼ 0). However, in rsFC, it is the highly
correlated time series that are of interest. This motivates us to investigate
the accuracy of standard errors for bρ for highly autocorrelated time se-
ries, with non-zero cross-correlation, simulated following the model
described in Section S3.1.

The bias for estimating Pearson's correlation standard deviation
(

ffiffiffiffiffiffiffiffiffiffiffi
VðbρÞp

) by the Naive method is severe and varies with ρwhen the ACF's
are unequal (Fig. S2). For the other methods, Fig. 4.A, 4.B & 4.C show
percent bias for existing methods, B35, BH and Q47, respectively. While
BH and Q47 corrections give mostly unbiased standard errors in case of
independence (ρ ¼ 0) there is substantial bias as correlation ρ grows, for
both short and long time series length. For example, for ρ ¼ 0:5, BH and
Q47 corrections overestimates

ffiffiffiffiffiffiffiffiffiffiffi
VðbρÞp

by more than 30%. The bias for



Fig. 4. Percentage bias of estimated standard
deviation of bρ for different autocorrelation
correction methods. Panel A plots the bias of the
B35 method for T ¼ 100 (top) and T ¼ 1200
(bottom) for equal (left) and unequal (right)
ACF's. Panel B plots the same for BH, and Panel
C for Q47. Panel D plots the same information for
a wider range of time series lengths T. These re-
sults show the dramatic standard error bias in
BH35, BH and Q47 with increasing ρ. All results
here are for our adaptive truncation method; see
Figs. S8 and S9 for percent bias of different
tapering methods. The setting of each simulation
is coded by plotting symbol and colour, as shown
at the bottom of the figure. Details of simulations
and bias computation are found in Supplemen-
tary Materials; see Algorithm S2 and Eq. S(10).
We exclude the results for biases of Naive stan-
dard error as they often exceed up to %60 for
autocorrelated time series; see Fig. S2.
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the B35 standard errors show a similar pattern but with particular
sensitivity to the autocorrelation structure.

A notable finding from these ρ 6¼ 0 results is for white time series
(“W–W” for ρXX ¼ ρYY , blue triangles). For B35, BH and Q47 methods,
this ‘easy’ case of no autocorrelation gives just as bad performance as
severe autocorrelation. We identified the source of this problem as a
confounding of the product of sample autocorrelation functions with
sample cross-correlation; see Appendix D for details.

For xDF (Fig. 4.D), the performance is dramatically better, with lessffiffiffiffiffiffiffiffiffiffiffi
VðbρÞp

bias over all and no notable dependence on ρ. The worst per-
formance is for short time series and high-order AR autocorrelation, but
for N � 200 bias is mostly within �5% and improves with N.

Results for Oracle simulation (Figure S3.A) also confirm the con-
founding of autocorrelation with cross-correlations, as Q47 and BH are
both biased even when the true parameters are used, while xDF shows
negligible biases across different autocorrelation structures and sample
sizes.

We also use the simulations to evaluate bρ xDF's standard error bias
across different tapering methods (see section 2.3). Fig. S8 suggests that
despite similarities between the tapering methods on low- and mid-range
correlations, they differ on higher correlation coefficients where
616
unregularised, Tukey tapered (M ¼ ffiffiffiffi
N

p
) and truncation (M ¼ N=5 lags)

autocorrelation functions overestimate the variances while the shrinking
and Tukey of 2

ffiffiffiffi
N

p
lags maintain the lowest biases. Although the two

methods, Tukey taper with cut-off at
ffiffiffiffi
N

p
lags and adaptive truncation,

appear to have very similar biases we notice that adaptive truncation has
less bias for short time series. Moreover, adaptive truncation is immune
from arbitrary choice of lag cut-off. We therefore use adaptive truncation
as the ACF regularisation method for remainder of this work.

The FPR analysis presented in Fig. 3.C concern only the null case of
uncorrelated time series. To summarise performance in the presence of
correlation ρ > 0 we evaluate the sensitivity and specificity of each
method, via ROC analysis, on simulated correlation matrices, discussed
in section S3.5, where the time series are highly dependent and auto-
correlated. Fig. 5 illustrates the sensitivity, specificity and accuracy
measures for each of the methods across three different sample sizes. For
correlation matrices comprised of both short and long sample sizes, the
xDF outperforms other methods in terms of accuracy. While other mea-
sures have higher sensitivity than xDF, they suffer from worse specificity.
AUC analyses showed virtually no difference between the methods for
FPR <10% (Fig. S7).



Fig. 5. Performance of testing ρ ¼ 0 at level α ¼ 0:05 on 5000 simulated cor-
relation matrices (114� 114, matching Yeo atlas) with 15% non-null edges (see
Section S3.5). From top to bottom, specificity, sensitivity and accuracy (sum of
detections at non-null edges and non-detections at null edges) are shown.
Specificity (i.e. FPR control) is good for xDF, BH, Q47 and G-Q47, and sensitivity
increases with time series length; accuracy is best for xDF, closely followed by
BH and Q47.
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3.3. Effect of autocorrelation correction on functional connectivity

Fig. 6.A suggests that, as expected, the Z-score of the functional
connections either remained unchanged or has been reduced due to
unbiased estimation of variance using xDF correction. For example, the
functional connection between node 37 and 94 (i.e. both series are
almost white; see Fig. 1.E) has experienced almost no changes;
ZxDFð37; 94Þ ¼ 3.61 and ZNaiveð37; 94Þ ¼ 3.65, while functional connec-
tion between nodes 23 and 13 (i.e. both series are highly autocorrelated;
see Fig. 1.E) was reduced for 200%; ZxDFð13; 25Þ ¼ 2.08,
ZNaiveð13;25Þ ¼ 6.02.

Naturally, such drastic changes in Z-scores are also reflected in p-
values of statistical inferences for each connection. Fig. 6.C illustrate
these changes (i.e. orange dots) between FDR-corrected p-values (i.e. q-
values) of Naive correction (y-axis) and similar statistics of xDF correc-
tion (x-axis) where, broadly speaking, large number of the connections
with significant q-values no longer meet the 5% α level.

Since the changes in Z-scores due to xDF are spatially heterogeneous,
both statistical and proportional thresholding methods are dramatically
affected. In statistical thresholding (ST), after xDF correction, the FDR
critical values (shown as dotted lines on Fig. 6.A) are slightly increases
from 2.064 to 2.14. With the use of xDF, 13.66% of the edges change
from being marked FDR-significant to being non-significant; i.e. over
10% of the edges would be incorrectly selected with the Naive method.
Similarly, proportional thresholding (PT) is also affected since the cost-
efficient densities (shown as solid lines on Fig. 6.A, see section S4.4 for
more details on cost-efficient densities) are decreased from 35% to
27.5%. These changes in cost-efficient density result in 16.61% false
positive edges meaning that they were found to be significant merely due
to the autocorrelation effect.

The same analysis on another HCP subject finds very similar changes
in functional connectivity (Fig. S10) as in ST and PT, the critical values
and cost-efficiencies were reduced by more than 50% and 26%,
Fig. 6. Impact of Naive, xDF and BH corrections on rsFC in
one HCP subject parcellated with the Yeo atlas. Panel A
plots rsFC Z-scores of xDF-corrected connectivity vs. Naive,
showing that the significance of edges with Naive
computation of VðbρÞ is almost always inflated, but to
varying degrees. Solid lines are the critical values corre-
sponding to the cost-efficient (CE) density. Dashed lines
illustrates the critical values of FDR-corrected q-values.
Taking xDF as reference, edges that are incorrectly detec-
ted with Naive are coloured green (FDR but not CE) and
blue (CE). The black point marks edge (37,94) and red
point (13,25), discussed in body text. Panel B plots rsFC Z-
scores of xDF-corrected connectivity vs. BH, same con-
ventions as Panel A, showing deflated significance of Z-
scores computed with the BH method. The green point
marks edge (103,104). Panel C pp-plot of p-values of Z-
scores from xDF (green), BH (blue) and Naive (red) cor-
rections. Dashed line is %5 Bonferroni threshold for 6441
edges. Panel D shows the differences in mean functional
connectivity (mFC) of each correction method across sta-
tistical (FDR) and proportional (CE) thresholding. See
Fig. S10 for a similar plot for a different HCP Subject.
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respectively, due to xDF correction. This results in 16% FP edges in ST
and 19% FP edges in PT.

While Fig. 6.A shows that there is a profound effect of xDF relative to
no correction (Naive), it is of interest to see how xDF compares to an
existing methods that does attempt to correct for autocorrelation. For this
we compare xDF Z-scores to BH Z-scores (Fig. 6.A); recall that BH
correction does not account for cross-correlation ΣXY and, due to con-
founding of cross-correlation and autocorrelation, can over-estimate bρ
standard errors. When the Z-scores are low (corresponding to weak
correlation) there is little difference between the approaches, while for
stronger effects the difference between the two correction methods
become clearer. For example, the Z-score for the edge between node 103
and node 104 (green dot in Fig. 6.B; bρ103;104 ¼ 0:8) with BH and xDF
correction is 6.93 and 15.30, respectively; suggesting that the con-
founding in autocorrelation estimates (see Appendix D) has reduced the
functional strength of this edge for more than 50%. Similarly, we also
follow changes in rsFC of another HCP subject for nodes 23 and 88 (green
dot in Figure S10.B; bρ23;88 ¼ 0:67) where the confounding effect pro-
duces a similar effect; ZBHð23;88Þ ¼ 9:95, ZxDFð23; 88Þ ¼ 14.26.

Further, in Fig. 6.D we show the impact of autocorrelation correction
on mean value of rsFC Z-scores for edges included in proportional (left)
and FDR-based statistical (right) thresholding. Reflecting the findings of
the simulations, autocorrelation correction reduces Z-scores (suggesting
Naive's under estimation of VðbρÞ), but the BH method has appreciably
smaller Z-scores (attributable to the statistical confounding problem
discussed in Appendix D).
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3.4. Effect of autocorrelation correction on graph theoretical measures

Graph measures are notorious for their sensitivity to changes in
functional connectivity (van den Heuvel et al., 2017). Using subjects
from 100 HCP unrelated package, we show how accounting for auto-
correlation can influence basic graph theoretical measures such as cen-
trality and efficiency in weighted and binary networks. In weighted
networks we use xDF-corrected standardised Z-scores as edge weights
while in binary networks we set supra-threshold edges to one, zero
otherwise.

The graph theoretical measures are discussed for both proportional
(PT) and FDR-based statistical thresholding (ST) methods. In the former
we use universal density (obtained from averaging cost-efficient densities
across the three method under the investigation) to threshold rsFC across
subjects while in latter we use hypothesis testing (H0 : ρXY ¼ 0) for each
pair of nodes. It is important to note that PT is a equi-density method
while ST is equi-threshold method, meaning that the in proportionally
thresholded matrices the number of edges is identical across all subjects
and correction methods, while in statistically thresholded matrices the
number of edges varies across subjects and correction method. For more
information on each of the thresholding method, see Section S4.3 of the
Supplementary Materials. We further repeat these analysis for the case of
unthresholded rsFC, see Fig. S11 for results of unthresholded functional
connectomes.

Fig. 7 A uses Bland-Altman plots to show the changes in graph mea-
sures of rsFC obtained using proportional thresholding. The left column
Fig. 7. Overall changes in global and local graph
theoretical measures with the 100 unrelated HCP
package parcellated by Yeo atlas. Panel A, Bland
Altman plots of xDF vs. Naive for weighted de-
gree (top), betweenness (middle) and local effi-
ciency (bottom) computed with a cost-efficient
threshold. There is one point for each of 114
nodes, the particular measure averaged over
subjects, and the nodes are colour coded accord-
ing to their resting-state network assignment.
Panel B Shows the same graph measures, but
with statistical thresholding (corrected via FDR
correction). Panel C shows the differences in
weighted CE density (left) and Global efficiency
(right), and Panel D illustrates the same results
statistical FDR thresholding. There is a dramatic
impact of correction method on all graph metrics
considered. Similar results for Gordon (Fig. S12),
Power (Fig. S13) and ICA200 (Fig. S14) is avail-
able in Supplementary Materials.
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of Fig. 7.A shows the impact of xDF relative to no correction: Most dra-
matic is the overall reduction in weighted degree, with the degree hubs
having the highest rate of losing weighted degrees; these nodes are parts
of the Default Mode Network (DMN; i.e. DefaultABC) and Saliency
Ventral Attention Network (SVAN; i.e. SalVenAtt). Similarly, the local
efficiency of more than 98% of nodes were changed after xDF correction.
Parts of DMN and SVAN in addition to parts of the Visual network are
among the nodes which have been affected the most. In contrast,
betweenness centrality has experienced modest changes of only �5% in
their values.

The left column of Fig. 7.B illustrates the changes in local graph
measures of FDR-based statistical thresholded rsFC. Similar to ST re-
sults, the weighted degree of nodes suggests a significant reduction,
with degree hubs (parts of DMN and SVAN) having the largest
reduction. Local efficiency of almost every node (� 99%) were
affected, especially highly efficient nodes appear to be mostly influ-
enced by xDF correction with parts of the DMN, SVAN and Visual
network among them. Although the pattern of changes in betweenness
centrality suggest almost no relation to the betweenness value of nodes
before the correction, betweenness centrality of � 22% of nodes are
yet affected.

The right columns of Fig. 7.A and 7.B reflect how the BH estimator is a
more conservative correction (due to correlation-autocorrelation con-
founding effect; see Appendix D). Table 3 summaries changes due to the
confounding effect; Visual network, DMN and SVAN are among the nodes
which are most impacted.

We also evaluate changes in the global measures. Fig. 7.C shows the
changes in network density (left) where the density of networks with
Naively corrected network were significantly reduced after xDF and BH
correction however there is a slight, yet significant, difference between
density of xDF-corrected and BH-corrected networks. Similarly, the
global efficiency of networks (Fig. 7.C) are significantly reduced after
accounting for autocorrelation. Fig. 7.C also suggests that overestimation
of variance due to correlation-autocorrelation confounding may yet
reduce the local efficiency.

In the global measures a similar pattern of changes is also found for
CE-based proportional thresholded networks, as the density (Fig. 7.D) of
xDF-corrected networks are significantly reduced. However, in spite of
changes in weighted degree, the confounding effect may not affect the
network densities. Finally, global efficiency of xDF-corrected networks
suggests a significant reduction. Despite a small difference, the con-
founding effect has also reduced the global efficiency.

We repeat this analysis for the Gordon and the Power atlas. For the
Power atlas, Fig. S13 suggests that the autocorrelation leaves a very
similar pattern of changes for both PT and ST. The highest changes take
place in nodes with highest degree and efficiency measures; nodes
comprising Visual, Fronto-parietal and Default Mode Network (DMN).
For Gordon atlas (Fig. S12), we found very similar results where the
changes suggest that nodes from DMN, Fronto-parietal and Sensory-
Motor (i.e. SMHand) networks experienced the highest changes in their
weighted degree and local efficiency. Interestingly, similar to the Yeo
atlas, Betweenness centrality has shown the highest resilience towards
Table 3
Percent of nodes that their weighted graph measures have significantly affected,
for xDF vs. Naive and xDF vs. BH (see Fig. 7). This quantifies the dramatic impact
of correction method on each graph metric across all parcellation schemes and
correction methods. For similar results for other parcellation schemes, see
Tables S2–S5.

Comparison Thresholding Weighted
Degree

Weighted
Betweenness

Local
Efficiency

Naive> xDF PT (CE) 95.61% 63.16% 98.24%
ST (FDR) 95.61% 61.40% 99.12%

BH > xDF PT (CE) 85.08% 1% 95.62%
ST (FDR) 92.98% 1.75% 95.61%
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these changes. Finally, Fig. S14 shows similar results for subjects par-
cellated using ICA200.

In Fig. 8 we show the results of the comparison among Naive, xDF and
BH repeated for binary graphmeasures derived from Yeo atlas. In absence
of edge weights, any differences found are solely attributable to topo-
logical changes. The results suggest that the changes are still prominent
between Naive and xDF for both proportionally and statistically thresh-
olded rsFC maps, while there are no differences detected in graph metrics
of binary networks corrected with xDF vs. BH. In Table 4 we summarise
changes after correcting for autocorrelation with xDF and BH. These
changes were tested across nodes between the two methods and cor-
rected via FDR. For similar analysis with different parcellation schemes,
see Figs. S15 and S16.

4. Discussion

We have developed an improved estimator of the variance of the
Pearson's correlation coefficient, xDF, that accounts for the impact of
autocorrelation in each variable pair as well as the instantaneous and
lagged cross-correlation. On the basis of extensive simulations under the
null setting (ρ ¼ 0) using simulated data and real data with inter-subject
scrambling, the xDF, BH and Q47 methods have good control of false
positives, with xDF showing only slight FPR inflation on real null data
(5.7%) and, on simulated data, only inflated with strong autocorrelation
for short time series. Naive (no correction) has severe inflation of FPR as
do other methods based on simplistic AR(1) autocorrelation models (G-
Q47, AR1MCPS) or commonACF for each pair of variables have poor FPR
control. Simulations with realistic autocorrelation and non-null cross-
correlation find that Naive severely under-estimates variance while BH
and Q47 over-estimates variance, likely due to a confounding of auto-
and cross-correlation in those corrections; xDF, in contrast, has negligible
bias for long time series and for short time series has low bias for all but
the strongest forms for autocorrelation.

On real data (non-null) rsFC we replicate the simulation findings,
with Naive Z-scores dramatically inflated relative to xDF, BH and Q47 Z-
scores smaller in magnitude. The differences between the methods,
however, are node specific, reflecting how xDF adjusts for autocorrela-
tion in each node pair. We recommend that all rsFC analyses that are
based on Z-scores, whether thresholded arbitrarily or or, say, use a
mixture modelling approach (Bielczyk et al., 2018), use the xDF correc-
tion to obtain the most accurate inferences possible.

We show that graph analysis measures are dramatically impacted by
use of xDF, relative to either Naive or BH corrections. Broadly speaking,
accounting for autocorrelation results in lower Z-scores and lower rsFC
densities. These heterogeneous changes alter the topological features of
the functional connectome, however the changes are not similar across
resting-state networks; in the HCP data, we find nodal strengths and local
efficiencies in parts of the subcortical regions experience lower changes
compared to nodes from the frontoparietal and default mode networks,
which are among the highly affected areas. The pattern of changes sug-
gest that the nodal degree and efficiency hubs are among the most
affected. In contrast, results for betweenness centrality suggest no sys-
tematic pattern with relatively lower changes.

We provide a comprehensive review of the literature on autocorre-
lation corrections for the variance of the sample correlation, usually cast
as estimation of the effective degrees of freedom. In the neuroimaging
community this is sometimes referenced as “Bartlett Correction Factor
(BCF)”, though it has been only informally defined and used as a global
correction over subjects and ROIs (Hale et al., 2016). We emphasize the
importance of truncation or tapering of ACF's and computing a correction
for each node pair.

We note the strong influence of ROI size on the strength of autocor-
relation, with, at one extreme, voxel-level data having the weakest cor-
relation, increasing in strength as the size of the ROI increases; an effect
that is often ignored in rsFC studies (Lee and Xue, 2017) or indirectly by
regressing out the volume of the ROIs (Sethi et al., 2017). We also



Fig. 8. Overall changes in global and local graph
theoretical measures with the 100 unrelated HCP
package parcellated by Yeo atlas. Panel A, Bland
Altman plots of xDF vs. Naive for binary degree
(top), betweenness (middle) and local efficiency
(bottom) computed with a cost-efficient
threshold. There is one point for each of 114
nodes, the particular measure averaged over
subjects, and the nodes are colour coded accord-
ing to their resting-state network assignment.
Panel B Shows the same graph measures, but
with statistical thresholding (corrected via FDR
correction). Panel C shows the differences in
weighted CE density (left) and Global efficiency
(right), and Panel D illustrates the same results
statistical FDR thresholding. There is a dramatic
impact of correction method on all graph metrics
considered. Similar results for Gordon (Fig. S15),
Power (Fig. S16) and ICA200 (Fig. S17) is avail-
able in Supplementary Materials.

Table 4
Percent of nodes that their binary graph measures have significantly affected, for
xDF vs. Naive and xDF vs. BH (see Fig. 8) in Yeo atlas. In xDF vs. Naive all graph
measures were found to be significantly affected while in xDF vs. BH none of the
measures suggest a change. For similar results for other parcellation schemes, see
Tables S6–S9.

Comparison Thresholding Binary
Degree

Binary
Betweenness

Local
Efficiency

Naive > xDF PT (CE) 95.61% 63.16% 98.24%
ST (FDR) 95.61% 48.24% 28.07%

BH > xDF PT (CE) 85.087% 0.877% 95.61%
ST (FDR) 0% 0% 0%
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showed that, even for an ROI atlas with identically sized regions (i.e.
Power atlas), autocorrelation can vary substantially over the brain
depending on their location. These factors, along with inter-subject
heterogeneity of the autocorrelation effect (Fig. 2.E), could become a
significant source of bias in any rsFC analysis using Z-scores if not
otherwise corrected. And we note that our findings hold for both volu-
metric and surface-based analysis (Fig. 2.C).

We stress that our work does not invalidate use of correlation entirely,
as our derivation shows that Pearson's correlation is approximately un-
biased for the correlation ρ in the data (Appendix B). For between-subject
analyses, the varying intra-subject standard deviation of Pearson's cor-
relations is analogous to fMRI, where some methods ignore first-level
standard errors, which has been shown to be valid for simple models
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(Mumford and Nichols, 2009) (e.g. in SPM and AFNI's 3dDeconvolve),
while other methods account for these standard errors (FSL's FLAME and
AFNI's 3dMEMA). For group level inference on correlations, we are only
aware of the work of Fiecas et al. (2017) that provides an analogous
2-level model that accounts for intra-subject standard errors. One way
forward is a hybrid approach, where any thresholding is done on xDF
Z-scores, and then subsequent analyses are done on surviving bρ values
(see, e.g. Bassett et al. (2011), that uses such an approach but with Naive
Z).

In short, any rsFC analysis based on Z-scores must ensure that the
calculation of those Z-scores account for the impact of temporal auto-
correlation in a subject- and edge-specific manner, as with our xDF
method.

As an aside, we note that our statement on the unbiasedness of cor-
relation is at odds with other recent work (Arbabshirani et al., 2014;
Davey et al., 2013). This is not inconsistent: Both of these works start
their analysis with a pair of white noise variables with instantaneous
correlation ρ and then assess the impact of inducing autocorrelation on
those variables. In particular, they note that if different autocorrelation
structures are induced then a bias in estimate of ρ can arise. Instead, we
study the auto- and cross-correlation of the presented data ðX;YÞ, without
reference to an (unobserved) autocorrelation-free signal; in this setting
Pearson's correlation is (approximately) unbiased regardless of differ-
ential autocorrelation. We believe our empirical approach is more
appropriate, as the BOLD signal is not white and hence inference on the
correlation of presented (and not latent white) signals is of primary
interest.
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We note that other authors have proposed pre-whitening as a solution
to improve inference on correlation (Bright et al., 2017), and that
pre-whitening is recommended when conducting system identification of
the cross-correlation function ρXY ;k (Priestley, 1983). However, we still
see the value of the no-whitening plus xDF correction approach. First,
pre-whitening requires accurate estimation of ΣX and ΣY , and careful
evaluation is required to see if the FPR is controlled and the standard
error unbiased over a range of settings. Second, pre-whitening changes
the definition of ρ, from concerning the instantaneous correlation of the
observed time series to that of the (unobserved, latent) white time series.
And, perhaps most important for sliding window time-varying rsFC,
pre-whitening mixes data from distant time points with neighbouring
ones, challenging the interpretation of the individual time points as
pertaining to a precise moment in time.

Pre-whitening is also used with voxelwise linear modelling using a
seed region predictor. This is again different, in that the samewhitening –
based on voxelwise residuals – is applied to both response and predictor,
perhaps improving the interpretability of this approach over the case of
separate whitening for each X and Y. It is difficult to predict how this
approach will differ from correlation inference with xDF, as xDF con-
siders autocorrelation of both time series as well as cross-correlation,
while this approach only considers voxelwise residual autocorrelation.

One immediate extension to the current work is to adapt the xDF
estimator to partial correlations. Partial correlations have recently drawn
substantial attention after they were shown to be effective in resting-state
analysis (Marrelec et al., 2006; Smith et al., 2011). Further, recent studies
have shown that accounting for autocorrelation is remarkably sensitive
to sampling rates of the fMRI BOLD time series (Bollmann et al., 2018),
therefore evaluating the proposed methods on different sampling rates
would be useful. We have not attempted to investigate how the changes
in Z-scores we describe would affect the inter-group changes, but this
would be a useful extension, as V�a�sa et al. (2018) did for Schizophrenia in
context of wavelet EDF. Finally, it is important to note that application of
the xDF is not confined to rsFC of fMRI time series as it can be used in
other modalities such as EEG and MEG as both modalities were shown to
suffer from dependencies amongst their data-points.

5. Software availability and reproducibility

Analysis presented in this paper have been done in MATLAB 2015b
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and R 3.1.0. Graph theoretical analysis were done using Brain Connec-
tivity Toolbox (accessed: 15/1/2017) (Rubinov and Sporns, 2010).

Variance of Pearson's correlation, Z-scores and p-values of such cor-
relation matrices can be estimated via xDF.m available in https://gith
ub.com/asoroosh/xDF. The script is a standalone function and is
executable using Statistics and Machine Learning Toolbox in MATLAB
2016 or later. The repository also contains six other variance estimators
discussed in this work.

The autocorrelation (AC_fft.m) and cross-correlation (xC_fft.m) func-
tions are estimated using Wiener-Khinchin theorem which involves
discrete Fourier transformation of time series. We also used an algorithm
proposed by Higham (1988) to find the nearest positive semi-definite
covariance matrices for simulations described in Section S3.

Scripts and instructions to reproduce all the figures and results, are
also available via http://www.github.com/asoroosh/xDF_Paper18. For
details regarding the reproduciblity of the figures see section S6 of the
supplementary materials.
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Appendix A. Results for Joint Distribution of Time Series X and Y

Here we provide basic results required for the next appendix, for moments of inner and cross produces of X and Y.

Theorem 1. (Covariance of Quadratic Form of Bivariate Gaussian Distribution).
For fixed matrices A and B, if G is a random vector such that G � Nð0;ΦÞ then. CðG>AG;G>BGÞ ¼ 2trðΦAΦBÞ

Proof. The result follows from application of the definition of covariance,

CðG>AG;G>BGÞ¼ EðG>AGG>BGÞ � EðG>AGÞEðG>BGÞ:
and expectation of a quadratic form for Gaussian variates (Petersen and Pedersen, 2008),

EðG>AGG>BGÞ¼ 2trðAΦBΦÞ þ trðAΦÞtrðBΦÞ
and expectation of quadratic forms, EðG>AGÞ ¼ trðAΦÞ and EðG>BGÞ ¼ trðBΦÞ. ∎
The Gaussian assumption can be relaxed, but then an additional term arises to account for departures from Gaussian kurtosis.
The inner products of X and Y can now be represented in terms of a quadratic form of

G ¼
0
@X

Y

1
A

for following maticies:

https://github.com/asoroosh/xDF
https://github.com/asoroosh/xDF
http://www.github.com/asoroosh/xDF_Paper18
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AXX ¼ 4 I 05;

2
0 0

3

AYY ¼
2
4 0 0
0 I

3
5;

AXY ¼

2
666664

0
1
2
I

1
2
I 0

3
777775;

such that X>X ¼ G>AXXG, Y>Y ¼ G>AYYG, and X>Y ¼ G>AXYG.

Appendix B. xDF: Variance of Sample Correlation Coefficient for Arbitrary Dependence

For mean zero length-N random vectors X and Xwith (N� N) variance matrices ΣX and ΣY and cross-covariance ΣXY , we develop the variance of the
sample correlation. Following Lehmann (1999a) and Hunter (2014), we derive an approximation for the sampling variance of Pearson's correlation.
Starting with the 3-dimensional sufficient statistic

W ¼

0
BB@

W1

W2

W3

1
CCA ¼

0
BB@X>X=N

Y>Y=N
X>Y=N

1
CCA;

note that the function f ðWÞ ¼ W3=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
W1W2

p
generates the correlation coefficient bρ. Then the first order Taylor's series of bρ ¼ f ðWÞ about EðWÞ is

bρ� f ðEðWÞÞ þ ðW � EðWÞÞ>rf ðEðWÞÞ;

so that EðbρÞ� f ðEðWÞÞ ¼ ρ and

VðbρÞ � ðrf ðEðWÞÞÞ>VðWÞrf ðEðWÞÞ

where the gradient of f ð�Þ is

rf ðWÞ ¼

0
BBBBB@

�W3

�	
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
W3

1W2

q 


�W3

�	
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
W1W3

2

q 

1
� ffiffiffiffiffiffiffiffiffiffiffiffi

W1W2
p

1
CCCCCA;

evaluated at W ¼ EðWÞ,

rf ðEðWÞÞ ¼

0
BBBBBBBBB@

�ρ
2trðΣXÞ=N

�ρ
2trðΣY Þ=N

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
trðΣXÞtrðΣY Þ

p �
N

1
CCCCCCCCCA

and, by Theorem 1 in Appendix A,

VðWÞ ¼ N�2

0
BB@

2trðΦAXXΦAXXÞ 2trðΦAXXΦAYYÞ 2trðΦAXXΦAXYÞ
2trðΦAXXΦAYYÞ 2trðΦAYYΦAYYÞ 2trðΦAYYΦAXY Þ
2trðΦAXXΦAXY Þ 2trðΦAYYΦAXY Þ 2trðΦAXYΦAXYÞ

1
CCA

¼ N�2

0
BB@ 2tr

�
Σ2

X

�
2trðΣYXΣXY Þ trðΣXΣXY Þ þ trðΣYXΣXÞ

2trðΣYXΣXY Þ 2tr
�
Σ2

Y

�
trðΣXYΣY Þ þ trðΣYΣYXÞ

trðΣXΣXYÞ þ trðΣYXΣXÞ trðΣXYΣYÞ þ trðΣYΣYXÞ trðΣXΣY Þ þ tr
�
Σ2

XY

�
:

1
CCA

Based on these expressions, evaluating the matrix product ðrf ðEðWÞÞÞ>VðWÞrf ðEðWÞÞ gives the result in Eq. (1). While very similar, this deri-
vation is not a standard delta method result as we do not have independent observations.
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Appendix C. Trace of product of two Toeplitz Matrices

If ρXX;k and ρYY;k are autocorrelation coefficients of time series X and Y on lag k, the diagðΣXΣY Þ can be re-written as

ρYY;�1ρXX;�1 þ ρYY;0ρXX;0 þ ρYY;1ρXX;1 þ⋯þ ρYY;N�1ρXX;N�1

ρYY;�1ρXX;�1 þ ρYY;0ρXX;0 þ ρYY;1ρXX;1 þ⋯þ ρYY;N�2ρXX;N�2

⋮

ρYY;N�2ρXX;N�2 þ⋯þ ρYY;�1ρXX;�1 þ ρYY;0ρXX;0 þ ρYY;1ρXX;1

ρYY;N�1ρXX;N�1 þ⋯þ ρYY;�1ρXX;�1 þ ρYY;0ρXX;0

(13)

Considering that the autocorrelation function of time series is symmetric (i.e. the negative and the positive lags are identical), for X and Y we can
simply obtain the trace of the ΣXΣY as,

tr
�
ΣxΣy

�¼N þ 2
XN�1

k¼1

ðN � kÞρYY;kρXX;k (14)

Similarly, the covariance matrix, ΣXY , can be written as a Toeplitz matrix of form

ΣXY ¼

0
BBBBBBBBBBBB@

ρXY;0 ρXY;�1 ρXY;�2 ⋯ ⋯ ⋯ ⋯ ρXY;N�1

ρXY;1 ρXY;0 ρXY;�1 ρXY;�2 ⋮
ρXY;2 ρXY;1 ρXY;0 ρXY;�1 ⋱ ⋮
⋮ ρXY;2 ⋱ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋱ ρXY;�2 ⋮
⋮ ⋱ ρXY;1 ρXY;0 ρXY;�1 ρXY;�2

⋮ ρy;2 ρy;1 ρXY;0 ρXY;�1

ρXY;N�1 ⋯ ⋯ ⋯ ⋯ ρXY;2 ρXY;1 ρXY;0:

1
CCCCCCCCCCCCA

(15)

Knowing that the cross-covariance matrices are asymmetric but ΣXY ¼ Σ>
YX , the trace of trðΣ2

XYÞ ¼ trðΣ2
YXÞ and can be re-written as

tr
�
Σ2

XY

�¼ XN�1

i¼1�N

ðN � jkjÞρXY;k ¼
X0

k¼1�N

ðN þ kÞρXY;k|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
lag�

þ
XN�1

k¼1

ðN � kÞρXY;k|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
lagþ

: (16)

Similarly, other terms of Eq. (1) can be re-written as vector operations (see Eq. (2)).

Appendix D. Confounding of Autocorrelation and Cross-correlation Estimates

A majority of the EDF estimators discussed have the term trðΣXΣY Þ which depends on the product of autocorrelation functions, ρXX;kρYY;k (see
Appendix C). Some unexpected results such as poor variance estimation for the seemingly easy case of time series with no autocorrelation (see Section
3.2) were found to be caused by confounding between estimates of autocorrelation and cross-correlation. Observe that for two white but dependent time
series (ρXX;k ¼ ρYY ;k ¼ 0 for k > 0, but ρXY ;0 6¼ 0), the product of the sample autocorrelation functions are

bρXX;kbρYY;k ¼
	

1
N � k

XN�k

t¼1

xtxtþk


	
1

N � k

XN�k

t¼1

ytytþk




¼ 1

ðN � kÞ2
�XN�k

t¼1

xtyt xtþkytþk þ
X

1	t 6¼t'	N�k

xtyt ' xtþkyt'þk

� (17)

In this last expression note that each term in the first sum has an expected value of ρ2, while the second sum has an expected value of zero. As a result,
even when there is no (or very light) autocorrelation, methods dependent on trðΣXΣY Þ or ρXX;kρYY ;k alone can be substantially biased by non-zero cross-
correlation. This includes BH and all its variations listed in Pyper and Peterman (1998). Our xDF, on the other hand, is immune of the effect thanks to the
cancelling cross-covariance terms in Eq. (2).

Appendix E. Autocorrelation in Regions of Interests

We observed substantial differences in severity of autocorrelation in voxel-wise data as opposed to data derived from regions of interest (ROI); see
Fig. 2. This section proposes a model that explains the effect.

Suppose that a ROI contains R voxels, and the data for time t and voxel i ¼ 1;…;R can be modelled as,

Yti ¼ St þ Vti; (18)

where the St a common “signal” shared across all the voxels within the ROI (i.e. a ROI-specific global signal) and Vit are the voxel-specific component of
data. Assuming that the two components are uncorrelated, the autocorrelation for the ROI is defined as,
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COR
�
Yti;YðtþkÞi

� ¼ CðSt; StþkÞ þ C St;VðtþkÞi þ CðStþk;VtiÞ þ C Vti;VðtþkÞi
σ2 þ σ2
� � � �
S V

¼ σ2S
σ2
S þ σ2V

ρSS;k þ
σ2V

σ2
S þ σ2V

ρVV ;k;

(19)

where σ2V and σ2S are the variances of V and S, respectively, and ρVV ;k and ρSS;k are the autocorrelation coefficient of V and S at lag k, specifically. This
shows that the voxel-level correlation is a convex combination of the two ACFs, balanced according to the variances σ2S and σ2V .

Now, if we assume for this illustration that voxels are independent, then for the ROI-averaged time series, Yt ¼ PR
i¼1Yti=R, the autocorrelation is:

CORðYt;YtþkÞ¼ σ2SR
σ2SRþ σ2V

ρSS;k þ
σ2V

σ2SRþ σ2V
ρVV ;k: (20)

We again have a convex combination, but now balanced according to σ2SR and σ2
V .

If we make some reasonable assumptions we can make predictions of this correlation as R grows. Let us assume that ρSS reflects a stronger auto-
correlation of a (BOLD-related) common signal, and bρ reflects less autocorrelation and more thermal noise contributions at individual voxels. Then as R
grows the ACF of the ROI average converges to the ACF of the common signal, and this would explain the increased strength of autocorrelation with
larger ROIs.

Appendix F. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.neuroimage.2019.05.011.
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