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del Cuaternario de Fuego-Patagonia y Antártica (CEQUA), Punta Arenas, Chile
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Abstract

Applications of network theory to microbial ecology are an emerging and promising

approach to understanding both global and local patterns in the structure and interplay of

these microbial communities. In this paper, we present an open-source python

toolbox which consists of two modules: on one hand, we introduce a visualization module

that incorporates the use of UMAP, a dimensionality reduction technique that focuses on

local patterns, and HDBSCAN, a clustering technique based on density; on the other hand,

we have included a module that runs an enhanced version of the SparCC code, sustaining

larger datasets than before, and we couple the resulting networks with network theory analy-

ses to describe the resulting co-occurrence networks, including several novel analyses,

such as structural balance metrics and a proposal to discover the underlying topology of a

co-occurrence network. We validated the proposed toolbox on 1) a simple and well

described biological network of kombucha, consisting of 48 ASVs, and 2) we validate the

improvements of our new version of SparCC. Finally, we showcase the use of the MicNet

toolbox on a large dataset from Archean Domes, consisting of more than 2,000 ASVs. Our

toolbox is freely available as a github repository (https://github.com/Labevo/MicNet

Toolbox), and it is accompanied by a web dashboard (http://micnetapplb-1212130533.us-

east-1.elb.amazonaws.com) that can be used in a simple and straightforward manner with

relative abundance data. This easy-to-use implementation is aimed to microbial ecologists

with little to no experience in programming, while the most experienced bioinformatics will

also be able to manipulate the source code’s functions with ease.

Introduction

Microbiomes are not a mere collection of independent individuals, but rather, ensembles of

intricate constituents, biotic and abiotic, that create highly complex systems where emergent

interactions, structures, and functions are crucial for the survival and performance of the

whole. The inference of microbial co-occurrence networks may help in understanding
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emergent properties of these systems [1]: unravelling microbial interactomes [2], evaluating

the effects of stress and perturbations in community stability [3], and providing a wide array

of novel applications including diagnostics of environmental quality [4] and pathogen identifi-

cation in disease management [5].

One promising contribution to unravel microbial ecological associations has been the appli-

cation of network science as an increasingly used alternative to study complex systems [6],

whose methods can handle the scale and diversity of high-throughput biological data [1]. Sev-

eral approaches have been developed to infer microbial ecological associations, such that pat-

terns can be visualized and analyzed within the schematic of a network. One of the most used

family of methods is the inference by co-occurrence and correlations, such as: Pearson [7] or

Spearman [8] correlation coefficient, Jaccard distance [9] or Bray-Curtis dissimilarity [10],

Local Similarity Analysis [11, 12], Maximal Information Coefficient [13], MENA that adapts

Random Matrix Theory [14, 15], SparCC based on Aitchison’s log-ratio analysis [16, 17], and

CoNet which combines information of several metrics [18, 19]. Other types of techniques,

such as ordinary differential equations (ODE) models [20] have also been used as an alterna-

tive to capture microbial interactions, amongst which the generalized Lotka Volterra equations

(gLV) are one of the most used [21] for two-species systems, and potentially useful for three-

species systems or larger [22]. Finally, MetaMIS [23], LIMITS [24], and some variations which

integrate forward stepwise regressions and bootstrap aggregation [2], offer a different imple-

mentation of the gLV equations.

Although the potential value of microbial co-occurrence networks is known, there are sev-

eral caveats and limitations. To start with, high-throughput genomic data is often associated

with low annotation resolution at the species level, which makes it difficult to differentiate

between strains and species. This has led to the usage of ASVs (Amplicon Sequence Variants)

or OTUs (Operational Taxonomic Units) to obtain a more reliable account of discrete ecologi-

cal players, leading to hundreds and sometimes thousands of potential organisms [5, 25].

However, there are just a few techniques which enable the use of thousands of OTUs/ASVs in

the construction of networks for the most diverse ecosystems, such as soil [19]. Furthermore,

microbial abundances are normally presented as relative abundance matrices, which creates

compositional data sets that are often sparse [1]. Some existing methods are commonly known

to provide an efficient approach for compositional effects, spurious correlations, and sparse

data handling; nonetheless, biological interaction inferences from compositional data alone

should be taken with caution (see Weiss et al. (2016) [22], Dohlman & Shen (2019) [2], Hir-

ano & Takemoto (2019) [26] for a review on performance). Finally, noise or contamination

are expected not be part of the real system portrayed in the network, and the identification of

taxa that are not an integral part of a community could be essential for accurate biological

interpretations [22].

The aforementioned issues have led to highly divergent results while trying to infer direct

correlations between OTUs/ASVs [1]. Therefore, algorithms with a reliable statistical approach

are needed. In addition to the intrinsic limitations of inferring interactions from microbial

community data, there is a gap in the analysis of networks to obtain most of the biologically

relevant information: many of the existing methodologies are not easily reachable to the

research community, nor do they implement posterior analysis to retrieve information of the

co-occurrence network in a clearly and accessible format. Furthermore, at the interpretation

level, biologically-meaningful inferences derived co-occurrence networks is still a challenge to

be untangled, as signals from co-occurrence may suggest a wide array of phenomena beyond

interspecific ecological interactions [1], and most network metrics have debatable or unknown

links to relevant concepts in microbial ecology [1, 4, 27]. In Table 1, we present a summary of

several network analysis metrics and their current biological interpretation.
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Table 1. Description of several network metrics and properties currently used in biological networks, including some of their prospective interpretations.

Metric/Network property Definition Prospective biological Interpretation in microbial co-

occurrence networks

References

Total Nodes/Vertices Total Entities within a network. Total number of taxa (species, OTUs/ASVs) in a

network (species richness); number of connected taxa;

common measure of ecosystem state in response to

perturbations

[4, 28–30]

Edges, Links, Relationship,

connection

Relationship or associations between nodes. For co-

occurrence networks, relationships exist between pairs

of nodes.

Ecological associations, including interspecific

interactions, niche overlap, cross-feeding, abiotic co-

occurrence drivers, among others

[1, 4, 31, 32]

Density, Connectance,

Complexity (network scale),

Interactions diversity, Probability

of connection

Fraction of edges that are actually present in the

network with respect to all possible edges.

Reflection of the incidence of ecosystemic processes;

Possible measure of ecological resilience; organization

level of the community; measure of complexity in the

microbial network

[4, 28, 33–36]

Connectivity Total number of relationships in a network Total number of ecological associations within a

biological network

[28, 37]

Connected component Sets of nodes, where every pair of nodes have a path

between them.

Microbial network where every OTU/ASV have an

indirect ecological association with every other OUT/

ASV

[27, 38–40]

Average degree, Complexity

(taxon scale), Connectedness

(normalized degree)

Average number of edges connected to a node; average

number of neighbors for a given node.

Measure of complexity in the microbial network [4, 27, 35, 36,

41]

Degree centrality Centrality of a node based on degree. i.e., nodes with

higher degree are more central to the network. It is a

measurement of popularity.

Keystone taxa; taxa that interacts the most within the

community

[27, 36, 42, 43]

Closeness centrality Centrality of a node based on its proximity to all other

nodes in the network. It is a measure of broadcaster

nodes, that is, nodes that can influence the network

fastest

Keystone taxa; taxa that, if perturbed, influence the

network the fastest.

[27, 43, 44]

Betweenness centrality Centrality of a node based on how often a node is

situated on paths between other nodes. It is a

measurement of bridge nodes

Keystone taxa; taxa more important in communication

in the network.

[4, 27, 41, 44]

PageRank Centrality measure that computes a ranking of the

nodes based on the structure of the incoming links. It

identifies hub nodes.

Keystone taxa [45–47]

Negative:Positive relationship

ratio, Behavior

Ratio of positive and negative relationships. If > 1

there are more negative interactions, if < 1 there are

more positive interactions present in the network.

Potential measure of cooperation level within the

community; measure of community stability (ecological

resilience and resistance)

[3, 4, 36, 41,

48–51]

Average shortest path length (AL),

Average geodesic path

Average number of steps in the shortest paths from one

node to another. It is calculated for all pairs and then

averaged.

Microbial networks usually present small AL: measure

of network’s response speed to perturbations

(ecological resilience); community cohesion; measure

of information and substance flow

[4, 35, 37, 42,

52–54]

Diameter, Longest geodesic path Length of the longest finite geodesic path anywhere in

the network.

Measure of information and substance flow [27, 36, 42, 54]

Small world index (SW) Index based on a tradeoff between high clustering

coefficient and short path length, the defining

characteristics of small-world networks. Networks with

SW > 1 are said to have more “small-worldness”.

Microbial network topological property. Small-world

microbial networks suggests that any two members in

the community could interact with each other through

a few intermediaries.

[6, 55]

Clustering coefficient, Transitivity Average probability that two nodes neighbors of a third

node are also connected between each other.

Presence of tripartite relationships (e.g., higher-order

biological interactions) within the community; possible

measure for redundance.

[4, 27, 36, 37,

42, 53]

Modularity, Assortativity (when

normalized)

Quantification of compartmentalization into

subgroups. Loosely speaking, high modularity means

that there are more edges within groups and fewer

between groups.

Modules/Clusters have been interpreted as niches;

shared ecological functions among taxa; spatial

compartmentalization; similar habitat preferences;

measure of community stability (ecological resilience

and resistance)

[1, 3, 18, 27,

36, 37, 42, 56–

60]

Triad motifs and Balanced triads

fraction

Motifs are overrepresented subnetworks (patterns).

Triad motifs are classified by balanced or imbalanced

based on the relationship types (positive or negative).

Motifs can be relevant in information flow (e.g.,

quorum sensing); potential biomarkers for microbiome

perturbed state.

[1, 36, 61–63]

https://doi.org/10.1371/journal.pone.0259756.t001
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In an attempt to capture the most relevant information from a microbial community in their

co-occurrence network and to try to overcome some common issues, we have developed the

MicNet toolbox, an open source code to create, analyze and visualize microbial co-occurrence

networks. We implemented UMAP [64], a dimension reduction algorithm which has been pre-

viously used to identify unique clusters of data in several genomic projects [65, 66], given that it

is both scalable to massive data and able to cope with high diversity [64]. Moreover, we coupled

UMAP with different types of projections and HDBSCAN [67], an unsupervised clustering

algorithm, able to identify both local and global relationships, as well as filtering out noise.

Finally, we used and enhanced version of SparCC, a compositionally aware algorithm, to infer

correlations for network construction [17, 22]. Additionally, the toolbox includes several analy-

ses of network theory to inspect the topological properties, robustness, structural balance, com-

munities, and hub nodes that arise in microbial co-occurrence networks. The development of

the MicNet toolbox, as an integration of several analyses, attempts to provide an easy-to-use

and straightforward implementation towards a comprehensive description of potential local

and global patterns for a better understanding of microbial community systems.

Design and implementation

Python implementation

The code of the MicNet toolbox was built using python 3.9 [68]. The MicNet toolbox uses sev-

eral standard packages in the Python ecosystem for matrices (pandas v1.3.2 [69, 70], numpy

v1.20.3 [71], and dask v2021.8.0 [72]), to improve performance (numba v0.53.1 [73]), for tem-

porary storage (h5py v3.2.1 [74]) and to create visualizations (bokeh v2.3.3 [75]). UMAP and

HDBSCAN were implemented using packages umap-learn v0.5.1 [64] and hdbscan v0.8.27

[67], whereas network analyses were performed using functions from the networkx v2.6.2

package [76]. In the following sections we explain the different components implemented in

the MicNet toolbox which are summarized in Fig 1.

Input data

MicNet toobox input data consists of relative abundance/compositional datasets from high-

throughput sequencing methods, such as metagenomics or metabarcoding. Prior to building an

abundance data table, raw assembled sequences should be OTU/ASV clustered. MicNet

toolbox currently supports abundance data as .tsv files (separated by tabs) or .csv files (separated

by commas). In the web dashboard, input abundance data table is filtered by default, removing

singletons (< 5 total counts among all samples) and unique (only appearing in one sample)

entries. If the user desires, singleton filtering could be deactivated. For SparCC and UMAP/

HDBSCAN the first column of the table should contain the OTU/ASV ID and the following col-

umns the abundance data. Taxonomic information is optional in the input abundance table since

poor taxonomic assignment might hinder the interpretation of results. Hence, the user might pre-

fer to work only with ASV/OUT IDs. If the user wishes to include taxonomic information in the

resulting output, taxonomic annotation for the given OUT/ASV can be included in the second

column, with “;” as a delimiter between each taxonomic hierarchy (e.g., Bacteria;Cyanobacteria;

Cyanophyceae;Nostocales;Nostocaceae;Nostoc). In the case of network analyses, the correlation

matrix output by SparCC should be input alongside the UMAP/HDBSCAN output datafile.

Data visualization

UMAP and HDBSCAN implementation. A common first step when visualizing high-

dimensional data is applying a dimensionality reduction technique. In this toolbox, we
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Fig 1. Overview of MicNet toolbox. MicNet Toolbox was designed for visualizing, creating and analyzing microbial

networks obtained from compositional data (obtained through high-throughput sequencing methods such as

metagenomic/16S surveys). Data filtering for singletons and low abundance taxa/ASV/OTU is supported if required.

MicNet Toolbox includes two independent main modules: a data visualization module which uses UMAP and

HDBSCAN to find local patterns in the data, and a network analysis module which implements an enhanced version

PLOS ONE Python toolbox for microbial community analysis
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implemented UMAP (Uniform Manifold Approximation and Projection), a non-linear

dimension reduction technique that favors local data preservation, rather than global data,

allowing a better identification of finer scale patterns [64]. We coupled UMAP with

HDBSCAN (Hierarchical Density-Based Spatial Clustering of Applications with Noise), a hier-

archical clustering algorithm that partitions the data based on their density [67, 77]. This clus-

tering technique has been shown to perform well when performed in combination with

UMAP dimension reduction [78] and it has been tested with several dataset types, including

genetic data, grouping genes into the correct known classes [79]. Thus, we implemented

HDBSCAN on the data obtained from UMAP analysis, which represents the abundance data

in a reduced space of two dimensions. HDBSCAN analysis not only classifies OTUs/ASVs as

belonging to a cluster but also as noise (defined as any point that was not selected in any of the

clusters) and outliers (detected with the GLOSH outlier detection algorithm, which works

with local outliers).

When running UMAP we set as default a minimum distance of 0.1, number of components

of 2, a Helligner output metric and number of neighbors of 15. In the case of HDBSCAN, the

default parameters when running MicNet are Bray-Curtis metric, minimum cluster size of 15,

minimum sample size of 5 and quantile limit of 0.9 for outlier detection. For our different

datasets, the number of neighbors (UMAP), and minimum cluster/sample size (HDBSCAN)

parameters were set depending on the input microbiome dataset. We used Bray-Curtis dissim-

ilarity as the distance metric for UMAP, as it is a standard metric for biological datasets. In the

web dashboard, UMAP and HDBSCAN parameters can be modified by the user to visualize

the results according to each set of microbiome data.

New implementation of SparCC

To obtain the correlation matrix from relative abundance data, we implemented a modified

version of the SparCC algorithm, a robust approach to discard spurious correlations when

dealing with compositional data [17, 22]. Although the original SparCC algorithm was not

altered, several modifications were made to improve and scale the SparCC estimation matrix.

We made three main changes to the original code; first, the code changed from Python version

2.7 to 3.9. Second, we use Numba and Dask in some parts of the matrix processes, namely

functions or operations, with two main improvements: parallelization of operations and scal-

ability in the size of the estimated matrices. Finally, the original SparCC version stores each

estimation step in RAM, as arrays in NumPy. Although storing in RAM is efficient for small

data sets, with large data the required memory increases rapidly depending on the interaction

numbers and the size of the dataset. Thus, we store each estimation step on disk as hdf5 binary

format. These changes made it possible to calculate the SparCC estimates with good time per-

formance in easily accessible computing resources. SparCC p-value test on the inferred corre-

lation was not modified, it was calculated with a Monte-Carlo simulation (with default n = 50)

as done by Friedman & Alm (2012) [17] and the default value is to calculate one-sided p-val-

ues, although this can be modified by the user.

To set SparCC parameter values, we perform a parameter search in our more complex

study case from the communities reported by Espinosa-Asuar et al. (2021) [80]. We per-

formed an independent parameter sweep on each parameter, varying the exclusion threshold

from 0 to 1 in steps of 0.1, the number of iterations from 10 to 100 in steps of 10 and the

of SparCC to create a co-occurrence network; network analyses such as topology comparison, and community analysis

are included in the aforementioned network analysis module. If desired by the user, HDBSCAN clustering output can

be integrated into the network analysis module.

https://doi.org/10.1371/journal.pone.0259756.g001
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exclusion number from 10 to 100 in steps of 10. For each parameter value, we calculated the

number of correlations found and selected the parameter value when this number stabilized

(S1 Fig). The final parameter values used in the databases presented here were: 50 iterations,

an exclusion number of 10, exclusion threshold of 0.10 and 100 simulations for p-value calcu-

lation. However, this can be modified by the user both in the dashboard and when running the

code from the github repository.

Network analyses

Network analyses were performed to characterize both the overall structure and the local inter-

actions of the microbial co-occurrence network, in which each OTU/ASV is represented as a

node and the correlations found by SparCC as undirected weighted edges, such that an edge

between two nodes implies a relationship between the two corresponding OTUs/ASVs. Given

that most network analyses can only handle positive interactions, we normalized the SparCC

correlation matrix from -1 to 1 to a range from 0 to 1, except for the structural balance analysis

which directly uses the positive and negative correlation values. It is important to note that the

normalization of values does not change the distribution of the correlation values, they are just

mapped to another scale to allow running network analyses that do not handle negative values.

All available network analyses in the MicNet toolbox are described as follows.

Network topology comparison. Networks have several large-scale structural measure-

ments to characterize their topology. For this purpose, MicNet calculates the following struc-

tural metrics: 1) network density, using networkx function nx.density, 2) average degree,

calculated as the mean of all nodes degree using numpy mean function, 3) degree standard

deviation, using numpy std function, 4) ratio of positive-negative relationships calculated sim-

ply as the number of positively weighted edges divided by the number of negatively weighted

edges, 5) average shortest path length using nx.average_shortest_path_length, 6) clustering

coefficient nx.average_clustering function, 7) modularity, calculated with function nx.modu-

larity, using as network modules those obtained with the nx.greedy_modularity_comminuties

algorithm, and 8) the diameter, which was calculated using nx.diameter function. Finally, we

have added a custom function that calculates a small-world (SW) index as suggested by

Humphries & Gurney (2008) [55]. The SW index is calculated as:

SW ¼
cc=ccrand

l=lrand

Where l and cc are the average shortest path length and clustering coefficient of the experimen-

tal co-occurrence matrix, respectively. Analogously, lrand and ccrand are the average shortest path

length and clustering coefficient, accordingly, of a comparable random network with the same

number of nodes and density. The random network was built using the function nx.erdos_renyi_-

graph. This is done several times, with default n = 50, and the mean value of SW is returned.

MicNet includes the computation of the distribution of several of this large-scale metrics

under the assumption that the underlying topology is: 1) a random Erdos-Renyi network [81]

built using function nx.erdos_renyi_graph, 2) a small world Watts-Strogatz network [82] built

using nx.watts_strogatz_graph function, or 3) a scale-free Barabási-Albert network [83] built

using nx.barabasi_albert_graph function. A short description of these canonical topologies can

be found in Fig 2. This allows the comparison of the query data against the different topolo-

gies. These simulated networks are built with the same number of nodes, density and average

degree as the experimental data, and correlations are drawn from a uniform distribution from

-1 to 1. Finally, the simulated networks are made symmetrical to be comparable with the

SparCC output correlation matrix.
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Degree distributions can also be used to discriminate between network topologies. Thus, we

have included in the MicNet toolbox a function that plots the Complementary Cumulative Distri-

bution Function (CCDF) of the degrees of the given network and compares it with the CCDF of

a simulated comparable random, scale-free and small-word network on a log-log scale. To calcu-

late the CCDF we first divide the range of the degrees into bins; for each bin we obtain its proba-

bility as frequency/total. We used this discrete definition of the Probability Density Function

(PDF) to calculate the Cumulative Density function (CDF) as the cumulative sum of the PDF:

CDFi ¼
Xi

k¼1

xk

where xk is the PDF of each bin k previously defined, such that the CCDF is calculated as:

CCDF ¼ 1 � CDF

Fig 2. Description of three canonical network topologies. Random, scale-free, and small-world topologies have different network properties. A brief description along

with their type of degree distribution in shown.

https://doi.org/10.1371/journal.pone.0259756.g002
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We used CCDF since it has been suggested as an easier way to visualize the difference

between degree distributions [84, 85].

Community analysis. To analyze subnetworks, we used two ways of dividing the network

into subunits: 1) We used Louvain method to detect communities in networks (using python-

louvain library [86]), and 2) we used the clusters found with clustering algorithm HDBSCAN.

Each subnetwork’s nodes and edges were isolated as a subnetwork using function nx.subgraph,

and then for each we obtained the following metrics (also used for network topology analysis):

total number of nodes, total number of relationships, density, average degree, and clustering

coefficient. Finally, we characterize the diversity of each subnetwork by looking at the total

number of different taxa present in each subnetwork at the phylum level.

Percolation analysis. Depending on the network structure, networks can be more or less

robust to disruptions. Networks are usually formed by a giant component, which includes

between 50% and 90% of the nodes. The formation and dissolution of this giant component is

called percolation transition in network theory [87]. The percolation approach consists of

removing nodes and their corresponding edges and analyzing how much the network’s proper-

ties are disrupted [88]. The percolation simulation implemented in MicNet consists of n itera-

tions; in each iteration a percentage of the nodes (with default value of 0.1, but this can be

specified by the user) is removed along with all of their edges. After removing the nodes and

corresponding edges, the following metrics are calculated for the remaining network: density,

average degree, number of connected components (this last one calculated using the nx.connec-

ted_components function), size of giant component, fraction of nodes belonging to the giant

component, the communities found by the python-louvain algorithm and the network modu-

larity. We implemented several percolation approaches: 1) random percolation, in which nodes

are removed randomly; 2) centrality percolation, in which nodes are removed by centrality

(whether degree, closeness or betweenness centrality), higher values first; and 3) group percola-

tion, where groups of nodes are removed according to a grouping variable provided, such as

taxonomic groups or HDBSCAN groups. Consequently, network robustness to different types

of disruptions could be assessed by looking at changes in different network metrics.

Structural balance analysis. Structural balance analysis finds all triangle motifs in the net-

work, that is, nodes that are interacting in triads, and then classifies them as balanced based on

the simple analogy that ‘‘my friend’s friend is my friend” and ‘‘my friend’s enemy is my

enemy” [89, 90]. This leads to classifying triads of interactions as balanced if they meet this cri-

terion, or as imbalanced otherwise Fig 3. A network is considered to be balanced if most triads

found in it are balanced. To calculate structural balance, we found all triads in the network

using function nx.cycle_basis, and keeping only the cycles of length three. Then, we classified

the found triangle motifs into balanced or imbalanced, depending on their mutual correla-

tions. The output of the analysis is a percentage of balanced and imbalanced triangles with

respect to all triangles found, and the exact percentage for each of the four types of triangles

displayed in Fig 3.

Potential key taxa analysis. Four different centrality measures were implemented to char-

acterize each node (OTU/ASV): degree centrality using function nx.degree_centrality,

betweenness centrality using function nx.betweenness_centrality, closeness centrality using

function nx.closeness_centrality and PageRank using function nx.pagerank. When running

the code, a dataset is returned with each centrality metric for each node.

Dashboard interface

In addition to the freely accessible source code at the github repository, we have also developed

a web dashboard at http://micnetapplb-1212130533.us-east-1.elb.amazonaws.com that can be
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used to run most of the analyses presented here. The dashboard consists of three main parts: 1)

UMAP and HDBSCAN, 2) SparCC and 3) Network analyses. In the first component, the raw

abundance data should be input (see Input Data section), and several parameters, as well as

normalizations, for UMAP and HDBSCAN can be modified as desired. This first component

returns an interactive visualization of the UMAP plot along with HDBSCAN clusters identified

by color. Both the resulting plot and the file detailing cluster belonging can be downloaded

from the dashboard.

The second component is for the estimation of the co-occurrence network with

SparCC. In this section, abundance data should be input, and parameters can also be

adjusted by the user. The resulting correlation matrix can be downloaded from the dash-

board. Finally, the third component includes the post-processing analyses of the co-occur-

rence network. Thus, the input of this section should be the matrix obtained from the

previously defined SparCC component or any square correlation matrix, and the UMAP/

HDBSCAN output file. When run, this section allows the user to obtain the large-scale

metrics of the network, the structural balance percentages, descriptions of the communi-

ties found, and two network graphs where the size of the node indicates degree centrality,

green edges indicate positive relationships between two nodes, whereas red edges indicate

negative ones. Finally, in the graph named HDBSCAN the color of the nodes refers to the

HDBSCAN cluster they belong to; whereas in the graph named Community the colors

indicate the color of the community they belong to, based on Louvain clustering algo-

rithm. When the network of interest consists of less than 500 nodes an interactive visuali-

zation plot is deployed, but for larger networks a static plot is returned, given limited

computational resources.

For the other network analyses presented, such as percolation analysis and topology com-

parison, or if the user wishes to run the complete pipeline directly with code, we have also pro-

vided a package called micnet that can be install via pip. All the functions necessary to run the

complete example of Kombucha are available in the micnet package and their usage is

explained in a notebook present in the github repository of the MicNet toolbox. It should be

noted that, if more computational resources are needed, the dashboard itself can also be run

after downloading the MicNet toolbox from github, creating the conda environment and

deploying it with streamlit as suggested in the readme file.

Fig 3. Classification of triad motifs according to structural balance theory. Balanced or imbalanced criterion is assigned according to their mutual correlations.

https://doi.org/10.1371/journal.pone.0259756.g003
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Validations

Modified SparCC. We performed two validations with simulated communities. We vali-

dated the new version of SparCC on the dataset provided by Friedman & Alm (2012) [17],

which consists of 50 OTUs in 200 samples drawn from a multinomial log-normal distribution.

For this, we compared the real correlations to the estimations performed by SparCC, and then

we calculated the RMSE (Root Mean Square Error). Secondly, to corroborate that our imple-

mentation of SparCC does indeed scales better to larger datasets than the previous version, we

compared the execution times and the RAM consumption between our new version and the

previous version of SparCC for datasets containing from 50 to 2600 OTUs.

Biological validation: Kombucha consortium. To further authenticate MicNet Toolbox’s

approach to analyze microbial co-occurrence networks, we needed to see if biological interac-

tions previously described by experimental work could be replicated in the network. For this,

we make use of the kombucha dataset described in Arıkan et al. (2020) [91]. Test data was

downloaded from the European Nucleotide Archive (ENA) at EMBL-EBI under the accession

numbers ERP104502 (https://www.ebi.ac.uk/ena/browser/view/ERP104502) and ERP024546

(https://www.ebi.ac.uk/ena/browser/view/ERP024546). The raw 16S amplicon reads were fil-

tered, processed and annotated with QIIME 2 [92] and DADA2 [93]. Abundance and taxon-

omy for each ASV cluster was acquired. The obtained abundance table with all samples was

filtered, as singleton and unique counts were removed from the data, as suggested by Berry &

Widder (2014) [25]. Filtering unique and singletons resulted in 48 ASVs. For the visualization

module, UMAP parameters were set as follows: number of neighbors of 5, minimum distance

of 0.10, number of components of 2 and an Eucledian metric. In the case of HDBSCAN the

parameters were: minimum cluster size of 5, minimum sample size of 3 and Bray-Curtis met-

ric. Network construction and network analyses were performed as described in previous sec-

tions. The raw data from the kombucha database is in the github repository so that the main

results can be replicated and the user could interact with them in the dashboard.

Case study: Archean Domes
A 16S amplicon dataset was provided from a highly diverse microbial community named

Archean Domes. This dataset comes from a microbial mat located in the Cuatro Ciénegas

Basin (CCB), Coahuila, Mexico (coordinates 26˚49’41.7’’ N, 102˚01’28.7’’ W). The sampling

used in this case study, which consists of ten samples along a 1.5 m transect, represents a natu-

ral community with more than 6,000 ASVs [80]. Compositional data was acquired as raw

reads form 16S amplicon sequencing. Reads were filtered and processed for clustering and tax-

onomic annotation in QIIME 2 platform, as shown by the authors [80]. Singletons and unique

counts were subsequently filtered as suggested, and consequently, 2,600 ASVs remained [25].

The ASV abundance matrices along with a taxonomic annotation for these sequences were

used as input for the MicNet toolbox. For the visualization module, UMAP and HDBSCAN

parameters were set as follows: number of neighbors of 15, minimum cluster size of 15, and

minimum sample size of 5. Network construction and analyses were implemented as described

in previous sections.

Results

Validations

The enhanced SparCC. To validate that the modifications performed to SparCC did not

affect its performance, we ran our version of SparCC on the dataset provided by Friedman &

Alm (2012) [17]. We compared our estimated correlation with their true basis correlation
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(Fig 4A and 4B). We found an overall RMSE of 0.08, and a consistent value of RMSE when

estimating small and large correlation values from the simulated samples (Fig 4C). Thus,

although the original pipeline of SparCC was not modified, by implementing several tech-

niques that parallelized different parts of the code, our implementation of SparCC can now be

used for large databases in a reasonable amount of time with relatively small RMSE.

We then moved on to characterize the execution times and RAM consumption of the new

SparCC version in comparison to the previous one. In Fig 5 we show that for relatively small

datasets, that is, those containing less than 1,000 OTUs, both versions do similarly in terms of

execution times, with the previous version of SparCC being slightly faster. However, for larger

datasets, the execution time of the algorithm increases in an exponential fashion, taking

approximately 9 hours to run the largest dataset we had of 2,600 OTUs. In comparison, the

execution times of the new version of SparCC scales better to larger datasets, with an execution

time of around 2.5 hours for the 2,600 OTUs dataset. The consumption of RAM memory is

more less constant in both versions, but there is a higher RAM consumption in the new ver-

sion of SparCC as a result of the parallelization of some processes of the algorithm. However,

Fig 4. SparCC validation. The modified version of SparCC was validated using the database provided by Friedman & Alm (2012) [17]. A. Comparison of the estimated

correlation with the real correlation. B. Histogram of the estimation error produced with the new SparCC version. C. RMSE across different absolute values of

correlations, the overall RMSE error was 0.08 shown in the dashed red line.

https://doi.org/10.1371/journal.pone.0259756.g004
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we can see that the RAM consumption does not grows exponentially with the size of the data-

set and it has the advantage that by parallelizing some processes the execution time is signifi-

cantly reduced.

Biological validation: The kombucha consortium. To demonstrate how MicNet tools

could infer ecological associations, we used a kombucha data set to replicate main global and

local behavior. Kombucha is a simple and well-studied microbial consortium of bacteria and

yeast, which grow as biofilm due to cellulose production from acetic acid bacteria (AAB) [91,

94], but also develops as a liquid consortium. This consortium has been suggested as a conve-

nient tractable system, whose general cooperative and antagonistic multi-species interactions

have been previously described [94–96]. After filtering singletons and unique taxa from the

raw data, only 48 ASVs remained in the analysis, corresponding to five annotated bacterial

taxa and three fungal taxa.

As MicNet pipeline suggests, first, the community was visualized and analyzed with UMAP

and HDBSCAN to uncover global patterns and noise taxa. Clusters from HDBSCAN showed

one main group containing almost all ASV (34 of 48), a small group with 12 ASV and 2 ASV

classified as noise shown in purple (Fig 6C). This could refer to a close-interacting community

where highly stratified interactions are not common. Since the kombucha community has sim-

ilar compositions in both homogeneous liquid and biofilms [91], physical closeness between

all organisms is expected; this was reflected in the formation of one main group with the

HDBSCAN algorithm. We then obtained the co-occurrence matrix of the kombucha samples

using our modified version of SparCC. S2 Table shows the main metrics of the kombucha net-

work and Fig 6A and 6B show the resulting co-occurrence network.

The resulting co-occurrence network was indeed a relatively connected one, with a connec-

tance of 0.23. This is reflected in the high average degree, which indicates that each ASV is

related on average with around 10 ASVs out of the 48 that are present in the community.

Highly connected networks could point to a more homogenous environments, including liq-

uid consortiums and slightly stratified biofilms in which kombucha develops, as opposed to

more stratified environments, such as soil and microbial mat communities. The kombucha

Fig 5. Comparison of execution times and RAM consumption between SparCC version. A. Execution time in minutes for datasets ranging from 50 to 2600 OTUs for

the previous version of SparCC (orange) and the modified version (blue), B. RAM consumption in MB for the old and new version of SparCC for datasets ranging from 50

to 2600 OTUs.

https://doi.org/10.1371/journal.pone.0259756.g005
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consortium is the result of a metabolic interplay between its microbial consortium, and though

cheaters and antagonistic relationships are known [97], more cooperative relationships have

been reported [94, 95]. In fact, the network did show slightly more positive (55%) than nega-

tive relationships (45%), and a major contribution due to mutualist or commensalist interac-

tions is expected.

We perform a topology comparison analysis to explore if the kombucha consortium fits

within three canonical networks. Based on metrics bootstrapping from comparable networks,

the kombucha network’s degree standard deviation, average path length, SW index suggest

Fig 6. Kombucha microbial network. A. SparCC co-occurrence network, where colors indicate Louvain groups. B. SparCC co-occurrence network, where

color indicates the resulting HDBSCAN clusters. In purple is shown the group depicted as noise. C. UMAP and HDBSCAN results show one main group

and a smaller one of 12 ASVs.

https://doi.org/10.1371/journal.pone.0259756.g006
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some degree of small-worldness [55] (Fig 7A). Additionally, comparison of kombucha CCDF

with these simulated networks’ CCDF suggest that the degree distribution of kombucha is not

following particularly any specific canonical topology, although it appears to fit best with a ran-

dom network (Fig 7B). These results are consistent, as kombucha medium is a non-stratified

environment when it develops as liquid consortium, explaining the random properties, but

still a stratified microbial consortium when developed as biofilm, explaining the scale-free

properties. Thus, kombucha community plausibly shows properties in which microorganisms

are adapted to biologically interact with each other in both homogeneous or heterogeneous (to

some degree) structures. Thus, real data rarely conforms to a single mathematical topology,

but comparing the data’s metrics and degree distribution can hint towards one or another

structure and give us an idea of which metrics are better to discern between topologies.

Although some biological interactions in the kombucha consortium still need to be con-

firmed, the global interplay between AAB and yeasts is well-known. In kombucha fermenta-

tion, yeast produce invertase which cleave sucrose into glucose and fructose, and further use

fructose to produce ethanol. Ethanol is a noxious compound for the consortium. Hence, as a

mechanism to regulate ethanol concentrations in the media, AAB transforms glucose and eth-

anol into gluconic and acetic acid, respectively, exhibiting a straightforward case of syntrophy

[91, 94]. This biological interplay was depicted in the ASV classified as Zygosaccharomyces
baillii, the most abundant yeast in the sample, and the ASV with the greatest number of inter-

actions (S3 Table). Second to Z. bailii, an ASV corresponding to Komagataeibacter europaeus

Fig 7. Kombucha topology comparison. A. Distributions obtained from simulated random (red), scale-free (blue) and small-world (green) networks and its comparison

to the metrics found in the kombucha network for: degree variance, modularity, average path length, small-world index, and clustering coefficient. B. Degree distribution

of the kombucha network. We also show the comparison of the kombucha CCDF with a random network CCDF, a small-world network, and a scale-free network.

https://doi.org/10.1371/journal.pone.0259756.g007
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(an AAB) appears to be a key central taxa based on each centrality metric. According to the

inferred correlations by the enhanced SparCC (correlation matrices at the genus and species

level are provided in the in S1 File), the Z. bailii correlated to every other ASVs, and mainly

positively co-occurring with Komagataeibacter (0.1812), and negatively correlating with Corti-
narius (-0.2081). Actually, for the species within the Komagataeibacter show the highest posi-

tively mean correlation with Z. bailii, particularly Komagataeibacter europeus (0.5397),

reflecting the cooperative interplay between yeast and AAB. Additionally, Komagataeibacter,
an AAB genus, produces acetic acid which inhibits growth of other species, except for Z. bailii
[91, 98]. More specifically, it has been reported that K. rhaeticus is one of the main producers

of acetic acid compared to other microbial species [99]. As expected, Komagataeibacter genus

shows negative interactions against some of other species different from their own genus, such

as Variovorax that is negatively correlated, which might be explained by with its growth-inhib-

iting capability.

From mean relationships within the taxa present in kombucha, ASVs from the same species

tend to have more positive relations between themselves, and this was reflected in the commu-

nity clustering analysis, where we found that communities were appreciably grouped per spe-

cies, according to the Louvain method (S2 Fig). Clustering resulting from phylogenetic

relatedness is common in microbial data, and it may reflect niche overlapping to some degree

[4, 31]. From the 5 communities predicted with the Louvain method, one of them is consid-

ered as noise as it consists of just 1 ASV. HDBSCAN group composition is variable, as most

ASV belong to just one group (S3 Fig). Nonetheless, the smaller group with 12 ASV’s from

HDBSCAN is particularly interesting, as it includes most of K. europaeus and the Z. bailii
ASV, probably depicting the core syntrophic interactions. This potential core group is simi-

larly shown as a Louvain method group. Main metrics for each group of the community analy-

sis (via Louvain or HDBSCAN groups) are reported in S4 and S5 Tables.

Another aspect of kombucha interactions is that even though yeast could be an impor-

tant player in the metabolic interplay with AAB, AAB are not fully dependent on them for

substrates, characterizing their interaction as some class of non-strict parasitism [96]. In the

co-occurrence network, we found evidence that Z. bailii was indeed considered a key organ-

ism given its high centrality metrics, but in the percolation analysis where nodes were

removed by degree centrality (beign Z. bailii), there was not a breakdown of the network

(nor in the network density, the average degree, the number of components or the number

of communities, as shown in S6 Table, along with other percolation analyses performed).

In contrast, percolation analysis where the nodes are removed depending on their genus

exhibit a network breakup of several components when most of Komagataeibacter nodes

were removed. Even by removing six Komagataeibacter nodes, the network is disrupted

into three components, further supporting the relevance of Komagataeibacter in the kom-

bucha network. Percolation analysis and centrality metrics are consistent in positioning the

Komagataeibacter as a crucial genus to the community, and this can be biologically under-

stood due to 1) their independence (to some degree) from yeast to thrive, 2) their cellulose

production capability (as a mechanism for protection and resource storage [94]), and 3) as

regulators on ethanol concentration.

Case study: Archean Domes microbial mats

To further evaluate the performance of MicNet as a high-throughput toolbox capable of ana-

lyzing a highly diverse and complex environment, we tested it on a compositional dataset of

ten samples from a microbial mat in Cuatro Ciénegas, Mexico, in the Chihuahuan Desert [80].

This microbial mat, The Archean Domes, thrives in a fluctuating hypersaline pond which has
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been previously described as hyperdiverse [80, 100]. Like every microbial mat, it is a stratified

community with an intricate metabolic interplay between their organisms [101]. Espinosa-

Asuar et al. (2021) provided us their microbial data set of 6,063 ASVs, as they have reported.

To begin the pipeline, the abundance matrix for all ASV was filtered to exclude low abundance

and unique ASVs, remaining 2,600 amplicon sequence variants for the analysis.

First, we search for global patterns and local clustering within the ASV abundance matrix

with UMAP and HDBSCAN. The community was grouped into 49 groups, with a mean of 50

nodes in each group (Fig 8C). With this approach, the HDBSCAN algorithm allowed us to

Fig 8. Archean Domes biological network. A. SparCC co-occurrence network, where different colors indicate Louvain groups. B. SparCC co-occurrence

network, where color indicates the resulting HDBSCAN clusters. C. UMAP and HDBSCAN results show 50 clusters and several ASV classified as noise and

outliers.

https://doi.org/10.1371/journal.pone.0259756.g008
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categorize organisms as noise or outliers, as 553 ASV did not group with any cluster and were

categorized as noise, and 260 behaved as outliers.

Afterwards, we computed the correlation matrix with the modified version of SparCC.

Main large-scale characteristics of the network are shown in S7 Table. With the 2,600 ASV we

recreated a network with 463,609 interactions with all of them aggregated in a big but sparsely

connected network (density = 0.137) (Fig 8A and 8B). This value is consistent with the inter-

action density of an antagonist network between 37 Gammaproteobacteria strains isolated

from water samples of Churince (reported density = 0.14), a lake situated also in the CCB

[102], further suggesting the fact that microbial mats’ networks are often sparse [1, 31].

Network topology comparison for the Archean Domes network display how high-complex-

ity systems do not fit greatly simplified theoretical models. This was shown in the metrics boot-

strapping from simulated comparable networks, where most Archean Domes metrics fall in

between a scale-free and small-world network distributions (S4 Fig). Particularly, degree stan-

dard deviation, modularity, SW index, and clustering coefficient suggest that Archean Domes
possess intermediate properties between scale-free and small-world networks. On the other

hand, the average path length of 1.86 is typical of a scale-free network. These results show that

this community is not randomly assembled, and that as expected from microbial data, the net-

work is likely an intermediate between a scale-free and a small-world network [31, 55].

Potential key taxa analysis based on node centrality was performed for this high-complexity

network. An ASV corresponding to a bacterium from the order MSBL9, class Phycisphaerae,

phylum Planctomycetes, exhibit the highest centrality values, regardless of the centrality mea-

sure employed (S8 Table). This bacterial class has been previously described in hypersaline

microbial mats as anoxic, fermenting, halotolerant and halophilic microorganisms [103, 104].

Looking at other top centrality nodes, most of them were associated to unassigned sequences,

except for a node member of the class Parcubacteria and another one from the genus Imperia-
libacter (S8 Table). Moreover, unknown taxa as central nodes further suggest the relevance of

‘‘microbial dark matter” in ecosystems, and particularly, in hypersaline environments like the

one studied here [105].

Local correlations between nodes at different taxonomic levels was inspected (correlation

matrices at the phylum and species level are provided in the S1 File). From the 463,610 total

relationships in the network, we only highlight some of them which might be insightful. At the

phylum level, ASVs from Proteobacteria, the most abundant phylum in the sample, have posi-

tive mean correlations with most of the phyla, except Nanoarchaeota, Dependentiae and other

unassigned prokaryotes. Cyanobacteria, a key phylum in microbial mats, on the other hand

face more negative mean correlations with other phyla, including Synergistetes, Acetothermia

and Chloroflexi. These negative correlations prospectively originate from overall antagonistic

interactions or different niche requirements (such as wavelength, carbon metabolism or tem-

perature adaptation for potential chloroflexi-cyanobacteria associations [106]). Lower taxo-

nomic associations could be inspected. For example, the most central hub taxa (unassigned

MSBL9, class Phycisphaerae) positively co-occurs the most (0.5903) with a bacterium from the

genus Dehalobium, while negatively co-occurs the most with a deltaproteobacteria from the

Syntrophobacteraceae (-0.6177).

Although most ecological associations (particularly biological interactions) are analyzed by

pairs, species also associate and interact involving more than two organisms, which are vital

for ecosystem diversity [107]. Triad motif identification and structural balance theory attempts

to address this issue in microbial networks. For the Archean Domes network, we identify that

most of the triads are balanced, with a highly balanced triad fraction of 0.9995. One property

of structural balanced networks is group division, wherein all intergroup ties are negative, and

all intragroup ties are positive [108]. Potentially applied to microbial ecology, we suggest that
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structural balance could reflect niche differentiation, in conjunction with other network met-

rics and properties that have been previously described as useful [1, 4, 109].

Furthermore, we carried out a community analysis to inspect subnetwork properties. Our

two clustering methods, Louvain and HDBSCAN groups, display contrasting results, which

could reflect different ecological structures. Louvain grouping algorithm resulted in 7 network

communities with mean total nodes of 371.43 and mean density of 0.4269, while HDBSCAN

showed 50 clusters with mean total nodes of 40.94 and mean density of 0.73. Main metrics for

each group, for each grouping algorithm, are shown in S9 and S10 Tables. Phyla composition

within most groups (either Louvain or HDBSCAN) is highly diverse, which could mirror spa-

tial structures or compartments at different scales [3, 59], which is consistent with the stratified

structure of microbial mats [101]. S5 and S6 Figs display the phyla composition for Louvain

and HDBSCAN clustering methods, accordingly.

High-diversity communities are commonly associated with an overall stable state. While the

high number of ASV in Archean Domes probably reflects a highly diverse system, novel meth-

ods to assess ecosystem stability have been suggested. In microbiomes, positive relationships

alone are prone to destabilize microbial networks, as they can create highly dependent and vul-

nerable feedback loops [3, 110]. Archean Domes co-occurrence network show a negative:posi-

tive ratio of 0.94, thus, positive and negative relationships are evenly present, suggesting an

ecologically resilient, resistant and stablished community. Within this scheme, negative rela-

tionships in the community might be originating from antagonistic competitive taxa, lower

abundance of facilitative taxa (mutualists), divergent niche requirements, or a combination of

all of them [1, 3]. Modularity further bolster the stability hypothesis within the microbial mat.

Modular groups (or clusters), whether product of biological interactions or habitat preference,

plausibly aid in the stability of the system, as fewer links between groups likely ameliorate the

spread of local perturbations to other groups. Modularity in Archean Domes shows a high value

of 0.34, higher than the kombucha network and other published biological networks [3]. Low

average path length (1.86 in Archean Domes network) likely function as a measure of response

capacity to disturbances, hinting about the ecological resilience capabilities of this microbial

mat [4, 31]. Finally, Percolation analysis delves deeper into community stability. We performed

random, centrality and phylum percolation simulations, from which the resulting metrics are

shown in S11 Table. While none of the node removals induce the breakup of the giant compo-

nent, the total number of communities and overall modularity do perceive the effects of net-

work perturbations. With this in mind, some degree of ecological robustness could be reflected

by the impact of percolation simulations to the co-occurrence network.

Discussion

MicNet toolbox has shown to be a promising pipeline. Our new implementation of the SparCC

algorithm allows larger datasets to be processed without overflowing the RAM in a reasonable

time. Furthermore, UMAP and HDBSCAN, relatively new dimension reduction and cluster-

ing techniques, are promising in microbial ecology studies since, as suggested in this work,

they are useful methods to identify metabolic groups, niche overlapping, or subcommunities.

Finally, given the potential of processing co-occurrence networks with a graph theory

approach, we have included several network analyses, both new and commonly used, to fur-

ther describe and understand the resulting networks from SparCC.

One important aspect to have in mind when using the MicNet toolbox is sample size.

UMAP and HDBSCAN are known to be quite sensitive to the size of the database used. With a

very small dataset (less than 50 OTUs/ASVs) we recommend being cautious at the interpreta-

tion level. Dalmaijer et al. (2020) [78] have suggested that for optimal use of UMAP and
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HDBSCAN, it is recommended to have around 20–30 data points per expected cluster or sub-

group. Furthermore, the choice of parameters for these two techniques should be done with

careful consideration, in particular the number of nearest neighbors and minimum distance

[65]. We hope that the interactive dashboard will help in this aspect, since parameters can be

modified in a simple way.

In terms of network topology, not all large-scale metrics of a network should be used to discern

between topologies. As we show previously, some metrics, such as diameter, have no use to discern

topologies, whereas others, like the small-word index provide useful information [55]. Moreover, it

is unlikely that any biological system follows exactly a single topology, as shown by our case study:

Archean Domes, the hyperdiverse microbial mats in CCB. However, we believe that knowing

whether a network tends more towards a random, scale-free or small-world could give insightful

pointers about its general behavior. For example, a small-world model (created with the Watts-

Strogatz algorithm) suggests that the network will have short path lengths, because it is formed by

highly connected clusters, which are weakly connected among each other; whereas a scale-free

model (created with the Barabasi-Albert algorithm) suggests that networks will have short average

path lengths as well, as a consequence that certain nodes that have very high degree and can act as

hubs; in both cases the average distance between nodes would be expected to be small but for dif-

ferent reasons, which could give us insight of key biological network properties [85].

Microbial communities in the light of complexity have shown, once again, the potential in

drawing biological conclusions from networks. Nonetheless, the biological interpretation of

UMAP, HDBSCAN and network analysis should also be taken cautiously. As we mentioned

before, the interpretation of the different metrics obtained is debatable, and there is a high

diversity of interpretations and terms (see synonyms in Table 1) used for the same ecological

concepts. As for today, researchers are encouraged to correlate network theory metrics to bio-

logical significance in an attempt to find fundamental metrics that could be useful to describe

a particular biological phenomenon in whichever microbial system. With MicNet we suggest

an analysis pipeline including visualization, co-occurrence network creation and postproces-

sing of the resulting network with graph theory analyses that could be used as a standard

method for network analysis, offering an overview of a microbial community and enabling the

comparison between different microbial systems. Potentially, this approach promises to aid in

the search for biologically fundamental metrics.

Biological validation with a kombucha consortium was accomplished, as known local

and global behavior, including key taxa and interspecific biological interactions empirically

confirmed elsewhere [91, 94], were reproduced by the proposed toolbox. Moreover, our

high-complexity case study, Archean Domes, displays the scope and usefulness of MicNet

toolbox by deconstructing microbial co-occurrence networks to manageable biological

knowledge. Aware of current caveats of the limitations microbial co-occurrence networks

have [1, 26], we restate that this approach should be taken as a roadmap for further research

on the microbiome system, rather than a conclusive analysis. For example, directed studies

to Phycisphaerae bacteria (and other central taxonomic groups) can be performed, and con-

sequently, assess the relevance of this taxon to the whole community structure and func-

tioning. Similarly, ‘‘microbial dark matter” characterization and relevance could be further

explored with the increasing technologies and databases [111]. Directed co-culture experi-

ments and other novel strategies such as microdroplets are fundamental for biological inter-

actions’ validation [31], which could be applied to inferred correlations between taxa of

interest. Moreover, module aimed experiments, including synthetic microbial communi-

ties, are tractable strategies that, although reducing complexity of the system, could be

informative about mid-scale structures crucial to the system’s stability [112], especially if

the experiments include perturbations [113].
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Given its potential usefulness, understanding both global and local patterns in microbial

communities may be a wise strategy to delve deeper into their currently unknown properties.

With the introduction of the MicNet toolbox, we hope that the research community will be

able to implement several existing and new analysis techniques in a straightforward manner to

further keep unravelling the intricate conundrums that microbiomes hold.

Supporting information

S1 Fig. SparCC parameter selection. SparCC parameters were set based on our most complex

network: Archean Domes. We ran SparCC varying A. the number of iterations from 10 to 100,

B. the exclusion number from 10 to 100 and C. the exclusion threshold from 0.1 to 0.9. We

chose the final values based on the stabilization of the number of edges found, such that the

final values used for our databases were: 50 iterations, 10 exclusion number and 0.1 for exclu-

sion threshold.

(PNG)

S2 Fig. Bar plot for community analysis composition (Louvain groups) from the kombu-

cha Network. Community ID is shown in the x-axis.

(PNG)

S3 Fig. Bar plot for community analysis composition (HDBSCAN groups) from the kom-

bucha Network. Cluster ID is shown in the x-axis.

(PNG)

S4 Fig. Archean Domes topology comparison. A. Distributions obtained from simulated ran-

dom (red), scale-free (blue) and small-world (green) networks and its comparison to the met-

rics found in the Archean Domes network for: degree variance, modularity, average path

length, small-world index, and clustering coefficient. B. Degree distribution of the Archean
Domes network. We also show the comparison of the kombucha CCDF with a random net-

work CCDF, a small-world network, and a scale-free network.

(PNG)

S5 Fig. Bar plot for community analysis composition (Louvain groups) from the Archean
Domes network. Community ID is shown in the x-axis. Unassigned bacteria and not anno-

tated sequences are grouped in the NA category.

(PNG)

S6 Fig. Bar plot for community analysis composition (HDBSCAN groups) from the

Archean Domes network. Cluster ID is shown in the x-axis. Unassigned bacteria and not

annotated sequences are grouped in the NA category.

(PNG)

S1 Table. Network metrics for three canonical topologies. Large scale metrics of three simu-

lated networks with a random, scale-free and small world topology.

(PNG)

S2 Table. Main metrics and network properties of the kombucha co-occurrence network.

(PNG)

S3 Table. Centrality measures from potential key players in kombucha network. Degree,

closeness, betweenness, and PageRank centrality was calculated for the top 5 ASV respectively.

If a given ASV was not among the top 5 in a centrality measure, the value is reported as NA.

(PNG)
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S4 Table. Community analysis (Louvain groups) metrics on kombucha network. For each

community, total nodes, diameter, clustering coefficient, and average shortest path were calcu-

lated. Clusters are ordered by increasing density.

(PNG)

S5 Table. Community analysis (HDBSCAN groups) metrics on kombucha network. For

each community, total nodes, diameter, clustering coefficient, and average shortest path were

calculated. Clusters are ordered by increasing density.

(PNG)

S6 Table. Network robustness analysis for the kombucha network. Random, by groups

(Genus), and by degree centrality percolation simulations were performed on the Louvain

groups. For the percolation by groups, only Komagataeibacter and is shown.

(PNG)

S7 Table. Main metrics and network properties of the Archean Domes co-occurrence net-

work.

(PNG)

S8 Table. Centrality measures from potential key players in Archean Domes network.

Degree, closeness, betweenness, and PageRank centrality was calculated for the top 10 ASV

respectively. If a given ASV was not among the top 10 in a centrality measure, the value is

reported as NA.

(PNG)

S9 Table. Community analysis (Louvain groups) metrics on Archean Domes network. For

each community, total edges, total nodes, average degree, clustering coefficient, and density

were calculated. Clusters are ordered by increasing density.

(PNG)

S10 Table. Community analysis (HDBSCAN groups) metrics on Archean Domes network.

For each community, total edges, total nodes, average degree, clustering coefficient, and den-

sity were calculated. Clusters are ordered by increasing density.

(PNG)

S11 Table. Network robustness analysis from the Archean Domes network. Random, by

groups (Phylum), and by degree centrality percolation simulations were performed on the

Louvain groups. For the percolation by groups, only Cyanobacteria percolation is shown.

(PNG)

S1 File.

(ZIP)
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100. Medina-Chávez NO, De la Torre-Zavala S, Arreola-Triana AE, Souza V. Cuatro Ciénegas as an
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