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The hypoxic state of the tumor microenvironment leads to reprogramming lipid
metabolism in tumor cells. Adipose triglyceride lipase, also known as patatin-like
phospholipase= domain-containing protein 2 and Adipose triglyceride lipase (ATGL), as
an essential lipid metabolism-regulating enzyme in cells, is regulated accordingly under
hypoxia induction. However, studies revealed that ATGL exhibits both tumor-promoting
and tumor-suppressing effects, which depend on the cancer cell type and the site of
tumorigenesis. For example, elevated ATGL expression in breast cancer is accompanied
by enhanced fatty acid oxidation (FAO), enhancing cancer cells’ metastatic ability. In
prostate cancer, on the other hand, tumor activity tends to be negatively correlated with
ATGL expression. This review outlined the regulation of ATGL-mediated lipid metabolism
pathways in tumor cells, emphasizing the Hypoxia-inducible factors 1 (HIF-1)/Hypoxia-
inducible lipid droplet-associated (HIG-2)/ATGL axis, peroxisome proliferator-activated
receptor (PPAR)/G0/G1 switch gene 2 (G0S2)/ATGL axis, and fat-specific protein 27
(FSP-27)/Early growth response protein 1 (EGR-1)/ATGL axis. In the light of recent
research on different cancer types, the role of ATGL on tumorigenesis, tumor
proliferation, and tumor metastasis was systemically reviewed.

Keywords: Adipose triglyceride lipase (ATGL), lipid metabolism, hypoxia, cancer, HIF-1
INTRODUCTION

Lipid metabolism plays a vital role in cell death, growth, signaling, metabolism, and gene expression,
and disruptions in lipid metabolism can likewise impact these processes (1, 2). As an important
intracellular organelle for lipid storage, the formation and breakdown of lipid droplets (LDs) have
important implications for lipid metabolism in cells. LDs are highly dynamic organelles in cells rich
in lipids such as cholesterol and acylglycerol. The reprogramming of lipid metabolism in cancer cells
results in the accumulation of LDs in cancer cells. The massive accumulation of LDs in non-
adipocytes has now been recognized as a marker of cellular carcinogenesis. The abundance of LDs
also promotes cancer cell proliferation, invasion, metastasis, and drug resistance (3). Like normal
cells, tumor cells use LDs to cope with nutrient overload or nutrient deprivation in the tumor
microenvironment (4). The synthesis and breakdown of LDs are precisely regulated in tumor cells
(4). The lipid uptake and removal mechanisms, different lipid synthesis mechanisms, and lipid
recycling mechanisms are used to meet the lipid requirements of tumor cells in different states (4).
LDs can be used in cancer cells to ensure energy production and redox homeostasis, regulate
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autophagy, drive membrane synthesis and control its
composition, and respond to lipid peroxidation and cellular
iron death by regulating the storage and release of unsaturated
fatty acids (4).

Related proteins involved in LDs formation include the
perilipin protein family, ATGL, diglyceride acyltransferase
(DGAT), and secretory phospholipase A (sPLA) (5–7). In
cancer cells, all of these proteins are altered to varying degrees,
especially ATGL. Intracellular phosphorylated lipases break
down triglycerides (8) stored in LDs to release free fatty acids
(FFAs) (9) involved in intracellular energy metabolism and
signal transduction. These lipases include ATGL (10),
hormone-sensitive lipase (HSL), and monoacylglycerol lipase
(MGL). Among them, ATGL is the rate-limiting enzyme for
triglyceride degradation. It is responsible for the breakdown of
one molecule of triglycerides into one molecule of diglycerides
and one molecule of FFAs. At the same time, HSL and MGL are
accountable for the breakdown of diglycerides and
monoglycerides, respectively (Figure 1). ATGL is encoded by
the Pnpla2 gene in the human body and has very high substrate
specificity for triglycerides. The N-terminal of ATGL is a three
(a/b/a) sandwich domain (residues 1-253). This segment
contains a Patatin-like structural domain (residues 10-178), an
a-helical structure (residues 10-24), and catalytic serine-
aspartate duplexes (Ser 47 and Asp 166), which are essential in
triglyceride substrate binding and triglyceride hydrolysis,
respectively (11). ATGL contains hydrophobic lipid-binding
stretches (residues 315-364) at its C-terminus, as well as
two potential AMP-activated protein kinase (AMPK)
phosphorylation sites (Ser 404 and Ser 428), which are
responsible for the localization of ATGL on the LD (11). In
vivo, perilipin A can regulate its activity through the coactivator
1-acylglycerol-3-phosphate O-acyltransferase (ABHD5) of
ATGL (12). In addition, G0S2 can also bind competitively to
ABHD5, thereby inhibiting ATGL activity. Defective ATGL in
Frontiers in Oncology | www.frontiersin.org 2
humans directly affects the cellular lipolysis process, leading to
neutral lipid storage disease (13).

The availability of oxygen to cells within the tumor tissue
decreases with increasing cell-vascular distance. In contrast, the
disorganized vascular network within the tumor tissue and the
distance between vessels are greater than the diffusion distance of
oxygen (approximately 100-200 mm, depending on the oxygen
content of the blood at the site versus the oxygen consumption
rate of the surrounding tumor cells) leading to hypoxia in most
areas within the tumor (14).To adapt to hypoxia, cancer cells
change their metabolism from oxidative phosphorylation, the
primary energy supply in normal cells, to glycolysis, known as
the Warburg effect (15). In addition, several oncogenes,
including Ras, Src, and Myc, also enhance the expression of
glycolysis and glucose transport-related proteins, which promote
the adaptation of tumor cells to the hypoxic environment (16,
17). The attenuation of oxidative phosphorylation also inhibits
intracellular fatty acid b-oxidation to reduce oxygen
consumption. Therefore, theoretically, the activity and
expression of ATGL in cancer cells should be negatively
correlated with the activity of cancer cells. Indeed, a decrease
in ATGL protein levels can be observed in cancers such as
human non-small cell lung cancer and pancreatic cancer, and
Pnpla2 is frequently reported to be absent in these cancer cells
(18). Similarly, decreased levels of ATGL gene expression have
been associated with lower survival rates in patients with cervical
and gastric cancers. However, in some cancers, ATGL has a
promotive effect on tumor progression (9, 19–21). Therefore, the
role of ATGL in tumor cells is uncertain, and it might depend on
the type of tumor and the environment in which the
tumorigenesis is located. What is certain is that ATGL is a
crucial player in regulating tumor metabolism under hypoxia
(22). Recently, Rolando Vegliante et al. presented the role of the
Peroxisome proliferator-activated receptor alpha (PPAR-a)/
ATGL axis in cancer (23). However, ATGL regulates lipid
FIGURE 1 | Series hydrolysis process of triglycerides by different lipases sitting in lipid droplets (LOs) membrane. ATGL binds to coactivator ABHDS and co-binds to
the LD membrane. ATGL then hydrolyzes triglyceride to diglycerides and releases a molecu le of free fatty acids. HSL then hydrolyzes the diglycerides to glycerol
monoesters and releases one molecule of free fatty acids. Finally, MGL hydrolyzes triglycerides and releases the last molecule of free fatty acids. ATGL, Adipose
triglyceride lipase; ABHDS, 1-acylglycerol-3-phosphate 0-acyltransferase; HSL, Hormone-sensitive lipase; MGL, Monoacylglycerol lipase.
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metabolism in cancer cells in other pathways outlined in this
review, namely, the HIF-1/HIG-2/ATGL axis, PPAR (PPAR-a
and PPAR-g)/G0S2/ATGL axis, and FSP-27/EGR-1/ATGL axis.
Furthermore, we reviewed the recent research progress on the
role of ATGL in different cancer types, hoping to shed light on
future studies targeting ATGL for treating cancer.
REGULATION OF ATGL IN CANCER

HIF-1/HIG-2/ATGL Axis
HIF-1 (HIF-1a and HIF-1b) was first reported by Semenza and
colleagues in 1995 as an oxygen-sensitive transcription factor
capable of responding to decreases in oxygen levels in the
environment. Under normoxic conditions, the proline residues
in HIF-1a are hydroxylated by the HIF-prolyl hydroxylase
domain enzyme (PHD) and then degraded by ubiquitination
of the von Hippel-Lindau protein (pVHL) (24–26). Under
hypoxic conditions, PHD activity is inhibited, and HIF-1a is
thus able to stabilize and translocate into the nucleus, where it
binds to specific DNA hypoxia response elements (27) and
activates the transcription of a large number of genes. The
hypoxic environment to which tumor tissues are exposed leads
to an upregulation of HIF-a expression in tumor cells (28).
Furthermore, in addition to being induced by hypoxia, mutations
in proto-oncogenes and tumor suppressors can also cause
elevated HIF-1a expression (29). The upregulation of HIF-1a
in clear stromal renal cell carcinoma results from VHL tumor
suppressor, not hypoxia (30).

HIG-2 a newly identified lipolytic regulator of cellular response
to hypoxia in recent years, is encoded by Hilpda, a target gene of
HIF-1. HIG-2 is expressed in various cells, including cancer cells,
hepatocytes, adipocytes, and immune cells. Analysis of HIG-2
Frontiers in Oncology | www.frontiersin.org 3
expression in the Cancer Genome Atlas database and the Pan-
Cancer Data Center revealed that Hilpda is a marker of poor
prognosis in tumor patients and positively correlates with
increased infiltration of tumor-associated macrophages and
immunosuppressive genes in the tumor microenvironment (31).
Similarly, in pancreatic cancer cells, the bioinformatic analysis also
revealed elevated expression of hypoxic lipid droplet-associated
proteins (10). Moreover, in pancreatic ductal adenocarcinoma
(PDAC) mouse model, HIG-2 was also found to increase the
accumulation of LDs in cancer cells and promote the growth of
cancer cells (32). Functionally, HIG-2 regulates fat storage in
response to insufficient oxygen supply outside the cell or excess
fatty acid content in the cell. The function of this protein is partially
dependent on triglyceride hydrolase ATGL and triglyceride
synthase DGAT. In a mouse hepatoma cell model, HIG-2
increased triglyceride synthesis and storage by stimulating
DGAT1 (33). In another mouse model of colorectal cancer,
knockdown of HIG-2 enhanced LDs degradation in cancer cells
and promoted apoptosis in a Reactive oxygen species (ROS)-
dependent manner, ultimately inhibiting the growth of tumor
explants in mice. This enhanced effect of lipid degradation could
be reversed by co-ablation of ATGL (34). It was confirmed by
immunoprecipitation that HIG-2 could physically bind to ATGL
(34). Further studies showed that both the interaction and co-
localization of HIG-2 with ATGL on the LDs surface require a
segment of the hydrophobic domain, LY(V/L) LG, which is also
possessed by G0S2, a direct inhibitor of ATGL (34, 35). The above
results suggest the presence of hypoxia-induced HIF-1/HIG-2/
ATGL axis in tumor cells. Hence, we speculate that, possibly,
tumor cells reduce Fatty acid b-oxidation through this axis to
reduce oxygen consumption under hypoxic conditions. Figure 2
illustrates the ATGL-mediated lipid metabolism pathway regulation
by HIF-1 under hypoxia conditions.
FIGURE 2 | HIF-1/HIG-2/ATGL axis. Under hypoxia, HIF-1a- la can enter the nucleus of tumor cells and bind to HIF-1b, forming a stable dimer. This dimer binds to
the HRE region upstream of hilpda, allowing tumor cells to express HIG-2 in large amounts. Even in t h e presence of ATGL binding to coactivator ABHDS, HIG-2
can still bind to ATGL, resulting in the inability of ATG L to anchor to the LD membrane and the inhibition of activity. Eventually, there is a significant accumulation of
tri glycerides in tumor cells, resulting in lipid droplet accumulation. HIF-1a, Hypoxia-inducible factor I a; HIF-1b , Hypoxia-inducible factor 1 b . HRE, Hypoxia
response element; ATGL, Adipose triglyceride lipase; HIG-2, Hvpoxia-inducible lipid droplet-associated. LD, Lipids droplet. FFAs, Free fanv acids.
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PPAR-g/G0S2/ATGL Axis
G0S2 is the gene that controls the shift of the monocyte cycle
from the G0 phase to the G1 phase (36, 37). The gene is highly
conserved and has 78% identity in humans and mice. G0S2 was
found to be a multifunctional protein involved in various
intracellular biological pathways, including apoptosis,
inflammation, metabolism, oxidative phosphorylation, and
possibly even antitumor effect (38–42). G0S2 has been
identified as a direct intracellular inhibitor of ATGL and is
abundantly expressed in metabolically active tissues, such as
adipose tissue, heart, skeletal muscle, etc. (43). G0S2 achieves
triglyceride regulation by binding to ATGL to inhibit its
hydrolysis of triglycerides. G0S2 inhibits the activity of ATGL
even in the presence of the ATGL coactivator ABHD5, and the
inhibitory effect of G0S2 on ATGL is dose-dependent and
noncompetitive. Mechanistically, G0S2 possesses the same
hydrophobic domain (HD) as HIG-2 and can bind to the
patatin-like region of ATGL to inhibit its activity. In addition,
tumor necrosis factor alpha (TNF-a) was found to stimulate
ATGL-mediated lipolysis, which was also inhibited by G0S2 (44).
In cancer cells, G0S2 can similarly regulate LDs lipolysis and
promote LDs accumulation in cancer cells by inhibiting
ATGL activity. Multiple bioinformatics analyses showed that
G0S2 was highly expressed in pancreatic, breast, and rectal
adenocarcinomas (10, 45, 46). In contrast, double knockout of
Pnpla2 and Lipe induced liposarcoma in mice, and abnormal
expression of G0S2 was observed in double knockout
liposarcoma tissues (47). Notably, knockdown of G0S2
produced tumor suppression, but this effect did not seem to be
dependent on the ATGL inhibitory effect of G0S2 (42, 48).

On the one hand, G0S2 is involved in regulating cellular lipid
metabolism by inhibiting its activity through direct binding to
ATGL. On the other hand, G0S2 expression is also regulated by
PPAR (PPAR-a, PPAR-b/d, and PPAR-g), a group of nuclear
Frontiers in Oncology | www.frontiersin.org 4
receptor proteins that play an essential role in regulating
differentiation, development, metabolism, and tumorigenesis in
higher organisms. PPAR-a and PPAR-g have been extensively
studied and found to be elevated in various cancer cells
compared to normal tissues, such as breast cancer, colon
cancer, liposarcoma, pancreatic cancer, and hepatocellular
carcinoma (49). G0S2 is a target gene of PPAR that was first
identified by Fokko ZANDBERGEN et al. (50). In 3T3-L1
fibroblasts, the G0S2 promoter was found to contain a
functional PPAR response element, leading to its expression
being regulated by PPAR. G0S2 was identified as a direct target
gene of PPAR-g by transactivation, gel shift, and chromatin
immunoprecipitation assays. The stimulation of lipolysis in
adipocytes by TNF-a was also caused by decreased G0S2
expression due to PPAR-g inhibition (51). In addition, when
Hep-G2 cells were treated with palmitate, PPAR-g and G0S2
expression simultaneously elevated similarly (52).

A critical PPAR-g super-enhancer was found in human and
mouse adipocytes near the HIG-2 gene, containing multiple
conserved PPAR-g binding sites (53). In contrast, in hepatocytes,
the regulation of HIG-2 by PPAR-a was also demonstrated by
transactivation and chromatin immunoprecipitation assays.
Although these results were not confirmed in cancer cell lines, we
believe that PPAR-a and PPAR-g in cancer cells play a crucial role
in hypoxia-induced reprogramming of lipid metabolism. Based on
the studies of PPAR-a, PPAR-g, G0S2, and ATGL in tumors, we
speculate that under the induction of hypoxia in the tumor
microenvironment, cancer cells increase the expression of PPAR-
a and PPAR-g, which in turn promote the expression of their target
genes G0S2, to avoid the occurrence of required FAO pathway. As a
direct inhibitor of ATGL, the high expression of G0S2 makes ATGL
functionally inactivated in cancer cells, ultimately leading to the
accumulation of triglycerides and LDs in cancer cells (Figure 3). We
also found that although PPAR-g expression is upregulated in many
FIGURE 3 | PPAR-y/G0$2/ATGL axis. In tumor cells under hypoxia, PPAR-gg in cells binds to the PPRE region upstream of g0s2 and hilpda, promoting the
expression of GOS2 and HI G-2. PPA R-a also binds to the PPRE region upstream of gOS2, promoting the expression of GOS2. gOS2 contains a similar segment
of HD as HIG-2 and is also able to bind ATGL, inhibiting ATGL anchoring to the LD membrane and its activity. Ultimately, the overexpression of GOS2 and HIG-2 in
tumor cells prevents ATGL from performing its typical hydrolytic role, leading to the accumulation of lipid droplets. PPAR-a: peroxisome proliferator-activated
receptor a, PPA R-g: peroxisome proliferator-activated receptoryg, GOS2, GO/G1 switch gene 2; PPRE, PPAR response element; ATGL, Adipose triglyceride lipase;
ABHDS, I acylglycerol–3–phosphate O acyltransferase; LD, Lipids droplet; FFAs, Free fatty acids14.
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cancer cell lines, PPAR-g coactivator Peroxisome proliferator-
activated receptor gamma coactivator 1-alpha (PGC-1a) and
PPAR-g agonists have tumor-suppressive effects, both of which
were able to upregulate FAO as well as mitochondrial oxidative
phosphorylation processes. In addition, it is noteworthy that G0S2
can also promote F0F1-ATP synthase activity and increase cellular
adenosine triphosphate (54) content (41). This may compensate for
decreased fatty acid oxidation and decreased ATP content by
increased glycolysis rate under hypoxia. In tumor cells, especially
in cancer cell lines like breast cancer cells and lipoma cells where
G0S2 expression is significantly upregulated compared to normal
cells, it is not elucidated whether G0S2 also has a promoting effect
on F0F1-ATP synthase. However, we believe that this effect is also
present in cancer cells under a hypoxic microenvironment and
positively impacts the survival of cancer cells.

FSP-27/EGR-1/ATGL Axis
Both the HIF-1/HIG-2/ATGL axis and the PPAR-g/G0S2/ATGL
axis ultimately affect the release of fatty acids (FAs) from LDs by
inhibiting the activity of ATGL proteins, and no studies have
demonstrated that Pnpla2, the gene responsible for encoding
ATGL, is in this process is regulated in this process. There are
also no studies that clearly describe the regulation of Pnpla2 in
tumor cells. However, we found that in adipocytes, FSP-27 (also
known as CIDEC) can cooperate with EGR-1, also known as
ZNF268 (zinc finger protein 268) or NGFI-A (nerve growth
factor-induced protein A) to suppress the expression of ATGL
(55). In addition, FSP-27 is also able to reduce the release of FAs
in LDs by directly inhibiting ATGL protein activity as G0S2 does
with HIG-2 (56).

In cells, FSP-27 is mainly involved in LDs morphology
regulation (57–59). Depletion of FSP-27 in adipocytes leads to
fragmentation of LDs (60, 61). In contrast, when FSP-27 is
overexpressed, it promotes the fusion of LDs (62) and the
Frontiers in Oncology | www.frontiersin.org 5
exchange of lipids between LDs (63), leading to a decrease in
the number of LDs and an increase in LDs volume (57, 58, 61).
Currently, FSP-27 has been shown to have anti-lipolytic activity
(56–58, 61, 64–66). In cancer cells, FSP-27 is also altered due to
changes in lipid metabolism and is prognostic for lung and
pancreatic adenocarcinoma (10, 67–70). Furthermore,
Vishwajeet Puri and his team found that FSP-27 both directly
inhibits ATGL ground activity and with synergistic EGR-1
inhibits Pnpla2 expression (55, 56). The study found that FSP-
27 binds directly to ATGL through its core structural domain,
aa120-220, inhibiting its triglyceride degrading function and
promoting triglyceride storage. On the other hand, FSP-27
enhanced the binding of EGR-1 in the -46/-34 region upstream
of Pnpla2 and, by doing so, inhibited Pnpla2 expression.
Although the above two studies did not use tumor cell lines,
combined with the existing results of altered FSP-27 expression
in tumor cells, it is reasonable to believe that the FSP-27/EGR-1/
ATGL axis is also present in some cancer cells (Figure 4). It also
needs to be further investigated whether hypoxia induces altered
FSP-27 expression, to what extent it is involved in the regulation
of FSP-27 expression, what role HIF-1 and HIG-2 play in the
altered FSP-27 expression, and whether FSP-27 expression in
tumor cells correlates with the availability of tumor cells to lipids.
ATGL AND TUMOR IMMUNE
MICROENVIRONMENT

Inflammation is a complex protective biological response to
harmful stimuli (including damaged cells, pathogens, and
irritants, etc.), involving immune cells, blood vessels, and
molecular mediators. Inflammation can be broadly divided
into acute and chronic inflammation. Macrophages,
lymphocytes, and plasma cells play a major role in chronic
FIGURE 4 | FSP-27/EG R-1 /ATG L axis. Under nom1al conditions, FSP-27 can bind to the core structural doma in of ATGL, aa 120-220, and inhibit its triglyceride
hydrolysis function. Tn addition, FSP-27 can promote the bin di ng ofEGR-1 to the -45/-34 region upstream of pnpla2, thereby inhibiting ATGL expression.
Ultimately, the intracellular ATGL content decreases, and its activity is reduced, allowing intracellular lipid droplet accumulation. FSP-27, Fat-specific protein 27;
EG R-1, Early growth response protein I; ATGL, Adipose triglyceride lipase; A-BH DS, 1–acylglycerol-3- phosphate 0-acyltransferase; LDs Lipids droplet; F'FAs, Free
fatty acids.
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inflammation, while neutrophils play a significant role in acute
inflammation. In 1863, Rudolf Virchow proposed the hypothesis
that cancer originates at the site of chronic inflammation (71–
73). Currently, 15-25% of human cancers are due to chronic
inflammation (73, 74). The cause of cancer from chronic
inflammation is currently believed to be mainly the continuous
production of ROS and reactive nitrogen species (RNS) by
immune cells at the site of inflammation, which allows the
accumulation of DNA damage and epigenetic alterations in
normal cells, which eventually transform into cancer cells (71,
73, 75). In addition, inflammatory mediators produced in areas
of chronic inflammation, prostaglandins, interleukin 1 beta,
TNF-a, interleukin-8, interleukin-15, and chemokine (C-X-C
motif) ligand 1 (CXCL1) also promote the proliferation and
metastasis of tumor cells (71, 73, 75).

Tumor-associated macrophages (TAMs) are a vital link
between chronic inflammation and cancer. Macrophages
generally originate from bone marrow-derived blood
monocytes (monocyte-derived macrophages) and yolk sac
progenitor cells (tissue-resident macrophages), but the origin
of human TAMs remains debatable (76). Like typical
macrophages, TAMs are divided into M1 and M2 (77). M1 is
thought to have pro-inflammatory and cytotoxic effects
(antitumor), whereas M2 is thought to have anti-inflammatory
(pro-tumor) and promote wound healing and tissue repair. In
the tumor immune microenvironment, TAMs are more often
considered to be M2 (78). TAMs can exert pro-tumor effects
through the secretion of vascular endothelial growth factor, nitric
oxide synthase, and nuclear factor kB (NF-kB) (79, 80), and the
number of TAMs is negatively correlated with the prognosis of
cancer patients (81). Currently, there is growing evidence that
lipids have a significant impact on macrophage function and
differentiation. The accumulation of triglycerides and LDs can be
observed in inflammation-activated macrophages (82–86).
Macrophage activation by Lipopolysaccharides (LPS) was
found to inhibit ATGL-mediated triglyceride hydrolysis by
upregulating HIG-2 in activated macrophages, ultimately
leading to the accumulation of LDs (85). In contrast,
upregulation of HIG-2 expression (31) and accumulation of
LDs (87) was also found in TAMs. The accumulation of lipids
in macrophages with altered lipid metabolism further affects
their function and differentiation. Functionally, elevated FAs
content promotes inflammatory responses in macrophages
(88), while high LDs content attenuates them (83). In HIG-2-
deficient bone marrow cells show a decrease in triglyceride
content with an enhanced inflammatory response (85). The
pro-inflammatory effect of FAs on inflammation may
presumably be due to the fact that elevated intracellular FAs
content increases the availability of FAs as precursors of
inflammatory mediators, such as prostaglandins. However, a
decrease in LDs content due to inhibition of triglyceride
synthesis and an accompanying attenuated inflammatory
response has also been observed in DGAT-deficient
macrophages (89). This contradictory result may be due to the
complexity of the inflammatory response in macrophages, which
is also regulated by a variety of other factors, of which FAs are
Frontiers in Oncology | www.frontiersin.org 6
only one. In contrast, epidermal fatty acid binding proteins were
found to upregulate lipid production of high levels of type-I
interferons b (IFN-b) in TAMs, enhancing the tumor
suppressive effect of TAMs (90). Interestingly, the effect of FAs
metabolism on TAMs seems to depend on the FAs species (90),
with increased metabolism of saturated FAs having pro-
tumorigenic activity while increased metabolism of unsaturated
FAs has tumor-suppressive activity (91). This may be due to the
fact that in cells, unsaturated FAs produce more lipid peroxides
relative to saturated fatty acids, which induce apoptosis. In terms
of the differentiation of TAMs, lipid accumulation can promote
the polarization of TAMs in the tumor microenvironment to the
M2 (92). Furthermore, for example such as, prostate cancer-
derived cathelicidin-related antimicrobial peptide (93), hypoxic
cancer cell-derived oncostatin M and eotaxin (94), and myeloma
derived MIF (95) can also independently polarize TAMs to the
M2. In line with this, in ovarian cancer cells, ATGL and
extracellular signal-regulated kinase 1/2 (ERK1/2) are involved
in Pigment epithelium-derived factor (PEDF)-promoted
polarization of macrophages to M1 (96). This suggests that
lipids can also regulate the differentiation process of TAMs. In
conclusion, the lipolytic process of triglycerides in TAMs plays a
crucial role in both functional and differentiation processes of
TAMs and ATGL, as the enzyme that hydrolyzes triglycerides
must have a non-negligible influence in it. However, further
elucidation of the specific mechanism of ATGL in TAMs is
still needed.
DIFFERENT ROLES OF ATGL IN TUMORS

For different types of tumor cells, ATGL has different roles and
can interact with various intracellular factors (Table 1).
Therefore, we have summarized the roles of ATGL in different
tumor cells in this section.

Breast Cancer
Based on the previous description, the expression of ATGL in
tumor cells in a hypoxic microenvironment is usually decreased
to reduce the intracellular FFAs. In contrast, low intracellular
FFAs in human cells are generally associated with reduced FAO.
Therefore cells are likely to respond to the hypoxic environment
in this way. FAO and ATGL have often been found to have a
promotional effect on breast cancer. The pro-oncogenic effect of
FAO suggests that breast cancer cells require more FAs (112). In
addition, the activation of FAO is often associated with an
increase in the metastatic capacity of breast cancer cells (100).
Breast cancer cells can induce the release of large amounts of FAs
from nearby adipocytes, which they then store in the form of
triglyceride, and later promote the occurrence of non-coupled
FAO through the high expression of ATGL, ultimately increasing
their metastatic ability (100). It seems that a large amount of lipid
is prepared for the upcoming cancer cells at the site of breast
cancer spread. In a mouse model of breast cancer lung
metastasis, ATGL expression is suppressed in neutrophils
located in the lungs of mice, leading to lipid accumulation in
July 2022 | Volume 12 | Article 944025
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neutrophils (97). Lipids stored in neutrophils are transferred to
breast cancer cells that have spread there via the giant cellular
drinking-lysosome pathway, promoting their proliferation and
survival (97). Mechanistically, Src is involved in FAO-induced
metastasis in breast cancer cells (113). In addition, mitochondrial
carnitine palmitoyltransferase 1a (CPT1A) was also aberrantly
expressed in breast cancer cells (114, 115). ATGL is not the only
lipase upregulated in breast cancer cells, where intracellular
Frontiers in Oncology | www.frontiersin.org 7
Lipase member H (LIPH) was also highly expressed in cancer
cells from breast cancer patients (116). LIPH has also been found
to have the ability to increase the metastatic ability of breast
cancer cells (117). However, one study found that when G0S2
was knocked down in MDA-MB-231 cells, the proliferation,
metastasis, and invasive ability of cancer cells were reduced
(118). In triple-negative breast cancer (TNBC), sPLA
can induce polyunsaturated fatty acids (PUFAs) to
TABLE 1 | Role of ATGL in different tumors and the interacting molecules.

Cancer
type

Model Outcome Interacting molecular References

Breast
Cancer

C57BL/6J mice with in situ breast cancer The deficiency of ATGL in lung neutrophils promotes
breast cancer metastasis

prostaglandin E2 (97)
4T-1, MCF-7, E0771, MDA-4175, AT-3
Murine 3 T3-L1 preadipocytes, MCF-10A ATGL promotes tumor progression in breast cancer cells

co-cultured with adipocytes
FABP5, PPARb/d, MAPK (98)

MDA-MB-231, T-47D ATGL inhibition favors tumor cells hGX sPLA (99)
BALB/cJ mice injected TS/A cells through
the catheter

ATGL promotes tumor invasion AMPK/acetyl-CoA carboxylase (100)

ZR-75-1, HMT-3522-T4-2, MCF-7, T47D,
MDAMB-231, TS/A
MCF-7, MDA-MB231 ATGL knockdown attenuates the promotion of breast

cancer cell proliferation and metastasis by adipocytes
CPT1A (27)

Patients and Clinicopathological Data High peri-tumoral ATGL expression in obese patients none (101)
Lung Cancer Frozen tissues of patients with

adenocarcinoma/squamous cell carcinoma
of the lung

ATGL produces pro-tumor effects CHKa2 (102)

HEK-293T, H322, H358
Atgl+/+ ctg, Atgl+/- ctg and Atgl-/- ctg mice ATGL deletion induces tumorigenesis none (18)
A549, HOP62, HOP92 ATGL knockdown inhibits tumorigenesis and metastasis

and promotes apoptosis
G0S2 (103)

A549 Depletion of ATGL facilitates cancer cell invasion SRC (104)
LLC ATGL inhibits tumor proliferation AMPK-mTOR (19)

Ovarian
Cancer

IOSE80, ES2, A2780, HO8910, SKOV3 Upregulation of ATGL expression inhibits cancer cell
growth migration and invasion

NEAT1, let-7g, MEST (105)

Macrophage ATGL has a tumor-promoting effect PEDF (96)
Colorectal
Cancer

Human colon tumor tissue ATGL promotes tumorigenesis ATG2B,PCK2,PGAM1,
SPTLC2,IGFBP1,ABCC3,MYC,
MUC2

(106)
Colon and colonic tumors of high-fat-diet
obese mice
HT29, HCT116, W620
C26, CT26 ATGL inhibits tumor proliferation AMPK-mTOR (19)
HCT116, DLD-1 ATGL inhibits tumor proliferation HIG-2 (34)
HT29 Overexpression of ATG in prostate cancer cells G0S2 (107)

Prostate
Cancer

BPH1, CAFTD1 ATGL possess tumor suppressive effect EPHB2 (7)

Melanoma B16-F10 ATGL inhibits tumor proliferation AMPK-mTOR (19)
Liver Cancer HepG2 ATGL inhibits tumor proliferation AMPK-mTOR (19)

HepG2, Hep3B ATGL promotes tumor proliferation p-AKT (21)
Human HCC samples ATGL inhibits tumor proliferation PPAR-a/p300, p53 (108)
C57BL/6 mice with Diethylnitrosamine
HepG2, Hep3B, Huh7.5
HCC tissues of patients High expression of ATGL in HCC promotes tumor

proliferation
lnc RNA NEAT (109)

HepG2, Huh7, SKHep-1, HCCLM3
Prostate
Cancer

CAFs, LNCaP, PC3 Low expression of ATGL in CAFs PEDF, MTOC (110)
LNCaP The knockdown of ATGL impeded the proliferation and

invasion
ABHD5 (111)

LNCaP Overexpression of ATGL in prostate cancer cells ABHD5 (107)
Cervical
Cancer

HeLa ATGL inhibits tumor proliferation HIG-2 (34)

Renal
Cancer

Caki-1, ACHN ATGL inhibits tumor proliferation HIG-2 (34)

Liposarcoma ATGL KO mice Knockdown of ATGL promotes cancer formation HSL, GPNMB, G0S2 (47)
Pancreatic
Cancer

Patients and clinicopathological data Increased ATGL expression is associated with increased
adiposity and stromal proliferation in patients with PDAC

none (8)
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generate triglycerides or LDs, thus avoiding oxidative stress
caused by PUFAs and thus promoting cancer cell survival.
sPLA can also inhibit the activity of ATGL and prevent the
degradation of PUFAs from triglycerides (99).

Lung Cancer
In lung cancer, the effect of ATGL in cancer cells is ambiguous.
Triglyceride accumulation in LDs and higher levels of cellular
phospholipids and bioactive lipid species (lysophospholipids and
ether phospholipids) were found in A549 lung cancer cells with
knockdown of ATGL (104). A549 cancer cells with concomitant
knockdown of ATGL had a more remarkable ability to migrate,
associated with elevated levels of phosphorylated Proto-
oncogene Src. This mechanism was also observed in breast
cancer cells (113). Although different from the elevation of
ATGL in breast cancer cells, elevated lipid levels are a
common feature of both. However, in a mouse model of lung
cancer, high expression of ATGL can promote tumor
development (103, 119). The reason for this inconsistent result
at the cellular and animal level may be the difference in the
microenvironment in which the tumor cells are located.
Compared to 2D cultured cells, the metabolic profile of 3D
cultured ATGL-KO A549 cells and their microenvironment
more closely resembled the actual situation in vivo (9).

Hepatic Carcinoma
ATGL in hepatocellular carcinoma cells (HCC) appears to be
more involved in cancer cell proliferation than metastasis.
Overexpression of ATGL in hepatocellular carcinoma cells
promotes phosphorylation of p-Akt, which promotes cancer
cell proliferation but does not affect the metastatic ability of
cancer cells (21). Similarly, the long non-coding RNA NEAT1
driven cancer cell proliferation lipolytically by inducing ATGL
expression in a mouse model of in situ hepatocellular carcinoma
(109). However, in another human-derived HCC sample and
induced mouse liver cancer model, ATGL expression was lower
in the human HCC and mouse liver cancer models than in
control tissues. The proliferation rate of HCC was negatively
correlated with ATGL expression. This phenomenon was
attributed to the upregulation of the tumor suppressor p53 due
to ATGL upregulation, mediated by the PPAR-a/p300
axis (108).

Pancreatic Cancer
In pancreatic cancer, tumor progression is closely related to lipid
content and accessibility. Immunohistochemical analysis of 44
tissue samples from patients with PDAC revealed that ATGL
expression was elevated in the tumor stroma of obese patients
with PDAC. Still, ATGL content did not significantly correlate
with tumor size and histological grade, so increased ATGL might
be a critical factor in obesity-induced PDAC (8). In addition,
increased adipocyte infiltration in the pancreas and hypertrophy
of peritumor adipocytes, and increased levels of tumor tissue LDs
formation-related proteins Mannose-6-phosphate receptor
binding protein 1 (TIP-47) and Adipose differentiation-related
protein (ADRP) were also found in EL-KrasG12D/PEDF
deficient mice (120). EL-KrasG12D/PEDF deficient mice
Frontiers in Oncology | www.frontiersin.org 8
develop a more aggressive phenotype of PDAC. Notably,
ATGL levels decrease with PEDF knockdown, suggesting that
ATGL in pancreatic cancer may not have the same pro-
metastatic ability as in breast cancer. Similarly, in another
PDAC mouse model, inhibition of ATGL did not alter the
difference in triglyceride abundance between Hilpda wild-type
and knockdown cells (32). Therefore, in PDAC, ATGL may not
be a critical factor in tumor proliferation and metastasis but
might be a key factor in tumor formation.

Colorectal Cancer
Like its role in breast cancer, ATGL can produce tumor-promoting
effects in colorectal cancer. In colon cancer cells and colon cancer
stem cells, obesity can promote ATGL-mediated LDs utilization for
tumor development (106). Mechanistically, it was found that the
promotional effect of ATGL on colorectal cancer was achieved by
degrading triglycerides and encouraging the expression of genes
related to sphingolipid metabolism and CoA biosynthesis (20).
Although ATGL is associated with sphingolipid metabolism,
ATGL does not regulate the expression of proteins related to
sphingolipid metabolism.

Prostate Cancer
ATGL has no beneficial effect on prostate cancer. DGAT1,
ABHD5, and ATGL are overexpressed in prostate cancer cells
compared to peripheral blood mononuclear cells, and inhibition
of DGAT1 and ABHD5 was found to lead to prostate cancer cell
death (107). In contrast, ABHD5 has also been found to have an
inhibitory effect on the proliferation and invasion of prostate
cancer cells (111), and they also noted that ABDH5 regulates
prostate cancer cells independently of ATGL (121). The role of
ATGL in prostate cancer cells is also regulated by ephrin B2
receptor (EPHB2). EPHB2 acts as EPHB2, a suppressor of
prostate cancer cells, is able to exert its tumor suppressive
effect by inhibiting the activity of lipogenic factors DGAT1,
DGAT2 and promoting the lipolytic factor ATGL, PEDF (7).
The development of prostate cancer cells may also be related to
the surrounding environment. It has been found that the
expression of ATGL and PEDF is lower in prostate cancer-
associated fibroblasts compared to primary human normal
prostate fibroblasts (110). It suggests that there may be more
lipids stored in prostate cancer-associated fibroblasts to facilitate
the development of prostate cancer cells.
PERSPECTIVE

In this review, we have endeavored to summarize the recent
research progress on regulating ATGL-mediated lipid
metabolism pathways in tumor cells and the implications of
ATGL in different cancer types. The expression and activity of
ATGL, a key enzyme of lipid metabolism in cells, directly affect
whether the intracellular energy source is glucose or fatty acids.
Because of the hypoxic conditions in tumors, most tumor cells
tend to attenuate fatty acid oxidation, which reduces oxygen
consumption and adapts itself to the hypoxic microenvironment.
Hypoxia induces the expression of HIF-a and HIG-2, which in
July 2022 | Volume 12 | Article 944025
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turn promotes the expression of PPAR-g, the intracellular
protein responsible for lipid anabolism. G0S2, as a PPAR-g
target gene, directly inhibits the activity of ATGL. In addition,
HIG-2 was also found to inhibit ATGL activity and directly
reduce the intracellular lipolytic process. Although this process
has been validated only in adipocytes, there is reason to believe
that this approach plays an equally important role in adapting
tumor cells to the hypoxic microenvironment. Based on these
two pathways, ATGL is expected to express low in tumors and
negatively affects tumor development. In practice, however, it
was found that ATGL is not lowly expressed in all cancer cells as
not all cancer cells have a hypoxia-induced inhibition of fatty
acid oxidation. In particular, ATGL levels were much higher in
breast cancer cells than in normal cells. The active intracellular
FAO also increased the metastatic ability of breast cancer cells.
This suggests that cancer cells’ rapid proliferation and metastasis
possibly need FAO, not glycolysis, to provide sufficient energy.
Studies also revealed that the pro-tumorigenic effect of ATGL is
often correlated with whether the location of tumorigenesis has
access to large amounts of lipids. For example, breast cancer is
surrounded by cells containing large amounts of lipid adipocytes
(97), and pancreatic cancer stroma contains large quantities of
lipids (8). However, it is essential to note that endogenous and
exogenous fatty acids may bring about different or even opposite
Frontiers in Oncology | www.frontiersin.org 9
effects on cancer cells, according to the analysis of Marteinn Thor
Snaebjornsson et al. (122). Therefore, more studies are needed to
explore the impact of exogenous lipids on the role of ATGL
in tumors.

Alterations in ATGL are the consequence of cellular
carcinogenesis but not the inducement like proto-oncogene
Ras. Tumor cells adjusting ATGL are more like a strategy to
adapt to hypoxia. Nowadays, there are many studies on the role
of ATGL in cancers, but there is a lack of studies on transcription
factors that target Pnpla2 on the changes in the ubiquitination
process of ATGL in tumor cells. Therefore, more studies are
needed to investigate the alteration of ATGL expression and
degradation in tumor cells compared to normal cells,
contributing to the development of antitumor drugs targeting
related proteins in the future.
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