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Abstract

Background

Prostate cancer (PCa) is a leading reason of death in men and the most diagnosed malig-

nancies in the western countries at the present time. After radical prostatectomy (RP),

nearly 30% of men develop clinical recurrence with high serum prostate-specific antigen lev-

els. An important challenge in PCa research is to identify effective predictors of tumor recur-

rence. The molecular alterations in microRNAs are associated with PCa initiation and

progression. Several miRNA microarray studies have been conducted in recurrence PCa,

but the results vary among different studies.

Methods

We conducted a meta-analysis of 6 available miRNA expression datasets to identify a panel

of co-deregulated miRNA genes and overlapping biological processes. The meta-analysis

was performed using the ‘MetaDE’ package, based on combined P-value approaches

(adaptive weight and Fisher’s methods), in R version 3.3.1.

Results

Meta-analysis of six miRNA datasets revealed miR-125A, miR-199A-3P, miR-28-5P, miR-

301B, miR-324-5P, miR-361-5P, miR-363*, miR-449A, miR-484, miR-498, miR-579, miR-

637, miR-720, miR-874 and miR-98 are commonly upregulated miRNA genes, while miR-1,

miR-133A, miR-133B, miR-137, miR-221, miR-340, miR-370, miR-449B, miR-489, miR-

492, miR-496, miR-541, miR-572, miR-583, miR-606, miR-624, miR-636, miR-639, miR-

661, miR-760, miR-890, and miR-939 are commonly downregulated miRNA genes in recur-

rent PCa samples in comparison to non-recurrent PCa samples. The network-based analy-

sis showed that some of these miRNAs have an established prognostic significance in other

cancers and can be actively involved in tumor growth. Gene ontology enrichment revealed

many target genes of co-deregulated miRNAs are involved in “regulation of epithelial cell

proliferation” and “tissue morphogenesis”. Kyoto Encyclopedia of Genes and Genomes
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(KEGG) analysis indicated that these miRNAs regulate cancer pathways. The PPI hub pro-

teins analysis identified CTNNB1 as the most highly ranked hub protein. Besides, common

pathway analysis showed that TCF3, MAX, MYC, CYP26A1, and SREBF1 significantly

interact with those DE miRNA genes. The identified genes have been known as tumor sup-

pressors and biomarkers which are closely related to several cancer types, such as colorec-

tal cancer, breast cancer, PCa, gastric, and hepatocellular carcinomas. Additionally, it was

shown that the combination of DE miRNAs can assist in the more specific detection of the

PCa and prediction of biochemical recurrence (BCR).

Conclusion

We found that the identified miRNAs through meta-analysis are candidate predictive mark-

ers for recurrent PCa after radical prostatectomy.

Introduction

Prostate cancer (PCa) is the most diagnosed malignancy and the second most reason of can-

cer-related death for the men over the age of 50 in the western countries [1]. The prostate-spe-

cific antigen (PSA) is the most reliable biomarker for PCa, which is helpful for diagnosis,

screening, and follow-up after surgery. For treatment of PCa, two treatment methods, radia-

tion therapy or radical prostatectomy (RP) and hormone ablation therapy are used. Yet, these

methods do not provide enhanced survival rates and nearly 30% of patients experience a bio-

chemical recurrence with enhanced PSA levels after curative treatment of RP [2]. Moreover,

metastatic and advanced tumors of PCa respond very poorly to chemotherapy [3]. All these

facts emphasize the significance of developing early diagnostic biomarkers for PCa progres-

sion. Identifying effective predictors of tumor recurrence after the surgical operation to deter-

mine whether treatment is required or not is a main challenge in the PCa research. To predict

biochemical recurrence (BCR) of PCa after RP and develop effective predictors of tumor

recurrence, multiple studies have been conducted for gene expression profiling [4–6].

Recently, numerous studies have been published which show that the alterations in micro-

RNAs are associated with PCa initiation and progression [7–9].

The miR-1, miR-133b, miR-519d, and miR-647 are new biomarkers with prognostic and

diagnostic value for recurrence of PCa, which have been identified through miRNA expression

profiling [10, 11]. The miR-449b, miR-21, miR-141 and miR-221 are also known as putative

prognostic or predictive markers in PCa recurrence after RP [12–14].

Meta-analysis utilizes statistical methods to contrast and combines results from multiple

studies in the hope of increasing the statistical power and reproducibility over individual stud-

ies and identifying patterns across studies [15]. A limited number of studies [1, 10–14, 16, 17]

has been conducted on microRNA expression profiles to distinguish recurrent from non-

recurrent prostate tumor tissues and to identify novel biomarkers for prediction of PCa pro-

gression. The average differential expression level (fold change) and some level of significance

as measured by the t-test are common procedures for identifying the biomarkers. These

miRNA microarray data sets provide a rich resource for genome-wide information on PCa

progression and make an ideal chance to perform a meta-analysis study. We assumed that a

meta-analysis of some miRNA expression datasets of PCa progression can give a potentially

significant list of co-deregulated miRNAs in PCa progression, which is important to specify
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pathways in which the miRNAs of interest and their target genes are involved. To increase the

probability of revealing truly significant deregulated miRNA genes, which should have higher

potentials to be utilized as consistent biomarkers for the disease, we analyzed miRNA expres-

sion profile in PCa progression considering 5 studies (6 datasets). This meta-analysis increases

the significance of the results.

Materials and methods

Literature analysis

There are a limited number of reports in the literature studied miRNAs in PCa progression.

We systematically queried for these studies from PubMed database.

The following Medical Subjective Heading (MeSH) and Embase tree were used: “recur-

rence” or “recurrence” and “prostatic neoplasms” or “prostate cancer” and “micrornas” or

“microRNA” and “gene expression” or “expression”. In addition, publicly available microRNA

data sets were searched by “RISmed” package in R to ensure no relevant studies were missed.

Through database searching, a total of 24 studies was identified. Of these, 19 studies were

retained after rejecting repetition. According to the title and abstract, a total of 14 studies was

excluded. Review, case report, animal experiment, no association with PCa, and experiment

on DNA microarray were the reasons for excluding these articles. The full-text articles were

evaluated for the remaining 5 studies, and all of them (6 datasets) were retained in the final

meta-analysis. These miRNA data sets were obtained from the National Centers for Biotech-

nology Information (NCBI) Gene Expression Omnibus (GEO) database (http://www.ncbi.

nlm.nih.gov/geo/).

The microRNA datasets and individual data analysis

In this study, a total of six microRNA datasets related to the recurrent PCa after RP

(GSE55323 [10], GSE26245 and GSE26247 [11], GSE65061 [17], GSE62610 [12], and

GSE46738 [14]) met the inclusion criteria and were selected for meta-analysis.

In the GSE55323, a total of 41 recurrent and 41 non-recurrent tumors after RP, which have

been obtained from Baylor College of Medicine Prostate Cancer program, have been consid-

ered for performing miRNA profiling. Recurrence has been defined as a two consecutive

serum PSAs greater than 0.2 ng/ml. To carry out microarray analysis, 20 samples from each

group have been profiled using miRNA microarray chips.

In GSE26245 and GSE26247, total RNA from 71 formalin-fixed-paraffin-embedded (FFPE)

specimens with known long-term outcome have been used for performing DASL expression

profiling with a custom-designed panel of 522 PCa relevant genes. Recurrence has been

defined as a two consecutive serum PSAs greater than 0.2 ng/ml. In the GSE26245, samples

from 71 patients (29 with BCR and 42 without BCR) and in the GSE26247, samples from 82

patients (29 with BCR and 53 without BCR) have been used. In this study, the samples with

unknown BCR have been removed.

For the GSE65061, total RNA has been extracted from tumor-enriched 1mm cores from 43

RP paraffin tissue blocks. Tissue isolated at the time of RP has been utilized for miRNA profil-

ing. Thirty-six months has been considered as the cutoff, as it was near the median time to

recurrence. From 43 patients, 19 were labeled as the samples with BCR (� 36 months) and 24

as the samples without BCR (> 36 months).

In the GSE62610, total RNA has been taken from tumor-enriched 1.5 mm cores in diameter

from 36 formalin fixed paraffin embedded (FFPE) specimens. Then biochemical failure has

been defined as two consecutive measurements of PSA > 0.2 ng/ml. From 36 patients 22 has

been classified as the samples with BCR and 14 as the samples without BCR. In the GSE62610
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most of microRNAs have null expression. After excluding miRNAs with no expression in any

of the samples, 536 miRNAs have been kept for further analysis.

For GSE46738, total RNA has been taken from tumors from the 51 patients that underwent

an RP by the same surgeon to treat localized PCa. In the GSE46738, the BCR status of samples

is not mentioned explicitly. In the present study, according to the expression level of the miR-

NAs with greater statistical power, which has been reported in the third table of the study [14],

tumors were divided into the positive BCR and the negative BCR by using clustering tech-

niques. In GSE46738, from 51 samples, 34 were classified as the samples with BCR and 17 as

the samples without BCR. Table 1 has provided detailed information of each dataset.

The microRNA microarray datasets were obtained from GEO NCBI. All GEO series matrix

files (GSE), platform sets, and annotation files were downloaded and parsed using ‘GEOquery’

package of Bioconductor 3.2 in R version 3.2.2. To identify Differentially Expressed (DE) miR-

NAs in each individual dataset, moderated t-test was used.

Microarray meta-analysis

This meta-analysis was performed in accordance with the guidelines provided in [18]. First,

each individual dataset was preprocessed using the log2 transformation and normalization.

Then, any training and validation dataset (GSE26245 and GSE26247) was combined together.

Next, gene matching was done for all microRNA probes. When multiple probe sets matched

to an identical gene symbol, the probe that presented the greatest inter-quartile range (IQR)

was selected to represent the target gene symbol. After matching all probes to a common

microRNA gene symbol, differential expression analysis was performed with “MetaDE” pack-

age for each dataset independently using adjusted p-value < 0.05, based on the false discovery

rate by the Benjamini–Hochberg procedure [19] and moderated t-test.

Data integrity was checked for all datasets, and the differential expression meta-analysis

across recurrence and non-recurrence samples was carried out by p-values combination using

Adaptive Weight (AW) and Fisher methods.

Statistical analysis

The meta-analysis was performed using the ‘MetaDE’ package in R [20]. The moderated t-sta-

tistic was utilized to identify DE miRNAs in each individual dataset. The Fisher and AW were

Table 1. Datasets used in the meta-analysis.

Study

Set

GEO

Accession

Platform of

dataset

Type of Platform #of samples

(BCR+, BCR−)*
# of

miRNAs

References Model for generating

expression summaries

1 GSE55323 GPL10701 Agilent-021827 Unrestricted Human

15.7K v3.0 miRNA Microarray

40 (20, 20) 15744 [10] log2 transformed and

quantile normalized

2 GSE26245 GPL11350 Illumina Custom Prostate Cancer

DASL Panel miRNA

71 (29, 42) 733 [11] quantile-normalized

expression signal

GSE26247 GPL11350 Illumina Custom Prostate Cancer

DASL Panel miRNA

82 (29, 53) 1145 [11] quantile-normalized

expression signal

3 GSE65061 GPL17537 nCounter Human miRNA Expression

Assay, V2

43 (19, 24) 800 [17] normalized data

4 GSE62610 GPL18942 Applied Biosystems Taqman Low

Density Array Human microRNA Card

A+B Set v3.0

36 (22, 14) 536 [12] normalized data

5 GSE46738 GPL8786 [miRNA-1_0] Affymetrix miRNA Array 51 (34, 17) 847 [14] log scale RMA generated

*BCR+/−, biochemical disease recurrence status after RP (positive, negative).

https://doi.org/10.1371/journal.pone.0179543.t001
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used to combine the p-values from moderated t-test for meta-analysis. Fisher’s method is a

summation of–log (p-value) across studies. An adjusted p-value of< 0.05, based on the False

Discovery Rate (FDR) using the Benjamini–Hochberg procedure was used to select DE micro-

RNA genes.

Network analysis of common differentially expressed microRNA genes

Network-based analysis was performed using a MIROB web tool (http://mirob.interactome.

ru/) which has been designed to support analysis of microRNA expression data. MIROB

(microRNA OncoBase) scans the set of input miRNAs to build any cancer pathways, detects

key targets and Transcription Factors (TF) of candidate miRNAs, identifies any possible corre-

lation between key targets and TF of candidate miRNAs and other diseases, and makes patho-

genesis network.

Functional gene set enrichment analysis of common differentially

expressed microRNA genes

The TF and target genes of DE miRNAs were searched for the pathways in which they partici-

pate, using the EnrichR web-tool [21]. Specifically, Gene Ontology (GO) analysis, Kyoto Ency-

clopedia of Genes and Genomes (KEGG) pathway analysis, and Reactome pathway analysis

were performed. Moreover, in order to find metabolic pathways and biochemical reactions,

pathway commons analysis was performed for candidate DE miRNAs using a pathway com-

mons network visualizer (PCViz) web tool. To further investigate the function of the DE miR-

NAs, they were also mapped to the most significant KEGG pathway.

Diagnostic performance of common differentially expressed microRNA

genes

Based on the hypothesis that miRNA classifiers may improve sensitivity and specificity over

single markers, the diagnostic potential of 37 DE miRNAs classifier was trained and tested

in each dataset by performing receiver operating characteristic (ROC) analysis using the

normalized expression values of miRNA genes. Logistic regression classifier with leave-

one-out cross validation (LOOCV) scheme was used for this analysis. To show the discrimi-

natory power of 37 DE miRNAs for distinguishing recurrent PCa samples from non-recur-

rent samples, area under the ROC curve (AUC) was calculated using WEKA open source

machine learning software. Furthermore, the best subset of DE microRNAs which improves

the BCR prediction over original studies and 37 DE miRNAs set, was identified in each

dataset by using geometric particle swarm optimization (PSO). The LOOCV AUC of logis-

tic regression was utilized as the fitness function. Partial C4.5 decision tree (PART) was

used to find the relation and rules between the DE microRNAs in each dataset for biological

point of view.

Results

Identification of common differentially expressed microRNAs for prostate

cancer recurrence by meta-analysis

To identify a common DE microRNAs for PCa recurrence, five miRNA studies (Table 1) were

analyzed using “MetaDE” package in R. First, individual analysis was performed and the mod-

erated t—test was used to calculate the p-values which frequently used in meta-analysis. Then,

AW and Fisher’s method were utilized to combine the p-values and find miRNAs that were
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differentially expressed between samples with recurrence and non- recurrence (+/− BCR)

across all studies. From miRNA microarray meta-analysis, we identified a total of 37 DE miR-

NAs including 15 overexpressed and 22 under expressed microRNAs across at least two data-

sets under the significance threshold of adjusted p-value< 0.05. Fig 1 shows the number of

DE microRNAs against FDR obtained from individual analysis as well as meta-analysis. It is

clearly seen that the meta-analysis has detected more candidate markers. Fig 2 shows the heat

map of those 37 microRNAs. A complete list of DE microRNAs has been provided in Table 2.

The miR-449A, miR-484, and miR-579 were among the most significant overexpressed genes,

while miR-449B, miR-1, miR-137, miR-370, miR-375 were the most under expressed genes

across all miRNA datasets (See Table 2).

Identification of the TF and regulatory network for the differentially

expressed microRNAs obtained from meta-analysis

MIROB tool was used to perform regulatory microRNA network analysis to identify regulators

responsible for the observed patterns in miRNA meta-analysis studies. The interaction net-

work was constructed between DE microRNAs, TF and target genes associated with the com-

plete set of DE (Fig 3). Twenty four of DE miRNAs were found in the network. The details of

those miRNA gene networks have been given in Table 3. Key targets, ontology information on

target genes, TF and a descriptive analysis of expression of the DE miRNAs have been summa-

rized in this table. In addition, it shows that DE miRNAs are highly associated with colorectal,

PCa, breast, and gastric cancer.

Fig 1. P-value (or FDR) vs number of detected miRNAs for individual analysis as well as meta-analysis. In each individual dataset, moderated-t

statistics was used to generate p-values while adaptive weight and Fisher’s methods were utilized to combine these p-values for meta-analysis. This

figure is generated using the “MetaDE” package in R.

https://doi.org/10.1371/journal.pone.0179543.g001
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Further enrichment analysis for identification of overrepresented

biological pathways and gene ontology terms

We performed gene set enrichment analysis by EnrichR tool, using the complete list of key tar-

gets and TF of DE miRNAs. GO terms and biological pathways were significantly overrepre-

sented in the gene list if they showed an adjusted p-value < 0.05. Results for gene ontology and

enriched biological pathways (KEGG, Reactome) have been shown in Tables 4–6, respectively.

DE microRNAs in meta-analysis results were associated with the enriched pathways with

adjusted p-value < 0.05, including “MicroRNAs in cancer (hsa05206)”, “Pathways in cancer

(hsa05200)”, “Proteoglycans in cancer (hsa05205)”, “PI3K-Akt signaling pathway (hsa04151)”,

“Prostate cancer (hsa05215)” and “Signal Transduction (R-HSA-162582)”. The most impor-

tant GO terms associated with key targets and TF of DE miRNA genes included “regulation of

epithelial cell proliferation (GO: 0050678)”, “tissue morphogenesis (GO: 0048729)”, “regula-

tion of cellular response to stress (GO: 0080135)”, and “positive regulation of cellular compo-

nent movement (GO: 0051272)”.

To further investigate the function of DE miRNAs, we mapped them to the KEGG database.

Eleven of them (miR-1, miR-125A, miR-133A, miR-133B, miR-137, miR-199A, miR-221,

miR-28, miR-324, miR-363 and miR-449A) were found in the “miRNAs in cancer” pathway

(KEGG-ID: hsa05206; Fig 4) with adjusted P-value of 7.554e-15 (Table 5). Moreover, common

pathway analysis revealed that TCF3, MYC, MAX, CYP26A1, and SREBF1 significantly inter-

act with DE miRNAs (Fig 5).

Fig 2. The heat map of the actual expression profiles for the 15 up- and 22 downregulated DE microRNAs obtained from the meta-

analysis. The heat map is generated using the “MetaDE” package in R. The expression profiles greater than the mean are colored in red and those

below the mean are colored in green. 0: Non-recurrence; 1: Recurrence.

https://doi.org/10.1371/journal.pone.0179543.g002
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Table 2. The 37 shared significantly deregulated miRNAs identified in the meta-analysis.

down regulated GSE55323 GSE26245,

GSE26247

GSE65061 GSE62610 GSE46738 Merged data

P-value FC P-value FC P-value FC P-value FC P-value FC Meta. Stat Meta. P value Meta. FDR

miR-1 0.0039 -1.77 0.0872 -1.2 0.0125 1.72 0.799 -1.08 0.7681 1.07 25.6944 0.0039 0.0342

miR-133A 0.0256 -1.19 0.01529 -1.22 0.02678 1.62 0.5653 -1.17 0.1863 1.35 24.066 0.00245 0.040833

miR-133B 0.0041 -1.41 0.3924 1.1 0.0188 -1.23 0.9675 -1.01 0.5129 1.16 22.2085 0.0089 0.0294

miR-137 0.3072 1.08 0.032 -1.18 0.0091 -2.69 0.0129 -11.49 0.1852 -1.08 30.7251 0.0005 0.019

miR-221 0.00065 -1.51 0.7294 1.03 5.40E-05 2.33 0.506 1.22 0.099 -1.29 19.26 0.00074 0.0477

miR-340 0.8665 1.01 0.8959 1 0.6935 -1.04 0.31227 -1.31 <0.001 -1.89 20.7435 0.00044 0.04

miR-370 0.395 -1.12 0.1995 -1.26 0.1671 -1.3 0.0422 -2.15 0.0037 1.85 26.1757 0.0033 0.0342

miR-449B 0.0485 -1.2 0.2516 -1.14 NA NA 0.00318 -3.97 0.0676 1.39 22.501 0.000381 0.044

miR-489 0.2688 -1.08 0.9699 -1 0.6031 1.04 0.0164 -1.67 0.0179 -1.54 19.9117 0.0074 0.0455

miR-492 0.8683 1.11 0.0269 -1.07 0.0001 -1.4 0.8009 -7.16 0.7347 1.09 26.547 0.0012 0.025

miR-496 0.001 -1.69 0.1743 -1.17 0.6391 -1.05 0.04696 -3.48 0.05464 -1.28 26.5035 0.0003 0.008

miR-541 0.4518 1.06 NA NA 0.0042 -1.51 NA NA <0.001 -1.69 21.215 0.00032 0.05

miR-572 0.2212 -1.21 0.2326 1.08 0.005 -1.31 0.0531 -1.41 0.3638 1.25 24.4192 0.00446 0.0416

miR-583 0.5071 1.07 0.442 1.1 0.0089 -1.42 NA NA 0.00061 -1.51 27.205 0.00061 0.048

miR-606 0.3955 1.09 0.2885 -1.21 0.1067 -1.22 0.9715 -1.03 0.001 -1.78 22.7104 0.0042 0.05

miR-624 0.1552 1.12 0.6498 1.07 0.05 -1.26 0.0296 -1.98 0.0002 -1.48 20.58 0.00039 0.038

miR-636 0.6497 1.03 0.4884 1.05 0.8496 -1.03 <0.001 -2.06 0.5493 -1.09 95.9233 <0.001 <0.001

miR-639 0.004 -1.16 0.85501 1.04 0.2339 -1.16 0.3246 -1.2 0.1879 1.13 19.5331 0.0082 0.0455

miR-661 0.9746 1 0.11 -1.11 0.04517 -1.29 0.00053 -1.32 0.27696 1.06 23.87 0.00125 0.028

miR-760 0.4702 1.13 0.2285 -1.21 0.0003 -1.46 0.2971 -1.3 0.1529 1.19 24.3088 0.0022 0.035

miR-890 0.489 -1.14 NA NA 0.0442 -1.24 NA NA 0.0002 -1.86 23.07 0.00014 0.013

miR-939 0.8377 1.03 NA NA 0.0085 -1.32 NA NA 0.0288 1.46 16.61 0.0023 0.049

Up regulated P-value FC P-value FC P-value FC P-value FC P-value FC Meta. Stat Meta. P value Meta. FDR

miR-125A-5P 0.24 -1.13 0.632 1.17 0.0011 1.58 0.06081 -1.46 NA NA 22.9155 0.0028 0.038

miR-199A-3P 0.7639 -1.05 NA NA 0.00172 1.78 0.344 -1.3 NA NA 0.0016 0.00274 0.042

miR-28-5P 0.6761 -1.05 0.9039 -1.02 0.00041 1.47 0.3982 -1.22 NA NA 24.05 0.0024 0.04

miR-301B 0.7513 -1.01 NA NA 0.0049 1.59 0.0164 -1.76 0.717 -1.02 20.0917 0.0066 0.0455

miR-324-5P 0.147 -1.13 0.1263 -1.13 0.0001 1.55 0.6594 -1.13 NA NA 32.2291 0.00065 0.01625

miR-361-5P 0.3474 -1.08 0.3478 1.21 0.00083 1.76 0.5897 -1.14 NA NA 0.00077 0.00122 0.038

miR-363* 0.1773 1.14 0.2258 1.41 NA NA 0.00038 -1.95 NA NA 22.176 0.0005 0.044

miR-449A 0.0332 1.35 0.5059 1.08 0.6952 1.05 0.0007 -5.43 0.2048 1.38 26.5308 0.0031 0.0342

miR-484 0.152 1.3 0.2685 1.09 0.0049 1.19 0.1188 -1.42 0.1252 1.33 25.4578 0.0043 0.0342

miR-498 0.7157 1.03 0.2734 1.08 0.0147 1.37 NA NA 0.0013 1.66 25.0151 0.0019 0.035

miR-579 0.1908 -1.1 <0.001 1.38 0.0338 1.23 0.6918 -1.16 0.8592 1.01 29.3 0.00025 0.01625

miR-637 0.5443 1.07 0.6948 1.01 0.2487 -1.17 NA NA 0.0001 2.22 20.69 0.00055 0.0375

miR-720 0.0175 -1.69 NA NA 0.0008 1.76 NA NA 0.0043 1.96 25.13 7.30E-05 0.0125

miR-874 0.1547 -1.18 NA NA 0.00321 1.55 0.00017 -2.05 0.30732 1.29 34.7751 0.000178 0.0208

miR-98 0.80911 -1.02 0.6266 1.07 0.00016 1.77 NA NA 0.8112 1.03 23.903 0.0007 0.04625

The “moderated t-test” is used to perform individual analysis and calculate p-values. The corresponding p-values are adjusted, based on the false discovery

rate using the Benjamini–Hochberg procedure used to select DE miRNAs across at least two datasets.

“*”, denotes the mature miRNA sequence.

‘‘NA”, represents ‘‘not available”.

https://doi.org/10.1371/journal.pone.0179543.t002
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Diagnostic performance

We assessed the diagnostic potential of the 37-miRNA signature identified by meta-analysis.

ROC curve analysis gave AUCs from 0.55–0.84 for miRNAs set in each GEO dataset (See Fig

6). To investigate whether a miRNA signature may increase diagnostic accuracy over 37-

miRNA signature, we employed a soft computing technique (PSO/ logistic regression) and

trained and tested on miRNA expression profiles. The best subset of DE miRNAs was identi-

fied in each GEO dataset and shown in Table 7.

Notably, the discriminating power of the identified signatures in each GEO dataset is higher

than the case where 37-miRNA classifier was considered. For the best subset of DE miRNAs in

each GEO dataset, the ROC curve analysis gave AUCs from 0.75–0.97 (See Fig 7). The highest

diagnostic accuracy (97%) was given for GSE55323 with 11-miRNAs. Moreover, in order to

correctly classify BCR+ vs. BCR- samples, simple rules were extracted using a decision tree

classifier (Table 7). Among six GEO datasets, rules with high diagnostic potentials were

extracted for GSE46738 and GSE26247.

Finally, a comparison between the expressions of co-deregulated microRNAs in BCR+ vs.

BCR- was done by plotting boxplots (Fig 8). The boxplots were drawn for co-deregulated

microRNAs that are involved in the PCa pathway.

Fig 3. Network interrelation of DE microRNAs identified in the meta-analysis. Orange squares show TF. The circles show the targets of

DE microRNAs. Green and red lozenges show up regulated and down regulated microRNAs in various types of diseases. The network was

generated using a MIROB web tool to explore DE microRNAs relationships and collective functions.

https://doi.org/10.1371/journal.pone.0179543.g003
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Table 3. The details of 37 DE miRNAs that are involved in the interaction network, which has been drawn by MIROB.

MicroRNAs Transcription Factors Target genes Disease influence

(expression)

pathogenesis of a disease

miR-1 SNAI2 FOXP1, HDAC4, PDLIM5, PIM1,

CCND2, CXCL12, PNP, LASP1, SNAI2,

PAX7, KLF4, MET, FN1, PTMA,

TAGLN2, PAX3, GJA1, SOX6,

ATP6V1B2, LARP4, CNN3, HSPD1,

HSPA4, POGK, PGM2, SERP1, NETO2,

Srxn1, CAND1, ADAR, KIF2A, G6PD,

MEF2A, KCNJ2, PPP2R5A, HCN2,

TWF1, HCN4, KCNE1, ANXA2, ETS1

- Metastasis, Angiogenesis, growth,

Proliferation, Invasion, migration, Apoptosis,

cell cycle arrest, differentiation, WNT

signaling.

miR-125A NFATC1, TP53 RHOA, FYN, CDKN1A, EDN1, BAK1,

ARID3B, CD34, ERBB2, ERBB3,

NTRK3, ELAVL1, TNFAIP3, PDPN,

KLF13, CLEC5A, TRAF6, RAF1,

ZBTB7A, VEGFA

Colorectal cancer

(down)

Proliferation, Invasion, migration,

differentiation, cell cycle arrest,

Angiogenesis, survival, Sorafenib resistance,

myeloid, differentiation

miR-133A - CD47, LASP1, GSTP1, FSCN1, ARPC5,

TAGLN2, CASP9, KCNH2, CACNA1C,

HCN2, KCNQ1, EGFR, IGF1R, RFFL,

SP1, ABCC1, FOXC1, BCL2L1

Prostate Cancer

(down)

Proliferation, Invasion, migration, Apoptosis,

cell cycle arrest, colony formation, ERK

pathway (MAPK pathway), Liver metastasis,

Lung metastasis, tumor growth, Adriamycin

(Adr) resistance, 5-fluorouracil resistance,

cisplatin resistance

miR-133B TP63 BCL2L2, MCL1, FGFR1, FSCN1, MET,

PITX3, IGF1R, CXCR4, UTRN, SP1,

RHOA, MMP9, EGFR, TAGLN2, LASP1,

SIRT1, PPP2R2D, FOXC1, PTBP1

Colorectal cancer (up),

Prostate Cancer

(down), Gastric (down)

Proliferation, Invasion, migration, Apoptosis,

cell cycle arrest, WNT signaling, tumor

growth, cisplatin resistance, Cell growth

miR-137 FOXD3, HMGA1 CDK6, CDC42, SLC7A1, KDM1A,

CSMD1, C10orf26, CACNA1C, TCF4,

ESRRA, CTBP1, FMNL2, MIB1, GLIPR1,

CSE1L, PTGS2, MITF, PXN, PTBP1,

NF1, EPHA7, AKT2, ZBTB7A, HEY2,

KLF12, MYO1C, CUL4A, FOXO1, CDK6.

Colorectal cancer

(down), Gastric (down)

Metastasis, Angiogenesis, growth,

colonyformation, Proliferation, Invasion,

migration, Apoptosis, tumorgrowth,

Cellgrowth, cellcyclearrest, Stemness, cell

viability, aerobic glycolysis, cell cycle

miR-199A1 SRF, SPI1, SNHG12,

SNHG1, RELA

ST6GAL1, HSPA5, ATF6, ERN1, IKBKB,

CACUL1, CAV2, MTOR, LIF, RELA,

NFKB1, ATG7, CLTC, NLK, CDH1,

SLC27A1, MAP4K3, CD151, YAP1,

OSCP1, HIF1A, VEGFA, IGF1R, IGF2,

FLT1, KDR, HGF, MMP2, E2F3,

ACVR1B

- Proliferation, Invasion, migration, Apoptosis,

cell cycle arrest, Angiogenesis, colony

formation, ERK pathway (MAPK pathway),

tumor growth, cisplatin resistance, cell

viability, Chemoresistance, survival,

Sorafenib resistance, Autophagy, adhesion

miR-221 FOSL1, SNAI2, RELA,

JUN, ESR1, NCOR2,

NCOR1, TP53

CERS2, TRPS1, DICER1, KIT, NOS3,

BBC3, MBD2, CDKN1C, GJA1, ICAM1,

CDKN1B, DIRAS3, RAB1A, HECTD2,

TICAM1, PTPRM, MGMT, FOXO3,

RECK, MDM2, PTEN, SOCS1, CASP3

Breast cancer (up),

Colorectal cancer (up),

Gastric (up)

Proliferation, Invasion, migration, Apoptosis,

cell cycle arrest, Metastasis, Cell growth,

motility, cell cycle progression,

Chemoresistance, doxorubicin resistance,

Radioresistance, survival, Sorafenib

resistance

miR-28 STAT5B STAT5B, CDKN1A, CCND1, HOXB3,

NME1, N4BP1, OTUB1, TEX261,

MAPK1, E2F6, MPL, BAG1, MAD2L1,

RAP1B, IL34, IGF1

Colorectal cancer

(down)

Proliferation, Invasion, migration, Apoptosis,

cell cycle arrest, Metastasis, ERK pathway

(MAPK pathway), P38 signaling, AKT

signalling, PI3K signaling

miR-301B - FOXF2 - -

miR-324 - SMO, GLI1, WNT2B, ETS1, SP1 - Proliferation, Invasion, migration, cell cycle

arrest, Metastasis, Radioresistance

miR-340 RELA RELA, MET, ROCK1, PTBP1, SOX2,

MITF, RHOA, PLAT, DMD, JAK1,

CCNG2

Gastric (up) Proliferation, Invasion, migration,

differentiation, cell cycle arrest, Metastasis,

tumor growth, Cell growth, stemness, aerobic

glycolysis, cell viability, cell cycle

progression, Senescence, JAK/STAT

signaling

(Continued )
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Table 3. (Continued)

MicroRNAs Transcription Factors Target genes Disease influence

(expression)

pathogenesis of a disease

miR-361 - STAT6, VEGFA, TWIST1, WT1, SH2B1,

CXCR6, SND1, PHB

- Proliferation, Invasion, migration, Apoptosis,

Metastasis, colony formation, tumor growth,

Cell growth, stemness

miR-363 - CDKN1A, S1PR1, BCL2L11, CASP3,

CD276, FBXW7, MCL1

- Proliferation, Apoptosis, cisplatin resistance,

cell viability, Chemoresistance, survival

miR-370 - CPT1A, TGFBR2, FOXM1, FOXO1,

ENG

Gastric (up) colony formation, Proliferation, Apoptosis

Chemoresistance, colony formation,

cisplatin, resistance

miR-449A E2F1, EZH2, MYCN E2F3, CDC25A, MET, SIRT1, CDK6,

BCL2, CCND1, CRHR1, LEF1, KLF4,

NOTCH1, HDAC1, AR, IL6R, SOX4,

CREB5, FOS, MYC

Prostate Cancer

(down), Gastric (down)

Metastasis colony, formation, Proliferation,

Invasion, migration, Apoptosis, motility, EMT,

cell cycle arrest, cisplatin resistance,

differentiation, Cell growth, cell viability,

Radioresistance, Senescence, Antiapoptosis

miR-449B E2F1, AR CDK6 CDC25A, HDAC1, SOX4 - Proliferation, migration Apoptosis, Cell

growth colony formation, cell viability

miR-489 - SMAD3, MMP7, PROX1 - Proliferation, Invasion, migration, Lung

metastasis, Adriamycin (Adr) resistance,

EMT

miR-492 - BSG, SOX7 - Proliferation, Oxaliplatin, resistance

miR-498 VDR, NCOA3 TERT, ERBB2 - Apoptosis, tumor growth, Cell growth

miR-661 CEBPA STARD10, PVRL1, MTA1, MCL1,

MDM2, MDM4, PTEN

- Proliferation, Invasion, migration, cell cycle

arrest, Metastasis, tumor growth, motility,

EMT

miR-760 - CSNK2A1, HIST1H3D, HIST1H2AD,

PHLPP2

- Proliferation, colony formation, Senescence

miR-874 - AQP3, PIN1, MAGEC2 Gastric (down) Proliferation, Invasion, Apoptosis, colony

formation, Cell growth, mTOR signaling

miR-939 - APC2, NGFR - Proliferation, WNT signaling

miR-98 EZH2 ACVR1B, MMP11, EZH2, SALL4,

IGF2BP1, CTHRC1

Gastric (up) Angiogenesis, growth, Proliferation, Invasion,

migration, Apoptosis, EMT, cell cycle arrest,

WNT signaling,

https://doi.org/10.1371/journal.pone.0179543.t003

Table 4. Top enriched gene ontology (GO) biological process identified by functional analysis of the target genes and TFs of the DE microRNAs in

the meta-analysis.

GO-ID Description Overlap* Adjusted P-value

GO:0050678 regulation of epithelial cell proliferation 32/258 7.430E-18

GO:0048729 tissue morphogenesis 35/358 1.191E-16

GO:0080135 regulation of cellular response to stress 36/404 4.884E-16

GO:0051272 positive regulation of cellular component movement 31/296 1.209E-15

GO:0070482 response to oxygen levels 29/259 2.118E-15

GO:2001233 regulation of apoptotic signaling pathway 33/356 2.466E-15

GO:2000147 positive regulation of cell motility 30/287 2.699E-15

GO:0040017 positive regulation of locomotion 30/304 1.184E-14

Gene sets functional analysis was performed using extended libraries of the EnrichR tool.

* Overlap: indicates the number of hits from the meta-analysis compared to each curated gene set library.

https://doi.org/10.1371/journal.pone.0179543.t004
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Discussion

Various miRNAs are DE in individuals with recurrent PCa, and identifying the most impor-

tant miRNAs and pathways associated with the disease is very important. A meta-analysis of

multiple miRNA datasets combines the generated p-values of individual studies, making the

identification of DE microRNA genes more reliable.

In this study, we attempted to identify common miRNAs underlying recurrent PCa using

meta-analysis of six publicly available microRNA datasets to focus deeply on identifying DE

microRNA genes and risk factors shared between them.

By meta-analysis of six published miRNA expression datasets of recurrent PCa, we identi-

fied a common signature of a total of 37 DE microRNAs including 15 overexpressed and 22

under expressed microRNA genes across at least two datasets under the significance threshold

of adjusted p-value < 0.05 in recurrence compared to non-recurrence samples. The identified

37 microRNAs in this meta-analysis were discovered as DE microRNAs in at least one dataset

in the prior individual analysis. Of the 37 DE miRNAs associated with BCR after RP (Table 2),

all except miR-606 have been reported to be associated with cancer in general [22–35]. Fifteen

miRNAs (miR-1, miR-133A, miR-133B, miR-449A, miR-137, miR-370, miR-221, miR-449B,

miR-125A-5P, miR-199A-3P, miR-301B, miR-340, miR-361, miR-363, miR-98) have been

Table 5. Top enriched KEGG pathways identified by functional analysis of the target genes and TFs of the DE microRNAs in the meta-analysis.

Pathway ID Name Overlap* Adjusted P-value

hsa05206 MicroRNAs in cancer 56/297 3.476E-45

hsa05200 Pathways in cancer 55/397 4.152E-37

hsa05205 Proteoglycans in cancer 33/203 4.675E-24

hsa04151 PI3K-Akt signalling pathway 38/341 7.293E-22

hsa05215 Prostate cancer 23/89 1.259E-21

hsa05212 Pancreatic cancer 20/66 2.252E-20

hsa05218 Melanoma 19/71 2.982E-18

hsa05220 Chronic myeloid leukemia 19/73 4.676E-18

hsa04520 Adherens junction 19/74 5.524E-18

hsa04933 AGE-RAGE signalling pathway in diabetic complications 21/101 7.221E-18

Gene sets functional analysis was performed using extended libraries of the EnrichR tool.

* Overlap: indicates the number of hits from the meta-analysis compared to each curated gene set library.

https://doi.org/10.1371/journal.pone.0179543.t005

Table 6. Top enriched reactome pathways identified by functional analysis of the target genes and TFs of the DE microRNAs in the meta-analysis.

Pathway ID Name Overlap* Adjusted P-value

R-HSA-162582 Signal Transduction 100/2465 4.220E-22

R-HSA-1266738 Developmental Biology 46/786 2.574E-14

R-HSA-1236394 Signalling by ERBB4 29/330 5.348E-13

R-HSA-166520 Signalling by NGF 33/450 8.395E-13

R-HSA-180292 GAB1 signalosome 19/125 1.065E-12

R-HSA-198203 PI3K/AKT activation 19/125 1.065E-12

R-HSA-5654695 PI-3K cascade:FGFR2 18/122 4.702E-12

R-HSA-1257604 PIP3 activates AKT signalling 18/122 4.702E-12

Gene sets functional analysis was performed using extended libraries of the EnrichR tool.

* Overlap: indicates the number of hits from the meta-analysis compared to each curated gene set library.

https://doi.org/10.1371/journal.pone.0179543.t006
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Fig 4. The most significant enriched KEGG pathway for the DE microRNAs identified from meta-analysis. The microRNAs in the red

box indicates co-deregulated microRNA genes in our list. The DE microRNAs identified from meta-analysis were mapped to “microRNAs in cancer”

pathway (KEGG-ID: hsa05206) by using the KEGG mapper web tool.

https://doi.org/10.1371/journal.pone.0179543.g004
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previously linked to PCa [36–46] and of those, miR-1, miR-133B, miR-449B, and miR-221

have been described as predictive markers in PCa recurrence after RP [10, 12,13].

Among the overexpressed DE microRNAs, miR-449A and miR-579 had high combined P-

values across all studies.

Tumor-suppressive miR-449A targets HDAC1 and induces growth arrest in PCa [37]. It

also causes Rb-dependent cell cycle arrest and senescence in PCa cells (Table 3) [47]. For a pre-

viously poorly characterized miRNA, namely miR-579, no PCa related functions have been

reported. MiR-579-3p is only known as a master regulator of melanoma progression and drug

resistance [48].

Among the under expressed DE microRNAs mir-496, miR-137, miR-1, and miR-370 had

the highest combined P-values across all studies.

MiR-496 is also a previously poorly characterized miRNA, which has no functions in PCa.

Methylated DNA binding domain protein 2 (MBD2) is known as the only TF of miR-496,

which coordinately silences gene expression through activation of the miR-496 promoter in

breast cancer cell line [49].

Methylated mir-137 host gene is promising diagnostic and/or prognostic biomarker of

PCa. The epigenetic silencing of miR137 is an important event in promoting androgen signal-

ing during prostate carcinogenesis and progression. MiR-137 suppresses cell growth in several

cancers such as ovarian, colorectal, and gastric [50].

MiR-1 is known as a biomarker of recurrence PCa, which is in agreement with the findings

in present meta-analysis study. MiR-1 functions as a tumor suppressor which suppresses can-

cer cell proliferation, metastasis, angiogenesis, invasion, cell cycle arrest, WNT signaling and

Fig 5. Common pathway analysis for DE microRNAs identified from meta-analysis. This analysis revealed that TCF3, MYC, MAX, CYP26A1

and SREBF1 are significantly interacting with candidate miRNA genes.

https://doi.org/10.1371/journal.pone.0179543.g005
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promotes apoptosis by ectopic expression. This miRNA is a potential prognostic biomarker of

hepatocellular carcinoma (HCC) and colorectal cancer. The expression of miR-1 alters in sev-

eral cancers such as lung, gastrointestinal, prostate, bladder, head and neck, and renal cancer

[51].

MiR-370 plays an important role in the proliferation of human PCa cells by directly sup-

pressing the tumor suppressor FOXO1 [39].

PPI Hub Proteins analysis of the TF and target genes of DE MicroRNAs was conducted for

prioritization of the most important hub genes using the EnrichR web tool. CTNNB1 was the

most important hub genes among TF and target genes of DE microRNAs across six microar-

ray studies.

CTNNB1 (Catenin Beta 1) functions as a Key downstream component of the canonical

WNT signaling pathway. WNTs and their downstream effectors have crucial roles in the regu-

lation of various processes that are important for cancer progression, including tumor growth,

tumor initiation, differentiation, cell senescence, cell death, differentiation and metastasis [52].

Nuclear accumulation and abnormal stabilization of CTNNB1 as a consequence of missense

mutations occurs at a high frequency in a variety of epithelial cancers such as colorectal cancer,

medulloblastoma, ovarian cancer, and pilomatrixoma. Upregulation of CTNNB1 is also asso-

ciated with PCa [53].

To elucidate the role of DE microRNAs obtained from the meta-analysis, we performed

pathway analysis and gene set enrichment analysis for TF and target genes of DE miRNAs

Fig 6. Receiver operating characteristics (ROC) analysis of 37-miRNA signature in biochemical disease recurrence vs. the non-recurrence

samples using each GEO datasets. The DE miRNAs are depicted in Table 2. AUC; area under the ROC curve.

https://doi.org/10.1371/journal.pone.0179543.g006
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using the EnrichR web tool. The most enriched pathway and Gene Ontology (GO) term

among the TF and target genes of DE miRNAs were “MicroRNAs in cancer (hsa05206)”,

“Pathways in cancer (hsa05200)”, Signal Transduction (R-HSA-162582)”, “regulation of epi-

thelial cell proliferation (GO: 0050678)” and “tissue morphogenesis (GO: GO:0048729)”.

Common pathway analysis revealed that TCF3, MYC, MAX, CYP26A1 and SREBF1 were

the most significant proteins associated with DE miRNA genes. Of note, these proteins were

not identified as TF and target genes of DE microRNAs.

Previous studies have reported that the diminished activity of TCF3 plays a role in lym-

phoid malignancies, and up-regulation of it is involved in the development and progression of

colorectal cancer. TCF3 is regulated by androgens and acts as a tumor promoter in PCa [54].

Overexpression, Mutations, translocation and rearrangement of MYC is related to several

cancers such as breast, PCa, gastrointestinal, melanoma, and small cell lung cancer [55].

MAX is known as a tumor suppressor in renal oncocytomas and small cell lung cancer. The

mutation of it has been identified in gastrointestinal stromal tumors [56]. High expression of

CYP26A1 is associated with several cancers such as breast, head and neck, colorectal and ovar-

ian. CYP26A1 is a methylation marker of PCs associated with ERG-positive cancers [57].

Sterol regulatory element-binding protein1 (SREBP1) is a key regulatory factor that con-

trols lipid homeostasis. SREBP1 is a critical link between oncogenic signaling and tumor

metabolism. The overexpression of SREBF1 is related to a variety of cancers such as PCa,

breast, head and neck, colorectal, endometrial, glioblastoma, pancreatic, and ovarian [58].

Table 7. Best subset, PART’s decision rules and diagnostic potentials for the DE microRNAs identified from meta-analysis in 6 GEO datasets.

GEO

Accession

Best subset Extracted rules by PART PART’s AUC

(95%CI")

PART’s F-

measure

GSE55323 miR-1, miR-221, miR-28-5P, miR-301B, miR-

324-5P,miR-370,miR-449A, miR-606, miR-624,

miR-661, miR-98

1. IF miR-496 > 8.13 AND mir-1 >9.67 AND: BCR- (11.0)

2. IF miR-137 > 6.36 AND miR-449A� 7.10 AND mir-

137� 6.82: BCR- (11.0/2.0)

0.75 0.72

GSE26245 miR-370, miR-492, miR-579, miR-639, miR-98 1. IF miR-579� 9.401: AND miR-639� 9.120: BCR-

(46.0/10.0)

2. IF miR-324-5P > 12.032: BCR+ (17.0/1.0)

3. IF mir-639 >9.212: BCR- (5.0)

0.60 0.78

GSE26247 miR-1, miR-133A, miR-137, miR-363* 1. IF miR-363*� 8.89 AND miR-636� 9.34: BCR-

(43.0/4.0)

2. IF miR-363* > 8.44 AND miR-661 > 12.95: BCR+

(20.0)

0.804 824

GSE65061 miR-1, miR-221-3P, miR-301B, miR-489, miR-

637, miR-939,miR-98

1. IF miR-221-3P� 6.97 AND miR-489 > 5.36 AND miR-

98� 7.84 AND miR-939> 3.87 AND miR-637� 4.17:

BCR- (14.0)

2. IF miR-301B > 3.97 AND miR-221-3P > 6.029: BCR+

(21.0)

3. IF miR-1 > 5.23: BCR- (6.0)

0.734 0.744

GSE62610 miR-449A, miR-496, miR-636, miR-492 1. IF miR-449A > 16.80 AND miR-636� 17.73 AND

miR-496� 20.304: BCR+ (12.0/2.0)

2. IF miR-449A >16.804: BCR- (13.0/1.0)

0.763 0.833

GSE46738 miR-340,miR-541, miR-624 1. IF miR-340� 2.13 AND miR-541� 3.107: BCR+

(33.0/1.0)

2. IF miR-541 > 1.374: BCR- (16.0)

0.8823 0.865

" CI: confidence interval.

https://doi.org/10.1371/journal.pone.0179543.t007
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To understand the association of the DE microRNAs list with the most significant target

genes and transcription factors, we conducted a regulatory gene network analysis using the

MIROB web tool. CDKN1A and LASP1 were amongst the most significant target genes associ-

ated with the DE microRNAs.

Cyclin-dependent kinase inhibitor 1 (CDKN1A) also is known as P21 is involved in

p53/TP53 mediated inhibition of cellular proliferation in response to DNA damage and its

overexpression results in cell cycle arrest and autophagy cell death. The expression of this gene

is tightly controlled by the tumor suppressor protein p53 in a human brain tumor cell line

[59]. The CDKN1A genotypes CT and TT are associated with an increased risk of advanced

prostate carcinoma compared with the CC genotype [60]. Elevated p21 levels are associated

with higher Gleason score, and increased PCa recurrence [61].

LIM and SH3 protein 1 (LASP1), a promoter of cell proliferation and migration, play a sig-

nificant role in cancer development and progression. LASP-1 is involved in numerous biologi-

cal and pathological processes. It plays an important role in the regulation of dynamic actin-

based and cytoskeletal activities. LASP-1 is highly expressed in the central nervous system and

contributes to the formation and progression of prostate cancer through a NF-KB pathway

[62].

RELA, SNAI2, and TP53 were among the most significant transcription factors associated

with the DE microRNAs.

Fig 7. ROC analysis of the best subset of the DE miRNAs in biochemical disease recurrence vs. the non-recurrence samples using each GEO

datasets. The best subset of DE miRNAs is shown in the first column of Table 3 which has been found by using soft computing technique (PSO/ logistic

regression).

https://doi.org/10.1371/journal.pone.0179543.g007
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RELA also known as NF-kappa-B is a ubiquitous transcription factor involved in many bio-

logical processes such as immunity, inflammation, cell growth, differentiation, tumorigenesis

and apoptosis. Zinc finger protein (SNAI2) is known as a transcriptional repressor that modu-

lates both activator-dependent and basal transcription. SNAI2 regulates cell proliferation and

invasiveness of metastatic PCa cell lines. Cellular tumor antigen p53 (TP53) acts as a tumor

suppressor in many tumor types; induces growth arrest or apoptosis depending on the physio-

logical circumstances and cell type.

Moreover, network analysis showed that ten of the 37 DE miRNAs (miR-125A, miR-

133B, miR-137, miR-221, miR-28, miR-340, miR-370, miR-449A, miR-874, and miR-98)

have an established prognostic significance in other cancers such as colorectal, gastric, and

breast. This network also indicated that eight of 37 DE miRNAs (miR-133A, miR-133B, miR-

137, miR-199A1, miR-340, miR-361, miR-498, and miR-661) can be actively involved in

tumor growth.

In this study, we also built new miRNA diagnostic classifiers in each GEO datasets based on

best subset of DE miRNAs in the meta-analysis. These classifiers predicted BCR after RP with

very high accuracy. The highest diagnostic accuracy (97%) was given for GSE55323 with

Fig 8. A comparison between expression of co-deregulated microRNAs in recurrent vs. non-recurrent PCa samples. Those miRNAs

that were selected for analysis are depicted above the box plots (Table 3). Lines within the boxes indicate median values; whiskers—min and

max for miRNA values. BCR+/ -, biochemical disease recurrence status (positive, negative).

https://doi.org/10.1371/journal.pone.0179543.g008
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11-miRNAs. The performance of our 11-miRNA diagnostic classifier (97%) exceeded that of a

2-miRNA classifier (miR-1+miR-133B; AUC: 71%) developed earlier by Karatas et al. [10].

One miRNA (miR-1) is shared between these classifiers, further supporting the validity of our

findings.

Briefly, we used “MetaDE” package to perform a meta-analysis, which provides options for

gene matching across studies, gene filtering before meta-analysis and functions for conducting

several major meta-analysis methods such as Fisher and AW for differential expression analy-

sis. Then performed the GO enrichment analysis, pathway analysis, network analysis, and

ROC analysis.

In conclusion, this is the first report that provides biological insights on common micro-

RNA expression signatures for recurrent PCa after RP. The candidate miRNAs are worthy to

be validated in the wet lab.
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