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A B S T R A C T   

Coronavirus disease-19 (COVID-19) pandemic is associated with high morbidity and mortality. COVID-19, which is caused by the Severe Acute Respiratory Syndrome 
Coronavirus-2 (SARS CoV-2), affects multiple organ systems through a myriad of mechanisms. Afflicted patients present with a vast constellation of symptoms, from 
asymptomatic disease to life-threatening complications. The most common manifestations pertain to mild pulmonary symptoms, which can progress to respiratory 
distress syndrome and venous thromboembolism. However, in patients with renal failure, life-threatening cardiac abnormalities can ensue. Various mechanisms such 
as viral entry through Angiotensin receptor (ACE) affecting multiple organs and thus releasing pro-inflammatory markers have been postulated. Nevertheless, the 
predictors of various presentations in the affected population remain elusive. An ameliorated understanding of the pathology and pathogenesis of the viral infection 
has led to the development of variable treatment options, with many more that are presently under trial. This review article discusses the pathogenesis of multiple 
organ involvement secondary to COVID-19 infection in infected patients.   

1. Introduction 

The Coronavirus disease pandemic (COVID-19) caused by Severe 
Acute Respiratory Syndrome Coronavirus-2 (SARS CoV-2) has affected 
over 185 countries with a reported total number of 2,790,986 cases and 
195,920 deaths [1]. The United States is one among the countries 
leading in COVID-19 associated infections and death rates [2]. The 
symptomatology associated with COVID-19 is variable from asymp-
tomatic cases to multiorgan dysfunction and death [3]. Due to severe 
systemic inflammatory response from cytokine release, COVID-19 leads 
to end-organ damage and multiorgan failure (MOF) [3,4]. Understand-
ing the underlying pathophysiology of COVID-19 for each organ system 

is critical for developing new therapies and improving management. We 
aim to do a systematic review of the literature to understand the path-
ophysiology of multiorgan involvement. 

1.1. Multiorgan failure secondary to COVID-19 

The multiorgan failure associated with COVID-19 is secondary to 
severe systemic inflammatory syndrome [3,4]. Studies have shown a 
strong association between ACE receptor and COVID-19 induced severe 
inflammatory response [5]. TMPRSS-2 is a serine protease involved in 
receptor-mediated endocytosis of SARS-CoV-2 [6–8]. The binding of 
SARS-CoV-2 virus results in the downregulation of ACE2 receptors, 
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which means that angiotensin II levels begin to elevate. This elevation 
leads to a plethora of downstream effects on cytokine signaling, vascular 
homeostasis, and the coagulation cascade [5]. Cytokine storms can 
manifest as lymphopenia and elevated serum markers of inflammation 
including D-dimer, IL-6, ferritin and C-reactive protein (CRP) that can 
lead to multi organ failure [9]. 

1.2. Acute respiratory distress syndrome 

Angiotensin-converting enzyme 2 (ACE2) receptor facilitate SARS- 
CoV-2 cell entry by providing a direct binding site for the S proteins of 
SARS-CoV-2 and promotes cleavage of angiotensin (Ang) I to produce 
Ang-(1–9) [10]. ACE2 receptors are widely expressed in the human body 
such as in nasal mucosa, bronchus, lung, heart, esophagus, kidney, 
stomach, bladder, and ileum which are all potential targets for COVID19 
[11]. Once the virus enters, it induces ACE2 downregulation and shed-
ding [10]. This is the primary mode of entry for SARS-COV2 and affects 
different organ systems. The ACE2 receptor expressed in the human 
airway epithelium is converted to active soluble ACE2 (sACE2) by dis-
integrin and metalloprotease 17. 

Downregulation of ACE2 receptors is compensated by over-
production of angiotensin II (Ang II) by ACE which stimulates angio-
tensin II type 1a receptor that increases lung vascular permeability 
leading to acute lung injury and induces acute respiratory distress syn-
drome (ARDS) function [8]. Lung tissue has high RAS activity, enhanced 
during hypoxic state, and is the leading site of Ang II synthesis. Ang II is 
a pulmonary vasoconstrictor, resulting in pulmonary hypertension [5], 
and can also promote the occurrence of pulmonary edema and impair 
lung function [8]. 

In response to viral entry, the innate and adaptive immune system 
response secrete cytokines and inflammatory markers (see coagulopathy 
section) to combat the virus, specifically, increased production of cy-
tokines interleukin-6 (IL-6), early induction of CXCL10, interleukin-2 
(IL-2) and decreased production or absence of interleukin-10 (IL-10) 
which in turn promotes acute lung injury [12]. The viral overload and 
delayed type I interferon signaling further precipitate lung injury by 
accumulation of monocyte/macrophages that release cytokine/chemo-
kine in the extracellular matrix and further attract accumulation of in-
flammatory cells induced inflammatory response and cell injury [12]. 
Excessive neutrophil can induce lung injury and CD8, cytotoxic T cells, 
contribute to lung damage from cytokines [12]. 

1.2.1. SARS-CoV-2 coagulopathy and thromboembolism 
COVID-19 induced coagulopathy has been reported in many case 

reports ranging from immune thrombocytopenic purpura, deep venous 
thrombosis, carotid artery thrombus, pulmonary embolism, and 
disseminated intravascular coagulation (DIC) [10,13–16]. Severe 
COVID-19 infection was associated with a more procoagulant state with 
higher rates of pulmonary embolism [9]. However, a meta-analysis by 
Mir et al. did not reveal any worsening in mortality in such critically ill 
patients with pulmonary embolism [17] The procoagulant state of 
COVID-19 infection is related with the inflammatory response of cyto-
kines and tissue injury. Proteins expressed via SARS-CoV-2 virus likely 
delay the Type 1 IFN (interferon) release allowing fast viral replication, 
thus a dysregulated release of IFN-1 emerges [7]. As a result, proin-
flammatory cytokines, for example IL-6 and TNF-alpha stimulate neu-
trophils (PMNs) and monocytes thereby inciting a hyperinflammatory 
response, vascular leakage, and endothelial dysfunction [7]. Activated 
endothelial cells stimulate tissue factors and the extrinsic pathway 
whereas activated PMNs secrete neutrophil extracellular traps (NETs), 
which contain DAMPs that lead to activation of the intrinsic pathway via 
factor II. Further, combined activation of the intrinsic and extrinsic 
pathway coupled with reduced plasminogen activator inhibitor-1 
(PAI-1) levels in ARDS resulting widespread thrombosis, a story simi-
larly seen in the previous SARS-CoV-1 induced thrombosis [18–21]. In 
addition, the upregulation of the Ang II-AT-1R axis, which promotes 

PAI-1 expression, the sequestration of platelets, and hypoxemia 
releasing a variety of hypoxia-inducible factors (HIF-1) add fuel to the 
impaired state [22–24]. High D-dimers observed in COVID-19 are 
representative of this dysfunctional coagulation activity requiring fibrin 
breakdown (Fig. 1). 

1.2.2. COVID and pulmonary disease 
COVID-19 infection is associated with acute respiratory distress 

syndrome from severe inflammatory response [16]. Burst of proin-
flammatory cytokines initiate alveolar injury, pulmonary edema, and 
reduced oxygenation within pulmonary vessels. This hypoxic state leads 
to pulmonary vasoconstriction, increased vascular permeability with an 
influx of inflammatory cells within the lung parenchyma, thereby 
reducing surfactant levels and atelectasis. A right-to-left shunt ensues a 
ventilation/perfusion mismatch with an increased physiological dead 
space [25–27]. As a result of hypoxic lung injury, viral replication fol-
lows unopposed activation of Angiotensin II [28]. 

The elevations in Ang II and decreased ACE II expression post viral 
entry contribute to generation of reactive oxygen species through nu-
clear factor kappa light chain (NFkB) activation [24] (Fig. 2). The 
expression of inflammatory genes further lead to generation of proin-
flammatory cytokines like tumor necrosis factor alpha (TNF-alpha), 
interleukin-1 (IL-1), and IL-6. The cytokine surge contributes to endo-
thelial dysfunction via uncoupled nitrous oxide (eNOS), increased 
endothelin-1(ET-1) levels, reactive thrombocytosis, and formation of 
emboli which lodge into pulmonary vessels causing acute hypoxic 
changes [29,30]. Oxygen deficient states also cause activation of hyp-
oxia inducible factors (HIF1-alpha, enacting angiogenesis, elevated 
levels of fibrinogen, and consumption of clotting factors. Further, levels 
of PAL-1 lead to reduced depletion of fibrin causing perfusion deficiency 
and pulmonary dysfunction [4,31]. 

1.3. Acute kidney injury 

The mechanisms involved in heralding the onset of acute kidney 
injury (AKI) remain elusive, but a concoction of factors, such as hemo-
dynamic changes, fluid overload, right heart failure, and cytokine- 
storm, might be at play in eliciting AKI [13]. The mechanistic features 
underlying AKI are therefore the subject of extensive medical research, 
and we hereby detail a schematic representation of the etiology under-
lying AKI. 

Cytokines produced as part of a SARS-CoV-2 response, such as IL-6, 
upregulates the expression of sodium hydrogen exchangers. As a result, 
the adenosine triphosphatase (ATPase) molecules undergo hypertrophy. 
Complementing this tubular ATPase hypertrophy is hypoxia, which 
routinely results as a ramification of ARDS [25]. The hypoxia results in 
increased aldosterone retention, which consequently increases water 
retention, worsening renal failure. It is imperative to note, also, that AKI 
portends worse outcomes if it is superimposed on an existing chronic 
kidney disease (CKD) [13]. Increased acid secretion levels eventually 
lead to increased intraglomerular pressure, thereby damaging the 
filtration barrier. To compensate, tubular fibroblasts release mediators, 
such as NFKB and ETS-1, which culminate in tubular atrophy, inflam-
mation, and fibrosis) [13]. The summary for mechanisms of AKI is 
shown in Fig. 3. 

1.3.1. Cardiovascular complications: heart failure, STEMI, arrhythmias, 
and cardiac tamponade 

COVID-19 can cause cardiac complications such as myocarditis. 
Clinically, patients might present with chest pain, dyspnea, arrhythmias, 
and acute coronary syndrome (ACS) [17]. Distinguishing between ACS 
and myocarditis in an acute setting might be challenging. A proposed 
mechanism that explains myocarditis is elucidated. In addition to the 
mentioned cardiovascular side effects, SARS-CoV-2 also causes heart 
failure, pericarditis, cardiac tamponade, arrhythmias and thromboem-
bolic events. It is presently understood that electrolyte disturbances, 
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coupled oxidation of the Ca2+/Calmodulin-dependent protein kinase 2 
is responsible for the arrhythmias seen amid a SARS-CoV-2 infection 
[26]. 

Similarly, the exorbitant increase in the production of IL-6 upregu-
lates the expression of vascular endothelial growth factor (VEGF) 
resulting in increased vessel permeability and effusion that may progress 
to cardiac tamponade [32]. Additionally, due to deranged coagulation 
profiles and increased circulating levels of angiotensin II, downstream 
pathways involving endothelial dysfunction and oxidative stress herald 
the onset of thromboembolic events [3]. 

The stimulation of these pathways lead to increased production of 
mononuclear infiltrates, which are directed towards the myocardium, 
and might result in subsequent myocarditis [33]. The elevated troponin 
levels among patients with COVID-19 might be a result of demand 
ischemia rather than myocarditis itself [11]). It is therefore of clinical 
relevance that the troponin levels are not used exclusively, but instead in 
conjunction with the overall clinical picture, to yield a diagnosis of 
myocarditis. The graphic representation of cardiovascular pathology is 
in Fig. 4. 

Both above detailed pathways lead to increased production of 
mononuclear infiltrates, which are directed towards the myocardium, 
leading to myocarditis [33]. Fig. 5. In study by Deng et al. troponemia in 
myocarditis suspect can be a demand for ischemia in the setting of 
COVID-19 rather than myocarditis itself [11]. It is therefore of clinical 
relevance that the troponin levels are not used exclusively, but instead in 
conjunction with the overall clinical picture, to yield a diagnosis of 
myocarditis. 

1.4. Gastrointestinal 

The colon and small intestine have higher expression of ACE2 re-
ceptors mainly in the endothelium and the vascular smooth muscle cells 
[34]. SARS-CoV-2 is associated with infiltration of plasma cells and 
lymphocytes in the lamina propria of stomach, duodenum and rectum 
that promotes interstitial edema. ACE2 receptor is also associated with 
neutral amino acid transporters in the gastrointestinal tract and plays an 
essential role. In patients with amino acid malnutrition, ACE2 promotes 
intestinal inflammation. ACE2 plays a significant role in amino acid 
homeostasis and maintaining intestinal microbiota [34]. Down-
regulation or alteration of ACE2 is associated with colitis, by promoting 
intestinal inflammation and diarrhea suggesting that SARS-Co-2 entry 
via ACE2 receptor may alter its activity. The proposed model is that 
COVID19 uses ACE2 and TMPRSS22 to enter the gut [35]. 

The entry of SARS-CoV-2 into the host cell begins by the binding of 
viral spike glycoprotein with ACE2 protein followed by processing of the 
spike glycoprotein by TMPRSS2 leading to membrane fusion, and recent 
evidence suggests an additive effect of TMPRSS4 in viral entry [35]. 

TMPRSS serine proteases facilitate virus infection by inducing S cleav-
age and exposing the fusion peptide for efficient viral entry in gastro-
intestinal (GI) tract [35] Inflammatory response induced by SARS-CoV-2 
can also lead to direct injury of GI tract, destroying absorptive enter-
ocytes, potentially leading to malabsorption, unbalanced intestinal 
secretion, and enteric nervous system [34,58]. Additionally, hyper-
inflammation and dysregulated immune responses lead to cytokine 
surge which may culminate in widespread injury and serious compli-
cations like paralytic ileus and hemorrhagic colitis [22,36]. 

1.4.1. Neurologic manifestation 
Significant neurologic complications such as increased risk for 

ischemic and hemorrhagic stroke have become increasingly associated 
with COVID-19. There are many case reports and observational studies 
demonstrating that these patients presented with stroke often in the 
early stages of their illness [37,38]. Cytokine release induced hyperco-
agulability (as evidenced by remarkable D-Dimer elevation) contributes 
to significant downstream thrombus formation. Hypoxemia leading to 
intracellular acidosis and down-stream production of oxygen free radi-
cals, compounded by the influx of proinflammatory cytokines, may lead 
to neuronal tissue ischemia. It is known that inflammation contributes 
significantly to atherosclerosis and increases the instability of plaques, 
predisposing to stroke [39]. 

When SARS-CoV-2 binds with ACE II receptors, patients with un-
derlying hypertension may additionally be affected by extremes of high 
blood pressure, putting them at risk for intracerebral hemorrhage. Some 
patient cohorts have also been shown to present with thrombocytopenia, 
further increasing risk of intracerebral bleeding [40]. 

Inflammatory response and cytokine storm can affect the central 
nervous system by inducing toxic metabolic encephalopathy. In one 
confirmed case, a patient presented with fever and cough, which later 
progressed to acute necrotizing encephalopathy related to the cytokine 
storm [38]. There are also case reports of meningitis, confirmed by 
detection of the virus within the CSF, and hippocampal sclerosis leading 
to post-convulsive encephalopathy from COVID-19 [41] (Fig. 6). 

SARS-CoV-2 binding to ACE-2 Receptors followed by viral endocy-
tosis causes upregulation of Ang II/AT-1R; this results in endothelial 
dysfunction which includes vasoconstriction and increased shear stress. 
Endothelial dysfunction leads to cytokine release, including Il-1, Il-6 and 
TNF-alpha, culminating in increased blood brain barrier permeability. 
This increased inflammatory cytokine activity leads to hypercoagula-
bility. The hypercoagulable state leading to stroke compounded by 
ARDS hypoxemia leads to downstream neuronal ischemia, inflamma-
tion, and necrosis secondary to reperfusion injury [42–47]. Ang-II/AT1R 
upregulation related enzymatic activity within both glial cells and 
neurons, in addition to ischemia and reperfusion injury, leads to reactive 
oxygen species production, stimulation of proteases, with cell and 

Fig. 1. Pathogenesis of the procoagulant state secondary to COVID-19.  
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membrane damage as a result [48–52]. Apoptosis of neurons occurs 
because of DAMP release from cell membrane damage, ATP depletion, 
and mitochondrial damage [53–55,57,58]. 

The downstream effects of this neuro-inflammatory process and 
excitotoxicity may manifest as altered mental status including psychosis 
and exacerbation of existing dementia. 

1.5. Future directions 

This review gives a potential pathophysiological mechanism behind 
SARS-CoV-2 infection for every system that it involves. The evidence 
behind these mechanisms is based on experience with similar corona-
viruses and other viral infections of the same class, as well as clinical 
characteristics, laboratory findings, and postmortem pathological re-
ports of COVID-19 patients around the world. The main concern is the 

exact contribution of risk factors to disease progression in different age, 
sex and race groups. Additionally, more studies are needed to under-
stand the main drivers of COVID-19 and their molecular mechanisms of 
action especially in different age groups, which would help for appro-
priate risk stratification and therapeutic strategies. From our under-
standing of the published studies and evidence, immunomodulatory 
therapies are more likely to be equally and also very effective than just 
targeting virus at different stages of cycle in humans. Furthermore, 
treatment approaches may be further tailored to support immune 
response earlier during disease progression to enhance an efficient 
antiviral response and also to prevent progression of the disease into 
multi system inflammatory syndrome. 

Fig. 2. The mechanisms underlying SARS-CoV-2 induced ARDS [1] a hypothetical model of SARCoV-2 virus demonstrating infectious pathways to cell entery, 
induce inflammation, ARDS and procoagulation state. SARS CoV-2; Severe Acute Respiratory Syndrome Coronavirus-2, IL-6; Interleukin − 6, TNFα; Tumor necrosis 
alpha, IL 1-β; Interleukin 1-beta, ACE II; Angiotensin converting enzyme II, Ang II; Angiotensin II (Created with BioRender.com). 
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Fig. 3. Pathogenesis underlying the acute kidney injury (AKI) seen in SARS-CoV-2. SARS CoV-2; Severe Acute Respiratory Syndrome Coronavirus-2, IL-6; Interleukin 
− 6, TNFα; Tumor necrosis alpha, IL 1-β; Interleukin 1-beta, ACE II; Angiotensin converting enzyme II, Ang II; Angiotensin II (Created with BioRender.com). 

Fig. 4. Cardiovascular pathology of COVID-19. SARS CoV-2; Severe Acute Respiratory Syndrome Coronavirus-2STEMI; ST-elevation myocardial Infarction, NSTEMI; 
Non-ST elevation myocardial infarction (Created with BioRender.com). 
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2. Conclusion 

COVID-19 has been related as a respiratory illness, however through 
our extensive review of systems it can now be considered as a complex 
multisystem disorder. Moreover, there is a need to better understand the 
varied presentation of symptoms and organ involvement in different 
populations, nevertheless with the emerging epidemiology and basic 
science evidence, there has been some understanding of susceptibility of 
the infection and its outcomes. Even with initiation of mass vaccination 
drive of COVID vaccines the SARS-CoV-2 infection is expected to 
continue to be a burden to the healthcare sector and also to the country’s 
economy. Hence there is need for more prospective studies to better 
understand this disease and varied involvements of the organs in 
different patients so that an effective therapy can be directed. 
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