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Abstract

Background: Abaloparatide is a parathyroid hormone receptor agonist that increases

bone formation and reduces vertebral and nonvertebral fracture risk in women with post-

menopausal osteoporosis. Animal studies indicate abaloparatide stimulates vertebral bone

formation and enhances bony bridging and biomechanical stability of fracture calluses.

Aims: The current study is evaluating the potential utility for abaloparatide as an

adjunct therapy for spinal fusions.

Material and Methods: The effects of 14 or 28 days of daily subcutaneous injections

of abaloparatide (20 μg/kg/d) or vehicle were evaluated in 32 male Sprague-Dawley

rats starting 1 day after noninstrumented posterolateral fusion (PLF) with bone auto-

graft. Fusion mass microarchitecture was analyzed by micro-computed tomography

(micro-CT) and serum markers of bone formation and bone resorption were evalu-

ated. Motion segments were scored in a blinded manner as fused or unfused by post-

mortem radiography and manual palpation.

Results: Abaloparatide-treated rats showed higher bone formation (serum osteocalcin)

at day 14 and 28 compared with vehicle controls, without increases in the bone resorp-

tion marker serum TRACP-5b. Micro-CT showed greater trabecular number in fusion

masses from the abaloparatide group vs vehicle controls at day 14. Manual palpation

and radiography indicated no fusions in either group at day 14, whereas 25% of vehicle-

treated rats and 50% of abaloparatide-treated rats had bilateral fusion at day 28.

Discussion and Conclusion: In summary, this rat PLF model showed that

abaloparatide treatment was associated with higher levels of the bone formation

marker osteocalcin, improved fusion mass architecture, and a non- significant 2-fold

higher fusion rate compared with vehicle.
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1 | INTRODUCTION

Spinal fusion is a common procedure for patients with degenerative

disc disease, spinal stenosis, spondylolisthesis, spondylosis, spinal frac-

tures, scoliosis, and kyphosis.1 Successful fusion surgery creates an

environment that allows endochondral and intramembranous ossifica-

tion processes to form a solid stabilizing bony bridge across dec-

ompressed segments,2-6 but several biological and biomechanical

challenges can hinder formation of this bridge.7 Iliac crest bone grafting

(ICBG) is the gold standard adjuvant biomaterial for spinal fusion, but

fusion failure leading to nonunion or pseudoarthrosis is not uncommon

even with ICBG.5 Fusion failure can lead to poor clinical outcomes and

may require costly and morbid revision surgery.8 Risk factors for fusion

failure include multilevel fusions, older age, smoking, diabetes, and oste-

oporosis.5 Osteoporosis is relatively common in individuals undergoing

spinal fusion, especially postmenopausal women,9 which can contribute

to complications, such as pseudoarthrosis, hardware failure, graft or

interbody cage subsidence, adjacent-level disc degeneration, and verte-

bral fractures.10 BMP-2 delivered in a collagen sponge (Infuse) within

certain interbody devices is approved as an alternative to ICBG for

anterior lumbar interbody fusions.11 However, BMP-2 does not

improve vertebral bone mass and is sometimes associated with verte-

bral osteolysis, endplate erosion, ectopic bone formation, graft and cage

subsidence, and other complications.12,13

Systemically administered osteoporosis therapies, including

antiresorptive bisphosphonates and the bone-forming parathyroid

hormone receptor (PTHR) agonist teriparatide, have been investigated

as adjuvant therapies for spinal fusion.14 Bisphosphonates and ter-

iparatide increase spine bone mineral density (BMD) in patients with

osteoporosis15,16 and have been tested in patients undergoing spinal

fusion for their effects on arthrodesis, vertebral bone density, adja-

cent vertebral fractures, instrumentation failure, fusion mass catabo-

lism, and graft or cage subsidence.10 A study of individuals

undergoing interbody lumbar fusion showed favorable effects of

bisphosphonates on bridging bone formation, cage subsidence, and

vertebral fracture risk, though clinical assessments showed no

improvements.17 Bisphosphonates generally show neutral effects on

fusion rates in animals.14 Bone-forming agents may offer advantages

over antiresorptives for spinal fusion.14,18 High-dose teriparatide pro-

motes fusion mass osteogenesis and chondrogenesis in animals, lead-

ing in some cases to enhanced arthrodesis.4,19,20 A retrospective

clinical study of patients undergoing instrumented fusion for osteopo-

rotic vertebral fracture showed a lower rate of mechanical complica-

tions in those receiving postoperative teriparatide therapy vs those

receiving bisphosphonate therapy.21 Prospective clinical trials in

women with postmenopausal osteoporosis (PMO) undergoing

instrumented posterolateral lumbar fusion (PLF) show some beneficial

effects of teriparatide vs bisphosphonates when treatments began

2 months preoperatively and continued postoperatively.22,23 How-

ever, a placebo-controlled trial in patients with PMO undergoing non-

instrumented PLF showed no radiographic or clinical improvements

with teriparatide initiated immediately postoperatively.24 Teriparatide

stimulates bone resorption in patients with osteoporosis,15 an effect

also observed in animals undergoing spinal fusion,25,26 and this

response may offset some of the benefits its bone-forming effect

would otherwise have on vertebral BMD, the fusion mass, and

arthrodesis.

Abaloparatide is selective PTHR agonist approved in the US for

the treatment of PMO. Abaloparatide increases bone formation in

women with PMO, leading to greater increases in spine BMD vs ter-

iparatide during the first year of therapy and an overall 86% reduction

in vertebral fracture risk vs placebo.27 These results indicate a sub-

stantial effect of abaloparatide on vertebral bone mass that may be

relevant to patients undergoing spinal fusion. Abaloparatide-treated

women with PMO show lesser increases in systemic bone resorption

markers vs teriparatide treatment,27,28 and several animal studies

show that abaloparatide increases vertebral bone formation, density,

and strength without increasing bone resorption parameters.29-32

Abaloparatide also improved the early bridging and biomechanical sta-

bility of long bone fractures in rats, with bridging showing significant

relationships with the extent of callus chondrogenesis and osteogene-

sis.33 Spinal fusion is associated with chondrogenesis and

osteogenesis,2,3,6 and chondrogenic responses have been demon-

strated with high-dose teriparatide therapy in spinal fusion models3,4

and with abaloparatide in mesenchymal cell cultures.34 The current

study is the first to examine the effects of abaloparatide as a postop-

erative adjuvant therapy in animals undergoing noninstrumented PLF.

2 | MATERIALS AND METHODS

2.1 | Animal care and surgery

All animal procedures and activities were approved by the University

of Iowa's Institutional Animal Care and Use Committee (IACUC) and

performed in an AAALAC-accredited vivarium at the Bone Healing

Research Lab and Iowa Spine Research Lab (Iowa City, Iowa, USA).

Thirty-two 8-week-old male Sprague-Dawley rats were obtained from

Covance and pair-housed in standard Thorne racks. Animals were ear-

tagged and microchipped and underwent physical examinations and

daily cage-side observation over a 7 day acclimation period. Animals

were weighed before surgery and weekly thereafter. Antibiotic

(Enroflaxacin 5 mg/kg) was administered intramuscularly prior to sur-

gery. Serum was prepared from saphenous vein blood obtained prior

to surgery (day 0) and 14 and 28 days postoperatively.

All surgeries were performed by the same surgeon (Douglas

C. Fredericks) who was blinded to postoperative treatment group

assignments. Preoperatively, animals were anesthetized with iso-

flurane and fur was removed over the dorsal surgical region. Exposed

skin was scrubbed with chlorhexidine soap and wiped with isopropyl

alcohol, and chlorhexidine was applied prior to creating a dorsal

�5 cm long mid-line incision from L1 to the sacrum. Fascia and mus-

cles were incised over the L1-L6 transverse processes, and the medial

third-to-half of L4 and L5 transverse processes were decorticated

with a high-speed burr. To obtain bone autograft, bupivacaine (1 mg,

0.25%, 0.1 mL per site) was applied to the fascia above the iliac crest
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followed by incision and harvesting of �0.4 cc of corticocancellous

bone graft from each iliac crest. This graft was combined with bone

harvested from L4-L5 spinous processes for a total of �1.0 cc of auto-

graft per animal. Autograft was morselized with a rongeur and � 0.5 cc

was applied to each of the left and right L4-L5 paraspinal beds between

their transverse processes. Autograft was placed along the medial third-

to-half of the transverse processes, primarily toward the midline, with

no direct contact with vertebral bodies. Fascia and skin were closed

with 4-0 Vicryl sutures and the skin stapled closed. Postoperative anal-

gesics were administered per IACUC protocol, and animals were

allowed free cage movement. All animals were closely observed twice

per day over the subsequent 4 weeks and given additional pain medica-

tion as indicated by mobility, diet, disposition, and general activity.

Starting 1 day postoperatively, rats received daily subcutaneous

injections of sterile saline (vehicle, n = 16) or abaloparatide at 20 μg/

kg/d (n = 16), with abaloparatide doses adjusted weekly based on

body weight. Assignments to treatment groups were determined by a

random number generator. Eight animals from each treatment group

were euthanized 14 days after surgery and the remaining animals

were euthanized 28 days after surgery with Euthasol (120 mg/kg iv).

Necropsies included examination of all external surfaces, orifices, cra-

nial, thoracic, abdominal, and pelvic cavities including contents. The

entire lumbar column was removed en bloc and soft tissues were

removed from the surgically treated spinal unit. The grafted site was

examined for graft migration, infection, and soft tissue abnormalities.

2.2 | Bone turnover markers

Serum concentrations of the bone formation marker osteocalcin were

determined by the Immutopics Rat Osteocalcin ELISA Kit (Quidel).

Serum concentrations of the bone resorption marker tartrate-resistant

acid phosphatase isoform 5b (TRACP-5b) were measured with the

RatTRAP ELISA (IDS).

2.3 | Micro-computed tomography analyses

The excised lumbar spine was scanned with a SkyScan 1176 Micro-

CT unit. Thresholding was performed manually based on the visualiza-

tion of host cancellous bone. Micro-computed tomography (micro-CT)

thresholding, analyses, and data collection were performed by a staff

engineer who was not involved in the in vivo phase of the study. A

region of interest comprising the entire fusion mass including trans-

verse processes was used to calculate total bone volume (BV), trabec-

ular number (Tb.N), and trabecular thickness (Tb.Th) for the left and

right sides of each grafted site, results of which were averaged.

2.4 | Radiography

Anesthetized rats were radiographed dorsoventrally 2 and 4 weeks

postoperatively using a Quantum DR Digital X-ray unit and

Carestream Image software (Crestream Health, Inc, Rochester, NY,

USA). Three blinded reviewers evaluated fusion qualitatively (fused or

unfused) on each of the left and right sides of the motion segment,

with fusion defined as the presence of continuous bridging bone

spanning the L4 and L5 transverse processes. To assure proper

blinding, none of the three reviewers were involved in the administra-

tion of abaloparatide or vehicle. The plain films were also assessed

qualitatively for graft migration, osteolysis, fracture, and other adverse

events.

2.5 | Manual palpation for fusion status

Stiffness of the motion segment was assessed by manual palpation

according to accepted practice, as defined in prior investigations.35

Two independent observers who were blinded to treatment allocation

graded motion segments as fused if there was no detectable motion

at the disc space in flexion or extension, and unfused if motion was

detected. Neither observer was involved in the administration of

abaloparatide or vehicle.

2.6 | Statistical analyses

Results are expressed as group means and SE. Bone turnover marker

and micro-CT results were analyzed using multiple two-tailed t-tests

assuming unequal variance. Holm-Sidak method was used to correct

for multiple comparisons, with an adjusted P value of <.05 indicating

statistical significance. All statistical analyses including linear regres-

sions were performed using GraphPad Prism V8.1.1 (GraphPad Soft-

ware Inc., San Diego, CA, USA).

3 | RESULTS

All animals in the day 28 groups survived in good health until sched-

uled necropsy. Two animals from the day 14 vehicle group and one

from the day 14 abaloparatide group were euthanized 1-2 days after

surgery due to graft harvesting complications, leaving an n of 6 and

7 animals in the day 14 vehicle and abaloparatide groups, respectively.

Rats were alert and eating within 3 hours of surgery, and there were

no complications related to abaloparatide administration, including no

effect on body weight. All necropsies were unremarkable, with no

adverse changes such as inflamed, necrotic, or devascularized tissue

surrounding the grafted levels.

The bone formation marker serum osteocalcin was significantly

higher in the abaloparatide vs vehicle groups at days 14 and

28 (Table 1). The bone resorption marker serum TRACP-5b was simi-

lar in abaloparatide and vehicle groups at days 14 and 28 (Table 1).

3D micro-CT assessment of fusion masses indicated similar bone

volume (BV) in the two treatment groups at day 14. At day 28, the

abaloparatide group showed a trend toward greater BV vs vehicle

(multiplicity-adjusted P = .109; Table 2). Trabecular number was

ARLT ET AL. 3 of 9



significantly higher in the abaloparatide group vs vehicle controls at

day 14 (adjusted P = .002), with a trend to higher Tb.N at day 28

(adjusted P = .081). Trabecular thickness also showed a trend to

higher values in the abaloparatide group vs vehicle controls at day 28

(adjusted P = .095, Table 2).

Parasagittal 2D micro-CT reconstructions of fusion masses were

also generated across the transverse processes spanning the motion

segment for unblinded visual evaluation of fusion masses. Figure 1

shows reconstructions for the right side of all day 28 animals. Suc-

cessful fusion is visually evident in 2 of 8 vehicle controls based on

the continuous presence of mineralized bone between the grafted

transverse processes. Most of the vehicle control samples show resid-

ual autograft particles in the form of dense white bone fragments that

are largely unincorporated into the fusion mass. Fusion is evident by

micro-CT in 4 of the 8 animals in the abaloparatide group, with several

cases showing residual graft particles (Figure 1). Figure 2 provides 3D

reconstructed micro-CT images from representative unfused motion

segments at day 14, and successfully fused segments at day 28. The

larger fusion mass in the abaloparatide vs vehicle sample at day 28 is

consistent with the 19% greater average fusion mass bone volume in

the abaloparatide vs vehicle group at that time point.

Observations of higher trabecular number and higher serum

osteocalcin with abaloparatide vs vehicle led to explorations of serum

osteocalcin as a determinant of microarchitectural parameters. Linear

regressions revealed that day 14 serum osteocalcin was significantly

and positively correlated with day 14 trabecular number, with an

overall Pearson r value of 0.67 (P < .05; Figure 3). Day 28 osteocalcin

correlated positively with day 28 trabecular number (r = 0.55, P < .05;

data not shown), as did osteocalcin vs trabecular number for both

time points combined (r = 0.59, P < .001; data not shown). Day

28 serum osteocalcin also correlated positively with day 28 bone vol-

ume (r = 0.52, P < .05; Figure 3), and day 14 osteocalcin correlated

with day 28 trabecular thickness (r = 0.54, P < .05; data not shown).

Serum TRACP-5b was not associated with bone volume, trabecular

number, or trabecular thickness.

Radiographs at 2 and 4 weeks showed qualitatively normal

healing responses over time. Loss of graft distinction at the host bone

margins indicated progression of host site integration, new bone for-

mation, and bone remodeling over time. Blinded scoring of radio-

graphic fusion by three independent reviewers indicated that none of

the vehicle or abaloparatide-treated animals achieved unilateral or

bilateral fusion at day 14 (Figure 4A). At day 28, 2 of 8 rats in the vehi-

cle group and 4 of 8 rats in the abaloparatide group achieved radio-

graphic fusion bilaterally, with no other animals achieving unilateral or

bilateral fusion (Figure 4A). There was 100% concordance among

reviewers on fusion status at the individual animal level. Figure 4C

depicts radiographs of representative unfused and fused examples at

day 14 and 28, respectively.

Similar to radiographic fusion assessments, fusion evaluation by

manual palpation showed no fusions in either treatment group at day

14, whereas 2 of 8 vehicle control animals and 4 of 8 abaloparatide

animals were fused at day 28 (Figure 4B). There was 100% concor-

dance among reviewers for manual palpation assessments, and all

individual animals deemed fused or unfused by manual palpation were

also deemed fused or unfused by blinded radiography and by

unblinded review of micro-CT reconstructions.

4 | DISCUSSION

The effects of abaloparatide in rats undergoing spinal fusion were

evaluated based on previous animal data indicating that this novel

PTH receptor agonist increases vertebral bone formation, density, and

strength, and also improves long bone fracture healing.29-33,36,37

Abaloparatide has high homology to PTH-related protein (PTHrP), an

endogenous factor that plays important roles in osteogenesis, cho-

ndrogenesis, and fracture healing.38,39 A previous rat PLF study

showed that local administration of another PTHrP analog in a con-

trolled release carrier increased fusion mass BMD and bone volume,

with more animals achieving solid fusions compared with empty car-

rier controls.40 The current rat PLF study shows that systemic

TABLE 1 Biochemical markers of bone formation (serum
osteocalcin) and bone resorption (serum TRACP-5b)

Vehicle Abaloparatide P value

Serum osteocalcin (ng/mL)

Day 0 44.2 ± 1.9 44.9 ± 2.2 .826

Day 14 34.3 ± 1.5 45.4 ± 1.4* <.0001

Day 28 24.7 ± 1.0 35.7 ± 2.1* <.001

Serum TRACP-5b (U/L)

Day 0 5.91 ± 0.31 5.90 ± 0.32 .982

Day 14 6.64 ± 0.54 5.47 ± 0.38 .230

Day 28 5.25 ± 0.29 5.62 ± 0.39 .711

Note: Data represent means ± SE, n = 14 to 15 per group for days 0 and

14, and 8 per group for day 28. *P < .05 vs vehicle control.

TABLE 2 Micro-CT data for fusion masses

Vehicle Abaloparatide P value

Bone volume (mm3)

Day 14 58.3 ± 2.3 59.5 ± 3.0 .765

Day 28 51.7 ± 2.5 61.4 ± 3.9 .109

Trabecular number (1/mm)

Day 14 7.78 ± 0.21 11.09 ± 0.68* .002

Day 28 8.38 ± 0.27 9.87 ± 0.74 .081

Trabecular thickness (μm)

Day 14 50.3 ± 0.8 50.3 ± 1.7 .997

Day 28 50.2 ± 1.6 55.0 ± 1.6 .095

Note: Data are based on average values for left and right sides. Data

represent means ± SE; n = 6 to 7/group for Veh and 7 to 8/group for

abaloparatide. *P < .05 vs vehicle control.

Abbreviation: micro-CT, micro-computed tomography.
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abaloparatide therapy was associated with increased bone formation

markers, improvements in fusion mass microarchitecture, and a 2-fold

higher incidence of fusion at day 28 compared with vehicle controls.

Fusion status was assessed on days 14 and 28 based on data from a

similar rat PLF model indicating that those time points reflect the tran-

sition from an unfused to a fused state.2,25 Radiography and manual

palpation showed no solid fusions in the vehicle or abaloparatide

group at day 14, similar to findings from a rat PLF model evaluating

teriparatide.25 At day 28, 25% and 50% of the vehicle and

abaloparatide animals (respectively) demonstrated fusion by both

assessment approaches.

Abaloparatide increased serum levels of the bone formation

marker osteocalcin compared with vehicle controls. Regression ana-

lyses indicated that serum osteocalcin was associated with fusion

mass microarchitectural parameters, suggesting the osteoblast-

stimulating effects of abaloparatide may influence fusion processes.

This hypothesis is tempered by the lack of fusion mass his-

tomorphometry data, and it is possible that abaloparatide effects on

fusion mass microarchitecture were related at least in part to

increased chondrogenesis (endochondral ossification). The lack of

increased serum TRACP-5b in the abaloparatide group is consistent

with the lack of increased systemic and tissue-level parameters of

F IGURE 1 2D micro-computed
tomography (micro-CT) images of L4-L5
transverse processes with interposed
fusion masses comprising newly formed
bone and bone autograft remnants.
Images on the left and right are from
animals that received daily injections of
vehicle or abaloparatide 20 μg/kg/d,
respectively, starting the day after surgery

and continuing for 28 days. Asterisks
indicate motion segments judged to be
fused by radiographic and manual
palpation assessments, which is
corroborated visually in these micro-CT
images. White arrows highlight residual
bone autograft fragments, many of which
are not incorporated into the established
fusion masses
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bone resorption with abaloparatide in animal models of osteoporo-

sis.29-31,36,41 A study in male mice showed that abaloparatide and ter-

iparatide both increased bone resorption markers at 4-fold the

current dose, whereas bone formation markers were significantly

higher with high-dose abaloparatide vs high-dose teriparatide.42

The pharmacodynamic profile of increased bone formation with

minimal effects on bone resorption may be desirable in patients

undergoing spinal fusion, as inadequate anabolism and premature

catabolism of fusion masses are potential contributors to

pseudoarthrosis.18 Several observations indirectly support this

hypothesis. For example, the confluence of low bone formation

markers and high serum TRACP-5b was the most significant risk fac-

tor for nonunion in patients undergoing spinal fusion surgery.43 A

recent prospective controlled clinical study showed an early increase

in fusion rate in patients receiving a weekly teriparatide regimen that

increases bone formation markers but not resorption markers,44,45

whereas a more recent prospective study with placebo control

showed that the standard daily teriparatide regimen, which increases

bone formation and resorption markers,15 had no effects on

arthrodesis-related endpoints or fusion mass.24 Another spinal fusion

study indicated that patients receiving daily teriparatide along with

the potent osteoclast inhibitor denosumab had a higher fusion rate at

month 6 compared with patients receiving teriparatide alone.46 Ani-

mal data also indicate that BMP-2 promotes better bony bridging

when its osteoclast-stimulating effects are inhibited.47

This study has several limitations, including anatomical differ-

ences between the rat and human lumbar spine.48 Rats are an appro-

priate initial test system for spinal fusion pharmacology studies,49 but

studies in larger species are necessary to corroborate the current find-

ings and to assess abaloparatide effects in instrumented fusion

models. The rats were not ovariectomized or osteopenic, a limitation

that may be more relevant to instrumented spinal fusion models that

rely on systemic BMD for screw fixation and construct stability. The

lack of fusion mass histology is another limitation, though biochemical

markers of bone formation and resorption provided some mechanistic

insights into abaloparatide's pharmacodynamic effects. This study was

not designed or powered to evaluate abaloparatide effects on fusion

incidence rate. Sequential radiographic fusion assessments would

have improved statistical power, but such in-life assessments were

F IGURE 2 3D micro-computed tomography (micro-CT) images of
motion segments showing lack of fusion in representative animals
from both treatment groups at day 14 and successful fusion in each
treatment group at day 28. The day 14 examples were selected based
on fusion mass bone volume that was closest to their group mean,
whereas fusion mass bone volumes for the day 28 examples were
closest to their group mean among the subset of animals deemed

fused by radiographic and manual palpation asessments

F IGURE 3 Linear regressions of serum osteocalcin vs fusion mass bone microarchitecture. A, Day 14 serum osteocalcin vs day 14 trabecular
number (Tb.N) by micro-CT. B, Day 28 serum osteocalcin vs day 28 trabecular bone volume per tissue volume (BV/TV). R values represent both
groups combined
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avoided based on concerns that the additional handling could perturb

fusion processes.49 Greater animal numbers would also have

improved statistical power, though a previous study in a similar rat

PLF model that used binary (fused/not-fused) scoring showed that

even with 27 to 29 rats per group, a 40% higher fusion rate in one

treatment group vs another did not achieve statistical significance.3

Micro-CT segmentation and microarchitectural analyses of fusion

masses can be challenging compared with that of normal bones, a limi-

tation that is likely to have affected both groups and may have

increased the variability of those parameters. Another limitation is the

lack of time points beyond 4 weeks, which should be addressed in

future studies to evaluate longer-term fusion outcomes. Preliminary

data from a rabbit spinal fusion study showed that 6 weeks of sys-

temic abaloparatide therapy significantly increased spinal fusion rate

compared with vehicle controls.50 A recent case report of a patient

with cervical fusion nonunion and two failed revision surgeries

showed successful fusion after 12 weeks of abaloparatide therapy as

a postoperative adjuvant to corpectomy and fusion, though the spe-

cific contribution of abaloparatide to this result is unclear.51 While not

a part of this non-instrumented fusion study, an important question

for future studies is how abaloparatide affects vertebral bone volume

and density at the fusion level and adjacent vertebrae. Studies using

2- to 4-fold lower doses than the current study indicate that

abaloparatide increases bone formation and BMD of rodent vertebral

bodies within the four-week duration of the current study.31,52 Such

effects may have favorable implications for the fixation of pedicle or

interbody screws and for adjacent- and remote-segment fracture risk.

Future studies may also determine whether preoperative vertebral

bone augmentation with abaloparatide increases the primary stability

of spinal fusion implants.

Strengths of this study include excellent inter-observer and inter-

modality concordance in fusion assessments. It is also notable that

positive effects were achieved with a relatively modest abaloparatide

dose, one that represents a substantially lower multiple of its

approved clinical dose compared with doses of teriparatide used in

most rat spinal fusion studies.3,4,19,20,25,26 Abaloparatide increases

vertebral BMD and promotes fracture bridging and callus strength in

rats when dosed as low as 5 μg/kg/d,31,33 and future studies may

determine whether similarly low doses improve spinal fusion in

animals.

In summary, systemic abaloparatide administration was associ-

ated with early positive effects on fusion mass architecture in rats

undergoing non-instrumented PLF, in association with elevated bone

formation markers without increased bone resorption markers. These

findings, which were accompanied by a 2-fold higher fusion rate at

day 28, warrant follow-up in larger species to provide additional

insights into abaloparatide's potential efficacy in spinal fusion settings.
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