Zarrabi et al. Journal of Hematology & Oncology (2019) 12:89

https://doi.org/10.1186/513045-019-0780-z

Journal of
Hematology & Oncology

REVIEW Open Access

Emerging therapeutic agents for

genitourinary cancers

Kevin Zarrabi', Azzam Paroya' and Shenhong Wu'*"

Check for
updates

Abstract

with genitourinary malignancies.

The treatment of genitourinary malignancies has dramatically evolved over recent years. Renal cell carcinoma,
urothelial carcinoma of the bladder, and prostate adenocarcinoma are the most commonly encountered
genitourinary malignancies and represent a heterogeneous population of cancers, in both histology and approach
to treatment. However, all three cancers have undergone paradigm shifts in their respective therapeutic landscapes
due to a greater understanding of their underlying molecular mechanisms and oncogenic drivers. The advance that
has gained the most recent traction has been the advent of immunotherapies, particularly immune checkpoint
inhibitors. Immunotherapy has increased overall survival and even provided durable responses in the metastatic
setting in some patients. The early success of immune checkpoint inhibitors has led to further drug development
with the emergence of novel agents which modulate the immune system within the tumor microenvironment.
Notwithstanding immunotherapy, investigators are also developing novel agents tailored to a variety of targets
including small-molecule tyrosine kinase inhibitors, mTOR inhibitors, and novel fusion proteins to name a few.
Erdafitinib has become the first targeted therapy approved for metastatic bladder cancer. Moreover, the
combination therapy of immune checkpoint inhibitors with targeted agents such as pembrolizumab or avelumab
with axitinib has demonstrated both safety and efficacy and just received FDA approval for their use. We are in an
era of rapid progression in drug development with multiple exciting trials and ongoing pre-clinical studies. We
highlight many of the promising new emerging therapies that will likely continue to improve outcomes in patients
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Introduction

Genitourinary (GU) malignancies encompass a heterogenous
group of cancers pertaining to a specific anatomical and
physiological function. There is incredible biological diversity
among primary genitourinary malignancies [1]. Renal
cell carcinoma (RCC); urothelial carcinoma of the
bladder, ureter, and renal pelvis (UC); and prostate
adenocarcinoma (PC) are the most commonly en-
countered histological subtypes within this group.
Considering an annual morbidity of 225,000 patients
and a mortality of over 56,000 patients per year in
the USA from metastatic genitourinary malignancies,
there remains an urgent and unmet need for new
therapeutics [2].
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We are witnessing a rapid evolution in diagnostic
modalities with the emergence of novel biomarkers and
clinical validation of new diagnostic tools. Further, there
has been a paradigm shift in treatment guidelines with
the rapid approval of a number of new agents for each
respective tumor type. We have improved overall
survival (OS) and progression-free survival rates (PES),
and the unprecedented success of the new armamentar-
ium of immunotherapies and targeted therapies has been
heralded a “revolution” in the treatment of GU malig-
nancies. We anticipate the new survival data will be
reflected in NCI SEER outcomes upon release of
updated statistics.

The ongoing battery of clinical trials has benefited
patients with approval of more treatment options, but
has also created a degree of complexity to treatment
regimens that clinicians must manage. Treatment plans
for patients have become more variable as data has
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emerged supporting each respective agent, but fewer
studies assessing the optimal sequence or combination
of agents [3, 4]. Many of the open clinical trials entail
investigation of both known agents repurposed for GU
cancers that have shown success in other cancer models
as well as novel compounds. Herein, we discuss key
emerging therapeutic agents and therapeutic strategies
involved in common GU tumors, specifically UC, RCC,
and PC. We provide the biological rationale for the
employment of the emerging agents as well as highlight
some of the promising ongoing clinical trials.

Bladder cancer

UC is the ninth most frequently diagnosed cancer world-
wide, ranks 13th in death ranks, and is the most com-
mon cancer of the GU system [5, 6]. The median age of
diagnosis is 73 years making bladder cancer a disease of
the elderly [7]. The frailty and morbidity naturally
inflicting the geriatric population pose a barrier to effect-
ive disease management as many patients are not candi-
dates for current standard treatment [8]. Suboptimal
eastern cooperative oncology group performance status
in this age group is attributed to high incidences of renal
insufficiency, neuropathy, hearing loss, and heart disease
[9]. The diagnosis of bladder UC may be delineated be-
tween localized muscle-invasive, muscle-invasive bladder
cancer (MIBC), and metastatic disease. MIBC poses a
significant risk for metastasis [10]. Current standard of
care treatment for MIBC entails neoadjuvant platinum-
based chemotherapy followed by radical cystectomy [11].
OS rates with the standard approach remain less than
ideal and complication rates are high [12, 13]. The
options for locally advanced inoperable or metastatic UC
remained limited as well, and these disease states carry a
grim prognosis [10]. Historically, even with response to
platinum-based chemotherapy, these patients carried a
median OS of approximately 12-16 months [10, 14].
Further, approximately 50% of patients with MIBC are
ineligible for treatment with platinum-based chemother-
apy [15]. Until 2016, there were no approved post-plat-
inum treatment agents available and second-line
treatment options upon disease progression yielded a
poor response rate of 10% [16, 17]. Since 2017, we have
witnessed a number of landmark trials that have led to
the approval of novel agents.

These include immune checkpoint inhibitors (CPI) as
first-line treatment for patients with metastases who are
not candidates for platinum-based therapy or who have
progression of disease after platinum therapy [18-20].
The CPIs available for post-platinum salvage therapy are
nivolumab, pembrolizumab, avelumab, atezolizumab,
and durvalumab. Recently, the U.S. Food and Drug
Administration (FDA) has granted accelerated approval
to the tyrosine kinase inhibitor erdafitinib (Balversa) for
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patients with locally advanced or metastatic UC that
have FGFR, or FGFR; genetic alterations and that have
progressed on prior platinum-containing chemotherapy.
We are now witnessing approval of a myriad of new
treatment options with promising ongoing trials which
will likely improve survival rates (Table 1).

Emerging immunotherapy through checkpoint inhibition
Checkpoint inhibition monotherapy
UC has long been considered an immunogenic tumor
[21]. In fact, its immunogenicity has been harnessed as a
treatment modality and UC has one of the longest track
records of responsiveness to immunotherapy. Bacillus
Calmette—Guérin was introduced as a treatment over 40
years ago [22]. Now, immune checkpoint blockade rep-
resents the most exciting sphere of emerging therapies
for metastatic UC. The objective response rates (ORRs)
for the approved post-platinum salvage therapy CPls
(nivolumab, pembrolizumab, avelumab, atezolizumab,
and durvalumab) range from 15 to 31% [23]. At the
moment, pembrolizumab is the only agent with an OS
benefit shown by a randomized phase III study [20, 22].
With regards to CPI as first-line monotherapy in
metastatic UC patients, both atezolizumab and pembro-
lizumab have been examined in patients. Atezolizumab,
in the phase II IMvigor210 trial, and pembrolizumab, in
the phase II KEYNOTE-052 trial, have both demon-
strated clinically meaningful efficacy and objective re-
sponses [18, 24]. Both agents are now being studied
independently in the phase III setting as monotherapies
as well as with combination chemotherapy in previously
untreated patients with locally advanced unresectable or
metastatic disease. The trials are similarly designed, and
the primary endpoints are PFS and OS. Atezolizumab in
the IMvigor130 (NCT02807636) and pembrolizumab in
the KEYNOTE-361 (NCT02853305) trials are currently
underway with highly anticipated results. However, the
progress of these trials may be muddled. Preliminary
results have shown that the effect of these agents may be
less effective than chemotherapy in certain patients, and
monotherapy should be limited to patients with high
PD-L1 expression. In fact, patients with low PD-L1 levels
in the CPI arm of the trials had decreased survival
compared to patients who received cisplatin- or carbo-
platin-based chemotherapy. Patients with low PD-L1
levels are no longer being enrolled in the KEYNOTE-
361 or IMvigor130 trials [25, 26].

Checkpoint inhibition combination therapy

Novel CPI agents being investigated in the UC model in-
clude the IgG2 anti-CTLA-4 monoclonal antibody tre-
melimumab. Early phase I results in previously treated
UC patients receiving combination tremelimumab/dur-
valumab demonstrated an ORR of 21% with a tolerable
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adverse event (AE) profile [27]. This combination ther-
apy is now being investigated in the open-label phase III
DANUBE trial (NCT02516241). The trial results are
highly anticipated and are expected at the end of 2019.

Emerging immunotherapy through cytokine modulation
Pegylated recombinant interleukin-2 therapy

Aside from CPI, alternative immunomodulation strat-
egies in UC have been explored. There are two cytokine-
based agonists under investigation at this time in
metastatic UC. NKTR-214 is a novel agent being
explored in the phase I/II setting. NKTR-214 is an inves-
tigational, first-in-class, CD122 preferential agonist that
functions as a pegylated recombinant interleukin-2 (IL-
2) with cellular effects in activation of CD8" T and
natural killer (NK) cells without unwanted expansion of
T regulatory (Treg) cells in the tumor microenvironment
[28]. The PIVOT-02 study is a multi-cohort phase I trial
of NKTR-214 in combination with either nivolumab or
ipilimumab/nivolumab therapy. PIVOT-02 includes
patients undergoing first-line immunotherapy naive and
platinum-refractory metastatic UC patients (NCT02983045).
Preliminary results presented at the 2019 American Society
of Clinical Oncology (ASCO) Genitourinary Cancers
Symposium were noteworthy for objective responses. The
ORR was 48% in efficacy-evaluable patients, with 19%
demonstrating a complete response (CR). ORR by immune-
related RECIST was 52%. Treatment was well tolerated with
only 15% of patients experiencing grade 3 treatment-related
adverse events (TRAEs), and no patients experiencing grade
4/5 TRAEs. Of note, the PIVOT-02 trial demonstrates a
thought-provoking phenomenon with regards to PD-L1
expression and may meet the urgent unmet need of novel
treatments for patients whose tumors lack PD-L1 expres-
sion. The impressive ORR and CR were observed regardless
of baseline PD-L1 expression. Moreover, 70% of patients
who were PD-L1-negative prior to treatment converted to
PD-L1-positive expressers after exposure to combination
therapy. All PD-L1—positive patients maintained their PD-
L1 positivity [29]. These data represent a remarkable break-
through in immunotherapy treatment as lack of PD-L1
expression remains a barrier to optimal treatment for many
patients. It serves as a proof-of-principle in novel approaches
to induction of PD-L1 expression. The exact mechanism of
PD-L1 modulation remains unclear, but among patients
who underwent on-treatment biopsy versus a baseline
biopsy, there was influx of CD8" T cells. NKTR-214 may
trigger a more vigorous local immune response within the
tumor microenvironment [30]. These preliminary trial
results have prompted the more expansive phase II PIVOT-
10 study evaluating NKTR-214 in combination with nivolu-
mab in locally advanced or metastatic UC cisplatin-ineligible
patients with low PD-L1 expression (NCT03785925). An
alternative yet similar trial in premise to PIVOT-02 is the
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phase I PROPEL trial (NCT03138889). PROPEL is investi-
gating atezolizumab in combination with dose escalations of
NKTR-214 in patients with platinum-resistant mUC.
Another cytokine agonist being explored in the phase II
setting is CYT107, a glycosylated recombinant IL-7 agent.
Platinum-resistant and cisplatin-ineligible mUC patients
are being subject to treatment with intramuscular
CYT107 with atezolizumab versus atezolizumab mono-
therapy (NCT03513952).

TGFB inhibition therapy

Knudson and colleagues have designed a bidirectional
fusion protein integrating both CPI and immune cyto-
kine TGEP inhibition. Such a novel compound serves as
the first in a new class of agents that regulate immune
suppression in the tumor microenvironment in distinct
yet complementary ways [31]. The agent, named M7824,
comprises of the extracellular domain of TGFPRII and is
linked with the C-terminus of the human anti-PD-L1
heavy chain. Pre-clinical work has been promising, and
phase I enrollment is currently open for locally advanced
solid tumors (NCT02517398) [32].

4-1BB inhibition therapy

A cytokine modulator with early phase efficacy in UC is
utomilumab, an investigational fully humanized IgG2
monoclonal antibody which acts as a 4-1BB agonist. 4-
1BB is a receptor ubiquitous to T cells (CD4*, CDS8",
NK, and memory T cells) and signals for T cell expan-
sion. In pre-clinical models, utomilumab has demon-
strated anti-tumor activity via T cell-mediated immune
responses [33]. The phase Ib KEYNOTE-036 trial
employing utomilumab with pembrolizumab in ad-
vanced tumors including UC revealed no dose-limiting
toxicities and an ORR of 26.1% [34]. Further studies in-
vestigating utomilumab in UC patients are expected. An-
other 4-1BB immunotherapeutic under investigation is
urelumab, a fully human monoclonal IgG4k antibody
agonist of CD137/4-1BB [35]. Downstream effects
include tumor necrosis factor (TNF) signaling cascade
activation with effect on activated T and NK cells.
Urelumab is under investigation in a phase II study in
combination with nivolumab as neoadjuvant therapy in
cisplatin-ineligible patients (NCT02845323).

OX40 inhibition therapy

Yet another immunomodulating target with a potential
role in UC is OX40. OX40 are TNF proteins that are
expressed on activated CD4" and CD8" T cells. OX40
signaling promotes T cell proliferation and survival,
enhances cytokine production, and modulates cytokine
receptor signaling, effectively augmenting the innate and
adaptive components of immunity [36]. Additionally,
OX40 activation downregulates Treg activity, further
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amplifying the process [37]. It is no surprise that
investigators have developed targeted antibodies to
OX40 for cancer therapy. PF-04518600, MOXR0916,
and GSK3174998 are all novel agents that are being
explored in advanced cancers in combination therap-
ies. NCT02315066 is an early stage dose-escalation
trial testing utomilumab with PF-04518600 in patients
with advanced cancer, including UC patients. Results
revealed no drug-related deaths, dose-limiting toxic-
ities, or suspected unexpected serious TRAEs [38].
Preliminary results show an ORR of only 5.4%, but
the stable disease rate was 29.7%. The stable disease
rate in the UC cohort was 50% [39]. Although a small
sample size, the staggering results have led to the
phase I/II trials, JAVELIN Medley and NCT03217747,
employing PF-04518600 with either CPIs, immuno-
modulators, cisplatin, or radiotherapy. Both studies
are actively recruiting patients.

Emerging immunotherapy through IDO inhibition

Another immunomodulating molecular target is indoleamine-
2,3-dioxygenase (IDO). IDO is an intracellular enzyme with
downstream effects on T cell activity. Specifically,
IDO activation induces tryptophan degradation and
kynurenine production which in turn downregulates T ef-
fector cells and upregulates T regulatory cell activity [40].
In effect, IDO activity enhances the immunosuppressive
effects of the tumor in its microenvironment and provides
the substrate for unregulated tumor growth [41]. IDO has
served as a target for cancer therapies and is under investi-
gation in patients with metastatic UC treated after plat-
inum chemotherapy. An oral IDO inhibitor, epacadostat,
has been investigated in combination with pembrolizumab
in the phase I/II ECHO-202/KEYNOTE-037 trial, and the
results are encouraging. The subgroup analysis of the
metastatic UC patients revealed an ORR of 35% and a CR
of 8% in the treatment arm. PD-L1—positive patients expe-
rienced an ORR of 64%, while PD-L1-negative patients
experienced a 13% ORR. The addition of epacadostat did
not lead to any greater incidence of grade 3/4 TRAEs
compared to the pembrolizumab monotherapy group
[42, 43]. The successful results of ECHO-202/KEY-
NOTE-037 springboarded this combination therapy
into two phase III trials; KEYNOTE-672 comparing
epacadostat or placebo with pembrolizumab in un-
treated, cisplatin-ineligible patients with advanced UC
(NCT03361865), and KEYNOTE-698, which has the
same experimental and treatment arms in patients with
advanced UC who have failed first-line platinum
chemotherapy (NCT03374488) [44]. Both trials are cur-
rently ongoing with no preliminary data available.
There is currently one additional IDO inhibitor being
studied in advanced UC patients. NCT03192943 is an
industry-sponsored phase I trial investigating the safety
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and tolerability profile of agent BMS-986205 given in
combination with nivolumab in patients with advanced
tumors. Larger trials employing BMS-986205 are ex-
pected in the near future.

Emerging targeted therapy

The advent of immunotherapy has been a break-
through in the treatment landscape of UC; however,
durable responses are only observed in a minority of
patients, and response rates are approximately 20% in
the first- and second-line settings and beyond [45],
fewer than that benefit from long-term remissions
[44]. Similarly, targeted therapies have historically also
provided poor response rates and targeted therapy
monotherapy has had little success in the metastatic
UC model. However, preclinical data suggest that
several known anti-angiogenesis agents and tyrosine
kinase inhibitors (TKIs) may augment the effects of
immunotherapeutics in the tumor microenvironment
[46]. As such, there are numerous ongoing trials
investigating known and novel agents in conjunction
with immunotherapy in UC.

Vascular endothelial growth factor receptor inhibition
therapy

Vascular endothelial growth factor (VEGF) remains an
optimal target as studies have shown that elevated
urinary and serum VEGF levels in patients with UC
suffer poorer prognoses and harbor more aggressive
tumors [47, 48]. A VEGF-A inhibitor, bevacizumab,
has already demonstrated pre-clinical efficacy in
combination with PD-L1 inhibition in RCC [49].
There are two ongoing phase II trials investigating
bevacizumab with atezolizumab in cisplatin-ineligible
patients and previously untreated mUC, respectively
(NCT03133390, NCT03272217). A second agent tar-
geting VEGF is ramucirumab, a monoclonal antibody
(mAB) targeting VEGFR,. Ramucirumab was recently
tested in combination with pembrolizumab in a phase
I multi-cohort study in UC patients with prior pro-
gression on platinum-based systemic therapy. Com-
bination therapy treated patients suffered tolerable
TRAEs and demonstrated objective anti-tumor activity
[50]. In the phase III setting, ramucirumab has been
paired with traditional chemotherapy in 530 patients
with post-platinum mUC in the RANGE trial. Re-
markably, the patients in the experimental arm with
ramucirumab and docetaxel benefited from a mPFS of
4.07 months [95% CI 2.96-4.47] versus 2.76 months
[95% CI 2.60-2.96] (hazard ratio [HR] 0.757, 95% CI
0.607-0.943; p = 0.0118). An objective response was
achieved in 24.5% (95% CI 18.8-30.3) of patients allo-
cated to ramucirumab and 14.0% (95% CI 9.4-18.6)
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assigned to placebo. These results are most note-
worthy as they represent the first treatment regimen
to demonstrate a PFS advantage over chemotherapy
in the post-platinum setting. Moreover, these data fur-
ther validate VEGF, inhibition as a therapeutic avenue in
metastatic UC [51]. The RANGE trial will likely set a prece-
dent for future trial development. Other strategies towards
VEGF inhibition include a novel recombinant EphB4-HSA
fusion protein. EphB4-HSA is being investigated in com-
bination with pembrolizumab in previously untreated stage
IV UC as a phase II study (NCT02717156). The study is in
the recruitment stage. Lastly, cabozantinib is being
investigated in a number of trials. Cabozantinib is a small-
molecule TKI with target receptors to RET, KIT, AXL,
FLT3, MET, and VEGFR, that was recently approved for
metastatic RCC (mRCC) in the second-line setting after the
METEOR trial [52]. Cabozantinib has demonstrated early
success in combination with CPI. The UC cohort in a phase
I trial of patients with GU malignancies naive to CPI
demonstrated a mPFS of 12.8 months (95% CI 1.8—N/A)
and an OS rate of 70.2% (95% CI 44.4-85.8%) [53, 54].
Cabozantinib is also being investigated with other CPIs,
including pembrolizumab and atezolizumab, respectively
(NCT03534804, NCT03170960).

Nectin inhibition therapy

Nectins represent an interesting and novel therapeutic
target for UC. Nectin-4 is a transmembrane polypeptide
involved in cell-adhesion and has a role in tumor prolif-
eration and angiogenesis [55]. Translational researchers
have used suppression subtractive hybridization on UC
pathological specimens and shown high mRNA expres-
sion of nectin-4 in bladder cancer [56]. Drug discovery
efforts have produced enfortumab vedotin, a novel anti-
body-drug conjugate (ADC) composed of a mAB to nec-
tin-4 bound to a potent cytotoxic microtubule inhibitor,
monomethyl auristatin E. ADCs are a unique class of
agents which combine highly specific mABs with toxic
drugs [57]. In a phase I dose-escalation study investigat-
ing enfortumab vedotin in 68 patients with metastatic
UC, the ORR was 41%, and the disease control rate was
72%. These staggering results also included a highly tol-
erable toxicity profile with only 9% of patients suffering
grade 3/4 TRAEs [58, 59]. These data garnered much
excitement, and enfortumab vedotin was granted break-
through therapy status by the FDA for patients with
metastatic UC previously treated with a checkpoint in-
hibitor. Three subsequent phase I-III trials employing
enfortumab vedotin were designed soon thereafter, the
EV-103 [60], EV-201(NCT03219333), and EV-301 trials
[61]. At the 2019 ASCO annual meeting, the results
from the single-arm phase II EV-201 trial was reported.
Enfortumab vedotin induced a 44% response rate in pa-
tients with locally advanced or metastatic UC. Twelve

Page 7 of 25

percent of those patients are currently experiencing a
complete response. These results are staggeringly similar
to the phase I trial results, which strengthens the enthu-
siasm for the agent. The EV-201 enrolled patients who
had been treated with platinum-based chemotherapy
and/or checkpoint inhibitors. The mOS was 11.7 months
(95% CI 9.1-N/A), mPFS was 5.8 months (95% CI 4.9—
7.5), median duration of response (mDOR) was 7.6
months (range, 0.95-11.30+), all with a well-tolerated
adverse effect profile [62]. Enfortumab vedotin is now
the first novel therapeutic agent to demonstrate clinical
benefit in patients who progressed after CPI therapy.
The phase III EV-301 and-201 trials are currently
underway.

Human epidermal growth factor receptor inhibition therapy
The human epidermal growth factor receptor (HER)
family has been widely investigated, and its targeting is
embedded as a cornerstone in the treatment of breast
and gastrointestinal malignancies [63]. HER2 (Erb2)
activation results in tumor cell growth, proliferation, and
even chemotherapy resistance [64]. HER2 expression in
UC has been well established and UC has one of the
highest rates of HER2 expression of any solid tumor
[65]. However, the UC patient population has not bene-
fited from HER?2 targeting as the data remains unclear to
any clinical efficacy in unselected UC patients. A novel
ADC has been developed, trastuzumab deruxtecan, and
is being investigated in combination with nivolumab in a
multicohort phase I trial inclusive of patients with UC
(NCT03523572).

Fibroblast growth factor receptor inhibition therapy

The fibroblast growth factor (FGF) pathway is yet
another well-elucidated tyrosine kinase (TK) signaling
pathway implicated in tumorigenesis and has a high mu-
tational expression rate in UC [16]. As the first TKI
approved in UC therapy, the ORR for erdafitinib was
32.3% with 2.3% having a CR in a clinical trial that in-
cluded 87 patients with advanced bladder cancer with
FGFR, or FGFR; genetic alterations [66]. Major side ef-
fects include vision changes associated with retinal dis-
order and hyperphosphatemia. BGJ-398 is a pan-FGFR
inhibitor that has been studied in patients with meta-
static UC. In a phase Ib trial inclusive of previously
treated metastatic UC patients with FGFR; alterations,
BGJ-398 demonstrated a disease control rate of 64.2%
[67]. Such a dramatic anti-tumor response has prompted
development of a multitude of trials investigating anti-
FGF therapies in metastatic UC. Most notable is the BIS-
CAY phase I study, an umbrella trial of durvalumab in
combination with a potent and selective novel FGFR inhibi-
tor, AZD4547. The trial is inclusive only of patients present-
ing with FGFR; mutations (NCT02546661). Vofatamab (B-
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701) is yet another novel FGFR;3 inhibitor, and it is
being studied in combination with pembrolizumab in
the FIERCE-22 international phase I/II trial in meta-
static UC (NCT03123055). Rogaratinib (BAY1163877),
a novel pan-FGFR inhibitor by Bayer, is being trialed
in various solid tumors, including metastatic UC in
the FORT-2 trial as combination therapy with atezoli-
zumab (NCT03473756) [68].

Renal cell carcinoma

RCC is a heterogeneous disease with the majority of
cases categorized into one of two major histological sub-
types; 80% are clear cell RCC (ccRCC) and 20% are non-
clear cell RCC (nccRCC) [69]. RCC is a commonly
encountered GU malignancy with over 320,000 patients
diagnosed annually and an annual death toll of over 140,
000 people worldwide. More concerning, the annual in-
cidence has risen over the past 10years and now ac-
counts for nearly 4% of new cancer diagnoses in the
USA [70, 71]. Clinicians have been challenged with the
peculiarity of RCC, as it harbors features that contrast
those of prototypical cancers. RCC often lacks features
of classic carcinomas and its mechanisms of metastasis
have been difficult to combat [72]. One-quarter of
patients diagnosed with organ confined disease suffer
from recurrence with metastases in their disease course.
Prior to 2005, there was very little progress in treatment
advances for mRCC and the mainstay of therapy remained
high-dose interleukin-2 (HDIL-2) and interferon-alpha
(IFN-a) after FDA approval in the 1990s [73]. The tumor
had proven resistant to radiotherapy, hormonal ther-
apy, and conventional chemotherapies [74, 75]. The
cytokine-based therapy was non-specific and was as-
sociated with significant systemic toxicity, and re-
sponses were modest [76]. To this end, mRCC has
been a difficult cancer to treat and has purported a
poor prognosis [75, 77].

However, we have since strengthened our under-
standing of the molecular mechanisms behind RCC
tumorigenesis. The landmark discovery of the VHL
tumor-suppressor gene and the observation that VHL
is mutated in up to 90% of patients with ccRCC has
helped elucidate the molecular interplay in the RCC
tumor microenvironment [78]. Targeting signaling mole-
cules downstream to VHL has identified targets for thera-
peutics. These include VEGF; 3, mTOR, PDGFRa, MET,
FGFR;4 RET, KIT, and AXL. Moreover, the emergence
of immunotherapy has further expanded the armamentar-
ium of agents approved for RCC. The efficacy of HDIL-2
and IFN-« served as a proof-of-principle of the immuno-
genic potential of RCC for drug development, and RCC
was one of the first tumor models to demonstrate object-
ive tumor responses to CPL In fact, PD-L1 expression
directly correlates with tumor stage, Fuhrman grade,
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sarcomatoid differentiation, and inversely correlates with
patient survival in mRCC patients [79]. It is no surprise
that both targeted therapies and CPIs have dominated the
therapeutic landscape in RCC.

Current therapeutic landscape

The first phase I study evaluating nivolumab was con-
ducted in select advanced tumors, which included RCC
[80]. Since that study, the ensuing 5-year period wit-
nessed rapid development and completion of phase I
(CheckMate016) through phase III (CheckMate 025)
randomized control trials leading to FDA approval of
the agent for second-line treatment in those who fail
VEGEFR-targeting therapies [81]. The success of CPI in
the second-line setting laid the foundation for experi-
mental design investigating dual CPI (PD-1 and CTLA-4
blockade) in the first-line setting. The highly anticipated
CheckMate-214 trial results were released in 2018.
Nivolumab with ipilimumab combination significantly
improved ORR and OS compared to sunitinib in
patients with intermediate-and poor-risk disease. There
was no significant difference in mPFS [82]. Soon there-
after in April 2018, nivolumab with ipilimumab gained
FDA approval and now holds NCCN category one rec-
ommendation for intermediate- and poor-risk previously
untreated mRCC patients [83].

A number of alternative CPIs are showing success in
the phase III setting with recent FDA approval. In fact,
in February 2019, in the same issue of the New England
Journal of Medicine, results from two highly anticipated
trials were released. The Javelin Renal 101 study was a
phase III randomized control trial enrolling previously
untreated mRCC patients and offered either avelumab
plus axitinib or sunitinib monotherapy. The mPFS for
the combination treatment was 13.8 months versus 8.4
months with sunitinib (HR 0.69; 95% CI 0.56 to 0.84; p
< 0.001). The OS was 11.6 months versus 10.7 months.
Toxicities between the two groups were comparable
[84]. In a similarly designed open-label phase III trial,
861 previously untreated mRCC patients were randomly
assigned to receive pembrolizumab plus axitinib or suni-
tinib monotherapy (KEYNOTE-426). mPFS was 15.1
months in the combination group and 11.1 months in
the sunitinib group (HR for disease progression or death,
0.69; 95% CI 0.57 to 0.84; p < 0.001). The most impres-
sive data set from the study was the OS data; 89.9% in
the pembrolizumab—axitinib group and 78.3% in the
sunitinib group were alive at 12-month follow-up (HR
for death, 0.53; 95% CI 0.38 to 0.74; p < 0.0001). This
data represents the lowest HR recorded among frontline
therapy trials [85]. Of note, KEYNOTE-426 was remark-
able in that the benefits were observed across all
International Metastatic Renal Cell Carcinoma Database
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Consortium risk groups. Once again, toxicities were
comparable between the two arms [86]. These two stud-
ies led to recent FDA approval of avelumab or pembroli-
zumab with axitinib in the first-line treatment of
advanced RCC. The final high-impact phase III trial of
2019 with CPI in mRCC was the IMmotion-151 trial,
the first randomized phase III study combining a PD-
L1/PD-1 pathway inhibitor with an anti-VEGF agent in
mRCC. Treatment-naive mRCC patients were random-
ized to receive atezolizumab plus bevacizumab or suniti-
nib. mPFS favored the atezolizumab plus bevacizumab
combination arm in the PD-L1-positive patients (11.2
months versus 7.7 months, HR 0.74; 95% CI 0.57 to 0.96,
p = 0.02) as well in the intention to treat patients (HR
0.83; 95% CI 0.70 to 0.97, p = 0.02). OS data were not
reached at the interim analysis and are pending. Atezoli-
zumab plus bevacizumab-treated patients suffered fewer
grade 3/4 TRAEs compared to that of sunitinib, 40%
versus 54%, respectively (NCT02420821) [87]. The com-
pelling data from these three major randomized control
trials are expected to change first-line treatment prac-
tices for mRCC.

Current FDA-approved first-line agents are the TKI
monotherapy with axitinib, cabozantinib, pazopanib, and
sunitinib; combination CPI therapy with nivolumab and
ipilimumab, pembrolizumab, and avelumab; combin-
ation TKI-CPI with axitinib and avelumab; mTOR inhib-
ition with temsirolimus; and cytokine therapy with
HDIL-2. The optimal sequencing of therapies has been
heavily debated with few consensus guidelines in the
literature. Updated NCCN guidelines recommend axi-
tinib and pembrolizumab, pazopanib, or sunitinib as pre-
ferred first-line agents in favorable risk patients. The
recommendation further includes ipilimumab and nivo-
lumab, axitinib and pembrolizumab, or cabozantinib
monotherapy for poor/intermediate risk patients [88].
Second-line therapy may employ monotherapy with
nivolumab, axitinib, pazopanib, sunitinib, cabozantinib,
sorafenib, HDIL-2, everolimus, temsirolimus, or bevaci-
zumab or combination therapy with ipilimumab and
nivolumab, lenvatinib and everolimus, axitinib and
pembrolizumab, or axitinib and avelumab. The tre-
mendous number of available treatment agents has
led to variability among therapy regimens between pa-
tients. There are few studies to date reconciling the
data from independent studies. In previous years, cli-
nicians were challenged with a lack of therapies and
overwhelming toxicities, whereas todays’ landscape of-
fers an abundance of therapies with complex data
supporting them [3]. The prolific rate of drug devel-
opment continues, and emerging therapies target a
vast array of molecular mechanisms and will further
advance the treatment options available to patients
with RCC (Table 2).
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Emerging novel anti-angiogenesis agents

Vascular endothelial growth factor receptor inhibition
therapy

Due to the redundancy of anti-angiogenesis targets
shared among solid tumors, investigators are able to
repurpose agents already developed for other tumors to
the RCC model. Brivanib is an investigational, anti-
angiogenesis oral TKI previously developed for the treat-
ment of hepatocellular carcinoma, although it currently
holds no FDA approval for clinical use in any setting.
Brivanib inhibits VEGFR, FGFR, and downregulates
cyclin D1, Cdk-2, Cdk-4, cyclin B1, and phospho-c-
Myc [89]. Brivanib is under investigation in mRCC in
a single-arm, phase II study in patients with refractory
metastatic disease (NCT01253668). The study is complete
and the announcements of results are pending.

Activin receptor-like kinase 1 inhibition therapy

Activin receptor-like kinase 1 (ALK) is a TK member of
the TGEP superfamily. Interestingly, its role as a signal-
ing molecule for angiogenesis is independent of VEGF
and FGFR signaling [90]. Dual blockade of VEGF and
ALK signaling pathways with combination therapies was
a novel and intriguing approach to anti-angiogenesis. To
this end, Voss and colleagues developed the DART trials,
investigating ALK inhibitor dalantercept in combination
with axitinib in patients with mRCC after TKI therapy.
Phase I results were promising, combination dalanter-
cept and axitinib was well tolerated, the ORR was 25%,
and disease control was reported at 57% [91]. However,
the recently reported results from the phase II DART
trial in which 124 patients were randomized 1:1 to
receive axitinib plus dalantercept versus axitinib plus
placebo are less encouraging. There has no mPFS benefit
in the dalantercept plus axitinib group and the ORR was
19.0% (95% CI 9.9-31.4%) in the dalantercept plus axi-
tinib group and 24.6% (15 of 61 patients; 95% CI 14.5—
37.3%) in the placebo plus axitinib group. Although well
tolerated, the combination therapy was considered a fail-
ure [92]. At this time, Acceleron pharmaceuticals has
discontinued development of dalantercept for mRCC
[93]. More promising are ongoing trials investigating
endoglin inhibition. Endoglin is a homodimeric TGEB
co-receptor that is upregulated in the setting of VHL
mutation and HIF1-a overexpression. It is essential for
angiogenesis. Investigators have identified the endoglin
glycoprotein as a novel non-VEGF angiogenesis pathway
that has the potential to complement VEGEF-targeted
therapy [94]. As such, Choueiri and colleagues have re-
cently employed a chimeric IgG1 mAB targeting endo-
glin with axitinib in patients with mRCC. The results of
a phase Ib trial were recently released, and the combin-
ation therapy demonstrated both clinical activity with
partial responses in 29% of patients with no dose-
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Table 2 Emerging targets clinical significance with ongoing clinical trials in RCC

Molecular Class Trial Disease setting Agent Experimental Study Estimated
target treatment phase completion
VEGF TKI NCT01253668 Previously-treated Brivanib Phase Il Completed*
mRCC
TGFB NCT01806064 Previously-treated Endoglin Axitinib Phase I/l June 2019
mRCC + endoglin
cMET NCT02761057 Papillary mRCC Cabozantinib Phase Il January 2021
(PAPMET) Cabozantinib
S-malate
Crizotinib
Savolitinib
Sunitinib
NCT03091192 MET-driven papillary Savolitinib Phase Ill August 2019
mRCC
CCR4 Cytokine NCT02281409 Advanced tumors Mogamulizumab Phase I/l October 2019
modulator (mRCQ)
NCT02946671 Pre-operative advanced Mogamulizumab Mogamulizumab Phase Il March 2020
tumors (MRCQC) + nivolumab
HIF2-a Small-molecule NCT02293980 Previously-treated PT2385 PT238 monotherapy ~ Phase | August 2020
inhibitor mRCC or
PT2385 +
nivolumab
or
PT2385 +
cabozantinib
NCT03108066 VHL disease-associated  PT2385 Phase Il September 2022
ccRCC
PD-L1 CPI NCT02420821 Previously-untreated Atezolizumab Atezolizumab + Phase Il December 2021
(IMmotion-151)  mRCC bevacizumab
NCT02811861 Previously-untreated Pembrolizumab  Pembrolizumab + Phase Il February 2021
(Keynote-581/ mRCC lenvatinib
CLEAR)
NCT03141177 Previously-untreated Nivolumab Nivolumab Phase Il April 2023
(CheckMate 9ER) mRCC + cabozantinib
NCT03149822 mRCC Pembrolizumab  Pembrolizumab Phase I/l June 2020
+ cabozantinib
CTLA-4 NCT02762006 Previously-untreated Neoadjuvant Neoadjuvant Phase | April 2019**
localized RCC tremelimumab  tremelimumab
+ durvalumab
NCT02626130 Previously-treated Tremelimumab  Tremelimumab Pilot March 2022
mRCC or study
tremelimumab
with cryoablation
Autologous  Tumor vaccine NCT02432846 mRCC Intuvax Intuvax Phase Il August 2019
DCs (MERECA) + nephrectomy
+ sunitinib

All trial information obtained through publicly accessible clinicaltrials.gov
*Announcement of study results pending
**Remains active

limiting toxicity in a VEGF inhibitor-refractory popula-
tion [95]. A multicenter, randomized phase II trial inves-
tigating combination therapy has recently completed
accrual (NCT01806064).

CCR4, cMET, and HIF2-a inhibitor inhibition therapy
Novel emerging therapeutic agents include CCR4,
¢MET, and HIF2-a inhibitors. CCR4 has molecular

implications in angiogenesis, and its inhibition has
shown anti-cancer properties [96, 97]. Mogamulizumab
is a mAB inhibitor of CCR4, and it is concurrently being
investigated in both the phase I and II settings in
advanced cancers including mRCC to assess safety and
tolerability (NCT02281409) as well as clinical efficacy
when in combination with nivolumab (NCT02946671).
The identification of HIF accumulation as a sequela of
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VHL mutation in RCC provides the rationale for drug
development towards HIF inhibition [98]. PT2385 is a
novel small-molecule inhibitor of HIF2-a. Both phase I
and II trials are actively recruiting patients with ad-
vanced ccRCC (NCT02293980, NCT03108066). Lastly,
we have witnessed ¢cMET inhibition transition to the
forefront of mRCC drug development. The objective re-
sponses and OS benefit seen with cabozantinib therapy
served as a proof-of-principle that cMET may have an in
vivo role in mRCC [3]. Four-small molecule inhibitors of
c¢MET are currently under investigation: crizotinib, voli-
tinib, foretinib, and savolitinib. The EORTC 90101 CRE-
ATE trial has demonstrated safety and tolerability of
crizotinib mRCC patients with MET amplification [99].
Trials including these agents are ongoing (NCT 02761057,
NCT03091192).

Emerging mTOR-autophagy inhibition combination
therapy

A well-established driver of tumorigenesis and angiogen-
esis is the mammalian target of rapamycin (mTOR), a
serine/threonine kinase member of the PI3K family
[100]. mTOR was one of the first focuses of targeted
therapy research in RCC, and there are two FDA-ap-
proved agents which have roles in both the first-line and
refractory settings. Temsirolimus and everolimus are
both viable options in clinical practice; however, clinical
benefits are often modest compared to VEGF inhibitors.
In fact, first-line temsirolimus is only recommended in
patients with a poor prognosis stratified by the MSKCC
prognostic model, and everolimus has failed to demon-
strate benefit over other agents in the first line-setting
[101, 102]. As such, the body of literature pertaining to
mRCC has primarily focused on alternative treatment
approaches and mTOR inhibition is often considered a
less efficacious treatment choice [52, 78]. There is on-
going research on ways to augment mTOR inhibition.
One such approach is combination of autophagy inhib-
ition with mTOR blockade. Autophagy is the intracellu-
lar mechanism by which cells digest metabolic substrate
and recycle macromolecules and nutrients. Interestingly,
due to the high metabolic demand of cancer cells, au-
tophagy is inherent to cancer cell survival and prolifera-
tion [103]. Amaravadi and colleagues are leading efforts
to integrate autophagy inhibitors into oncology practice.
Chloroquine is known to inhibit autophagic flux by de-
creasing autophagosome-lysosome fusion [104]. In a
phase I/II trial in patients with advanced RCC, everoli-
mus was combined with maximum dose hydroxychloro-
quine for assessment of safety and tolerability as well as
ORRs. Hydroxychloroquine at 600 mg twice daily with
10 mg daily everolimus was tolerable, and the primary
endpoint of >40% 6 month PFS was met [105]. Autoph-
agy inhibition has been a successful strategy in vitro and
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in vivo, and there is optimism that synergistic cell death
with mTOR and hydroxychloroquine will succeed in lar-
ger trials.

Emerging immunotherapy through checkpoint inhibition
Checkpoint inhibition and anti-angiogenesis combination
therapy

Two highly anticipated phase III trials in the pipeline are
KEYNOTE-581/CLEAR and the CheckMate 9ER trial,
neither of which have mature data available at this time.
KEYNOTE-581/CLEAR is a multicenter, open-label,
phase III study evaluating pembrolizumab plus lenvati-
nib or lenvatinib plus everolimus or sunitinib monother-
apy as first-line treatment for mRCC (NCT02811861).
Its preceding phase II trial revealed that pembrolizumab
plus lenvatinib therapy offered an improved mPFS at
17.7 months (95% CI 9.6—N/A) as well as improved ORR
of 66.7% (95% CI 47.2-82.7). The phase III three-armed
expansion plans to recruit 735 treatment-naive patients.
The primary endpoint will be PFS with secondary
endpoints as ORR, OS, health-related quality of life
(HRQoL), and safety profiles. The CheckMate 9ER trial
is a two-armed phase III randomized, open-label study
exploring nivolumab plus cabozantinib versus sunitinib
monotherapy. Interestingly, a recent phase I trial explor-
ing this combination therapy demonstrated impressive
anti-tumor activity but enrolled pretreated patients with
mRCC [54]. CheckMate 9ER is now exploring the same
combination in 630 previously untreated mRCC patients
(NCT03141177) [106]. A last anti-PD-1 and VEGF TKI
combinatorial regimen brings together pembrolizumab
plus cabozantinib. Although these results are from the
phase I setting, they are promising and this combination
may have an impact on patient care in the future. Previ-
ously treated mRCC patients treated with combination
therapy demonstrated encouraging early efficacy with
an ORR 25% and a clinical benefit rate 87.5%. Enroll-
ment of a phase II dose expansion is now ongoing
(NCT03149822) [107].

There remain CPIs approved for other advanced
tumors that have yet to establish a role in the treatment
of mRCC. Tremelimumab is a CTLA-4 CPI that was
examined in combination with sunitinib in a phase I
dose-escalation trial with treatment-naive patients. Of
the patients evaluable for response, the ORR was 43%
(95% CI 22-66%) and disease stabilization occurred in
33%. However, this study was halted due to unexpected
and surprising TRAEs, including acute renal failure
andeath [108]. The excitement for tremelimumab in
mRCC has since diminished. Notwithstanding, tremeli-
mumab remains under investigation in multiple settings
with ongoing phase I trials; neoadjuvant tremelimumab
in combination with durvalumab prior to nephrectomy
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(NCT02762006); and neoadjuvant tremelimumab mono-
therapy with and without cryoablation prior to nephrec-
tomy (NCT02626130).

Novel CPI pathway inhibition

The field of immuno-oncology has unveiled a deeper
understanding of the immunoreactivity inherent to
mRCC, and investigators continue to identify new co-in-
hibitory ligands implicated in tumor immune evasion
[109]. PD-1 and CTLA-4 receptor pathways belong to
the B7/CD28 receptor family and have been the founda-
tion for CPI drug discovery. However, our knowledge of
the newer co-stimulatory and co-inhibitory pathways
within this family remain rudimentary, and more insight
into the receptor pathways within this family of recep-
tors will no doubt offer other avenues for augmenting
immune responses in the treatment of cancer [110]. Hu-
man endogenous retrovirus-H long terminal repeat-asso-
ciating protein 2 (HHLA2) is a cell membrane and
cytoplasmic protein involved in T cell activation and im-
mune checkpoint blockade. Janakiram et al. has labeled
HHLA2 as the third group of the B7-CD28 immune
checkpoint family after PD-L1 and CTLA-4 [111, 112].
Chen and colleagues have recently demonstrated that
HHLAZ2 has increased expression in ccRCC tumor tissue
and that increased expression leads to a remarkably
shorter OS and a poorer prognosis [113]. HHLA2 is
emerging as a novel target for CPI therapies.

Emerging novel tumor vaccines

Tumor vaccines (TVs) have been widely investigated
and are being evaluated in an effort to make tumor cells
more immunogenic and thereby overcome their immu-
nosuppressing defense mechanisms [114, 115]. TVs are
typically engineered with one of two approaches, via syn-
thesis with dendritic cells (DCs) and tumor lysate, or via
heat shock proteins [116]. The majority of vaccines in
development and those with the most promise have
employed DCs and RCC tumor lysate [78]. Functionally
active DCs cells act as autologous tumor infiltrating
lymphocytes which upregulate cytokine production
within the tumor microenvironment with the aim of
heightening the immune response within the tumor
microenvironment [114]. IMA901 is such a vaccine,
building off of nine different HLA-binding tumor-associ-
ated peptides which promote CD8" and CD4" T cell ac-
tivation-mediated immune responses against malignant
cells. The IMPRINT trial was a large phase III, multicen-
ter, randomized control trial in which the IMA901 vac-
cine was combined with sunitinib in previously
untreated mRCC patients [117]. Unfortunately, IM-
PRINT failed to demonstrate any difference in patient
outcome compared to sunitinib monotherapy. A similar
autologous DC-based vaccine, rocapuldencel-T, was
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successful with a beneficial effect in the phase II setting
and was recently being tested in the phase III ADAPT
trial. ADAPT has been suspended by Argos Therapeu-
tics after findings of an interim analysis revealed the TV
was unlikely to meet any of its primary endpoints [118].

As an alternative approach to standard TV develop-
ment in RCC, immunologists have theorized that using
allogeneic as opposed to autologous DCs will more likely
potentiate a T helper 1-deviated inflammatory reaction,
further promoting recruitment and activation of
endogenous lymphocytes to the tumor [119]. INTUVAX
is an allogeneic TV which has been successful in the
phase I/II setting in 12 intermediate-and poor-risk pa-
tients with newly diagnosed mRCC. The trial was multi-
faceted and heterogenous in adjuvant treatments, but
the results collectively suggest that intratumoral admin-
istration of proinflammatory allogeneic DCs induces an
anti-tumor immune response that may prolong survival
in unfavorable-risk mRCC [120]. INTUVAX is now be-
ing trialed in the randomized phase II MERECA study
(NCT02432846).

Prostate cancer

PC is the second most common cancer in men and the
second leading cause of cancer death in the USA. A
man’s risk of developing PC is 1 out of 9 [121]. Treat-
ment of newly diagnosed PC depends on anatomic
extent of disease, histologic grade, and serum prostate-
specific antigen (PSA) level. Localized PC is often
initially treated with either radical prostatectomy or radi-
ation therapy. However, statistics show 27-53% of
patients will develop biochemical recurrence [122]. An-
drogen receptors (AR) play a crucial role in the patho-
genesis of PC and remain the key therapeutic target
[123]. Androgen deprivation therapy (ADT), either sur-
gical or chemical, has been the mainstay treatment for
almost a century. Patients with a high PSA level, despite
appropriate ADT, are diagnosed with castrate-resistant
prostate cancer (CRPC) [124]. The average time of onset
of castrate resistance after starting ADT is 19 months
[125]. At this stage, the primary goal of treatment is to
delay the time to metastasis. Current standard of care
treatment of CRPC has been a well-established chemo-
therapeutic agent, docetaxel [126]. Although chemother-
apy is effective in advanced PC, median survival remains
less than 2 years. Due to the inevitable development of
resistance, studies have remained rampant in exploring
novel agents. As such, the standard of care has rapidly
changed for PC within the past few years with the emer-
gence of abiraterone, an androgen synthesis inhibitor,
and enzalutamide, an androgen receptor antagonist. The
STAMPEDE and LATITUDE trials were pivotal in asses-
sing efficacy of abiraterone plus prednisone combined
with ADT as first-line treatment in men diagnosed with
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metastatic castrate-sensitive prostate cancer (mCSPC).
In both trials, significant improvement of PFS and OS
was witnessed [127, 128]. The AFFIRM and PREVAIL
trials led to the approval of enzalutamide for meta-
static CRPC before or after docetaxel [129]. Thus, the
standard of care has rapidly shifted for advanced PC
over the past year. While these agents have had suc-
cessful outcomes, resistance to treatment remains an
inevitable reality for most patients. To this end, se-
quencing and combination of agents in PC has be-
come a challenge. For mCRPC, first-line therapy has
been established but there is a lack of data on which
second- and third-line agents are most efficacious.

Table 3 Emerging targets with clinical significance in PC
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Investigators have compared treatments in attempts
to elucidate ideal sequences without clear data favor-
ing any particular regimen [130]. Predictive bio-
markers such as homologous repair mutations, mismatch
repair mutations, and AR splice variants are beginning to
emerge and will play a role in personalizing therapy. Ul-
timately, lengthy discussions with patients and consider-
ation of various factors (i.e., disease volume, symptoms,
age, functional status, cost) all help guide decision making
in treatment design. The landscape of treatments for PC
continues to evolve and a multitude of novel agents con-
tinue to emerge with ongoing trials showing great poten-
tial (Table 3).

Molecular  Class Trial Disease setting Agent Experimental Study  Estimated
target treatment phase  completion
Hormonal  Second- NCT03098836 mCRPC Apalutamide Apalutamide + Phase Il June 2021
Therapy generation abiraterone
ADT NCT02106507 mCRPC Apalutamide Apalutamide Phase | April 2020
+everolimus
NCT02489318 mCSPC Apalutamide Apalutamide + ADT Phase  July 2022
(TITAN) Il
New- NCT02200614 nmCRPC Darolutamide Darolutamide Phase  June 2020
generation (ARAMIS) Il
ADT
AR inhibitor NCT02445976 CRPC Progressing on Seviteronel Seviteronel Phase Il January
Enzalutamide or Abiraterone 2019*
NCT02012920 CRPC Seviteronel Seviteronel Phase Il January
2019*
Tumor Dendritic Cells  NCT02111577 mCRPC DCVAC DCVAC Phase  June 2020
Vaccine (VIABLE) M1l
PD-L1and CPI NCT02861573 mCRPC Pembrolizumab + olaparib Phase | May 2022
CTLA-4 (KEYNOTE-365) or
Pembrolizumab + docetaxel +
prednisone
or
Pembrolizumab + enzalutamide
NCT02985957 mCRPC Nivolumab + Ipilimumab Phase Il March 2022
(CheckMate-650)
PD-L1 NCT02787005 mCRPC Pembrolizumab  Pembrolizumab Phase Il December
(KEYNOTE-199) monotherapy 2020
or
Pembrolizumab +
enzalutamide
PARP DNA Repair NCT03834519 mCRPC Pembrolizumab  Pembrolizumab +  Phase  September
Inhibitor Inhibition (KEYLYNK-010) + olaparib olaparib MMl 2022
NCT03732820 Previously-untreated mCRPC Abiraterone + Abiraterone Phase  August 2022
olaparib Il
Radioisotope NCT03737370 mCRPC Radium-223 Radium-223 + Phase | October 2021
docetaxel
ACTR mCRPC 7L utetium Phase  N/A
N12615000912583** 1711
(LUPSMA Trial)

All trial information obtained through publicly accessible clinicaltrials.gov
*Results pending

**Trial filed in Australia New Zealand Clinical trials registry, http://www.anzctr.org.au
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Emerging hormonal therapy

The progressive nature of PC remains highly variable
that can transform over many years. On average, castrate
resistance develops 19 months after starting hormonal
deprivation in non-metastatic PC [125]. Even in this
scenario, multiple studies have shown a survival advan-
tage with continuation of ADT [131]. Thus, the FDA
approval of second-generation ADT agents, apalutamide
(ARN-509) and enzalutamide (MDV3100), in non-meta-
static CRPC in 2018 was a monumental feat for delaying
metastatic disease [129]. Second-generation anti-andro-
gens hold numerous advantages over first-generation
agents: bicalutamide, milutamide, and flutamide. First
and foremost, they hold a higher affinity for the AR,
allowing greater efficacy in its antagonistic properties.
Furthermore, second-generation anti-androgens do not
have agonistic properties as observed in their first-gener-
ation counterparts, allowing fewer mechanisms of resist-
ance [123, 126]. Enzalutamide is a well-established
second-generation anti-androgen. Apalutamide, on the
other hand, has recently risen to compete for standard of
care therapy for CRPC. Apalutamide is a synthetic biaryl
thiohydantoin compound that binds to the ligand-binding
domain of the AR, with a seven- to tenfold increased affin-
ity compared to bicalutamide [132, 133]. The SPARTAN
trial, a double-blind, placebo-controlled phase III trial was
pivotal for the approval of apalutamide. The primary end-
point measured metastasis-free survival (MFS), defined as
the time from randomization to the first detection of dis-
tant metastasis on imaging or death from any cause [134].
The primary endpoint significantly favored the apaluta-
mide group with an MFS of 40.5 months compared to
16.2 months in placebo, nearly a 2-year delay in metastasis
[126]. Currently, the data is too premature to answer
whether these drugs improve OS as only 24% of deaths
occurred at time of publication. Shortly after the approval
of apalutamide, the FDA also approved enzalutamide for
non-metastatic CRPC [135]. Similar to the SPARTAN
trial, enzalutamide also demonstrated extraordinary find-
ings in the PROSPER trial. PROSPER had a primary end-
point of MFS which was 36.6 months in the enzalutamide
group compared to 14.7 months in placebo in non-meta-
static CRPC [136]. Due to the overwhelming evidence
supporting second-generation anti-androgens, the land-
scape of advanced PC is rapidly evolving. There are a
plethora of ongoing trials further testing second-gener-
ation anti-androgens in combination with many of the
current mainstay treatments.

The addition of apalutamide to ADT in mCSPC has
rendered promising results in the TITAN trial [137].
The trial’s co-primary endpoints, radiographic PFS and
OS, were reportedly met; thus, the study was unblinded
in January 2019 [138, 139]. Hence, apalutamide was sub-
mitted to the FDA for approval in April 2019 for
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mCSPC with the final study results presented at ASCO
in 2019. The study met its primary endpoints, with a sig-
nificant improvement in OS, with a 33% risk reduction
in death [140]. Secondary endpoints also favored apalu-
tamide with prolonged time before PSA progression and
chemotherapy initiation. Interestingly, 10% of patients in
the study had prior docetaxel exposure and those pa-
tients did not respond to apalutamide with ADT as well
as the patients without docetaxel usage (95% CI 0.52—
3.09). These results further strengthen the theory of dif-
ferent resistance mechanisms based on prior treatments,
regardless of disease progressions. Furthermore, apaluta-
mide is being studied in phase III trials as combination
therapies; addition of apalutamide to abiraterone/pred-
nisone and docetaxel, abiraterone, and everolimus are all
underway (NCT03098836, NCT02106507) [141, 142]
Darolutamide (ODM-201) is another AR antagonist
undergoing phase III clinical study to determine its effi-
cacy in non-metastatic CRPC. Preclinical studies have
shown increased anti-tumor activity compared to other
second-generation anti-androgens, enzalutamide, and
apalutamide. More specifically, darolutamide was studied
in the vertebral cancer of the prostate xenograft model,
which expresses high levels of AR wild type and of the
V7 splice variant, and in the enzalutamide-resistant
MR49F model which contains the AR mutations F877 L
and T878A [143]. Results illustrated stronger antagon-
ism when linked to AR mutants W742C and F877 1L,
which are resistant to enzalutamide and apalutamide. Of
note, stronger antagonistic properties were also seen in
the M896 T and M89V forms, in which enzalutamide
had reduced activity [144]. This potent AR antagonism
is attributed to the chemical structure of darolutamide,
AR ligand-binding via its isopropylamine linker and
maintained van der Waals contacts with the leucine side
of AR [145]. Furthermore, full antagonistic functionality
of the AR is predicated on recruitment of its co-regula-
tors. One of the co-regulator peptides include NCoR1, a
corepressor that competes with AR antagonists attenuat-
ing agonistic activity [146]; PELP1, a member of chro-
matin remodeling complexes [147]; and TRXR1, which
is upregulated in proliferating PC cells [148]. Daroluta-
mide was shown to repel NCoR1 in the W742C mutant,
which not evident when challenged with enzalutamide
[145]. Once taken to clinical trials, darolutamide contin-
ued to show great potential. In the phase II ARAFOR
trial, darolutamide demonstrated a 50% decrease in PSA
levels from baseline in 83% of patients and was tolerated
well [149]. Moving forward, the ARAMIS trial, an on-
going phase III double-blind, placebo-controlled trial,
compared the safety and efficacy of darolutamide with
placebo in non-metastatic CRPC patients. The primary
endpoint in this study is MFS [150]. Final results were
encouraging, indicating a MFS of 40.4 months in
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darolutamide group compared to 18.4 months in placebo
group. The 3-year rate of OS was 83% in the daroluta-
mide group versus 73% in the placebo group, conferring
a 29% reduction in the risk of death (HR, 0.71; 95% Cl
0.50-0.99, p = 0.0452). mPFS was 36.8 months in the
darolutamide group versus 14.8 months in the placebo
group, attributing to a 62% risk reduction with daroluta-
mide. The ARAMIS trial has raised darolutamide as a vi-
able treatment choice for advanced PC.

Seviteronel (INO-464) is a selective CYP17 lyase (17,
20-lyase) inhibitor, similar to abiraterone, but also has
dual function as an AR inhibitor [151]. Seviteronel has a
tenfold selectivity towards CYP17 lyase over hydroxylase
and is a competitive antagonist in both the wild type
and aforementioned mutated forms of the AR, T887A
and F876 L [152]. The selectivity towards CYP17 lyase
over hydroxylase renders seviteronel an advantage in
avoiding effect on upstream steroids as seen with abira-
terone. For example, although testosterone reduction is
similar between seviteronel and abiraterone, abiraterone
causes a significant increase in progesterone and cortico-
sterone due to its increased 17-a-hydroxylase inhibition
[153]. The potential resistance mechanism to abiraterone
is progesterone-dependent stimulation of the AR with a
T878A point mutation [154]. Thus theoretically, seviter-
onel's lack of progesterone stimulation may aid in
prolonging its affect and delaying resistance. In a phase I
trial, men with CRPC, including those with prior expos-
ure to abiraterone and/or enzalutamide, tolerated sevi-
teronel well. 11 of 20 patients demonstrated a PSA
decline (of any magnitude), four of whom had prior
exposure to abiraterone and/or enzalutamide [155].
Seviteronel is currently being explored in several
phase II studies of patients with CRPC who have de-
veloped resistance to current antihormonal therapies
(NCT02130700, NCT02445976, and NCT02012920).

Emerging immunotherapy
PCs exhibit evasive strategies to avoid detection and de-
struction by the immune system. While recent advances
in immunotherapy have revolutionized the management
of various solid and liquid malignancies, the impression
it has left on the PC therapeutic landscape is nominal.
Sipuleucel-T is the first FDA-approved immunotherapy
for PC, and none have been approved since [156]. The
two primary immune targeting approaches in ongoing
PC research include antigen-targeted immunotherapy
(i.e., vaccines) and CPI (CTLA, PD-1 inhibitors).
Sipuleucel-T is an autologous vaccine which triggers
activation of antigen-presenting cells, mainly DCs, from
signaling by a recombinant fusion protein, comprised of
prostatic acid phosphatase (PAP) and granulocyte-
macrophage colony-stimulating factor. These revamped
DCs are then infused back into the patient and the
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vaccine generates CD4" and CD8" T cell responses
against PAP, an antigen highly expressed in most PC
cells [156]. In 2010, the IMPACT trial showed a 4.1-
month improvement in OS compared to placebo in
mCRPC [157]. Multiple trials are underway combining
Sipuleucel-T with hormonal agents, chemotherapy, radi-
ation, and other immunotherapy modalities. DCVAC/PCa
is a promising vaccination strategy that is composed of ac-
tivated DCs matched with killed LNCaP cells, a PSA-posi-
tive PC cell line. Both phase I and II trials revealed that a
combination of DVCAV and cyclophosphamide given
with docetaxel increased OS by 7.2 months compared to
control [158]. A phase III trial is underway comparing the
clinical efficacy of DCVAC to standard of care chemother-
apy (NCT02111577). PROSTVAC-VF is a recombinant
viral vaccine, which induces lysis of epithelial cells causing
peripheral PSA release, which is absorbed by effector T
cells. This cascade ultimately induces a PC-targeted im-
munogenic response. To further propagate the immuno-
genic response, the vaccine antigen is conjugated to co-
stimulatory molecules B7.1, ICAM-1, and LFA-3 [159]. In
a phase II trial, asymptomatic mCRPC patients had an im-
proved OS of 25.1 months versus 16.6 months with vac-
cination therapy [160]. The PROSPECT study is an
ongoing phase III trial investigating PROSTVAC with
GM-CSF and its efficacy on survival (NCT01322490).
Early studies combining vaccines with CTLA-4 inhibition
have demonstrated potential efficacy [161]. Lastly, PC has
shown to express low levels of PD-L1 and induction of
PD-L1 has been theorized as a possible treatment ap-
proach. Thus, therapeutic vaccines which induce PD-L1
expression are under consideration [162].

Ipilimumab has been involved in two notable phase III
trials, both of which were underwhelming and lacked
significant improvement in OS. However, through gen-
omic analysis of treated resected tumors, there was a
finding of higher expression of PD-1, PD-L1, and VISTA
on the treated PC tumor cells. Due to these findings, it
is speculated that the tumor microenvironment con-
tinues to adapt after exposure to CPI inciting upregula-
tion of immune checkpoints [163]. This theory is being
tested in a phase II clinical trial that is underway asses-
sing the efficacy of ipilimumab plus nivolumab in
mCRPC (NCT02985957). Preliminary results released in
early 2019 revealed that for patients with mCRPC who
had disease progression despite second-generation
hormonal therapy (cohort one), the ORR was 26% with
combination immunotherapy at a median follow up of
11.9 months. Cohort two included those with progres-
sion of disease after chemotherapy and hormonal
therapy, and these patients had an ORR of 10% at a me-
dian follow up of 13.5months [164]. Although CPI
monotherapy has had limited success in CRPC, ipilimumab
plus nivolumab may have created a foundation for
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emerging immunotherapy therapies. Further studies are un-
derway assessing the optimal sequence and timing of these
CPIs.

Tremelimumab and pembrolizumab are other CPIs
undergoing investigation. In a phase I trial, tremelimu-
mab was combined with short-term ADT in patients
with CRPC. Results were remarkable for prolongation of
PSA doubling time, although no initial effect on PSA
level [165]. In KEYNOTE-028, patients with PD-L1
expression in metastatic PC were treated with pembroli-
zumab monotherapy. All had prior treatment with doce-
taxel and targeted hormonal therapy. Results revealed an
ORR of 13%, with a mDOR of 59 weeks and a stable
disease rate of 39% [166]. To further evaluate the
durability of CPI activity, metastatic PC patients were
grouped based on PD-L1 expression and treated with
pembrolizumab in the phase II KEYNOTE-199 trial
(NCT02787005). Cohorts of patients who had RECIST-
measurable PD-L1 positivity (C1) and negativity (C2) were
grouped, as well as non-measurable, bone-predominant
disease (C3). The latest preliminary results released in
2018 revealed ORR of 5% in C1 and 3% in C2. Median OS
was 9.5 months in C1, 7.9 months in C2, and 14.1 months
in C3 [167]. The trial is ongoing with more results to fol-
low; however, initial results indicate a lack of difference
between the groups, alluding that PD-L1 status alone may
not be a sufficient targeted biomarker for a response.

Most recently, pembrolizumab has joined many other
treatment combinations to further test its efficacy. KEY-
NOTE-365 is an open-label phase Ib/II umbrella trial
evaluating four different treatment combinations, cohort
A: pembrolizumab plus olaparib, cohort B: pembrolizu-
mab plus docetaxel plus prednisone, cohort C: pembroli-
zumab plus enzalutamide (NCT02861573). Preliminary
results were recently presented only for cohort A, pem-
brolizumab plus olaparib. Olaparib belongs to a family
of poly-ADP ribose polymerase (PARP) inhibitors. PARP
is a family of enzymes, activated by DNA damage, facili-
tating DNA repair via single-stranded break and base ex-
cision repair pathways. More specifically, PARP binds to
single-strand DNA damage via its zinc-finger DNA-
binding domain and recruits proteins involved in DNA
repair via auto-poly(ADP-ribosyl)ation. This becomes a
critical component for cancer cell survival [168]. PCs
with DNA repair gene alterations have found to be sen-
sitive to PARP inhibitors [169]. To this end, the PARP
suppression in mCRPC first assessed in the TOPARP-A
trial, which was significant for high response rates (88%)
in patients with DNA repair gene deficits [170]. In an
ongoing phase II trial, patients previously treated with
docetaxel demonstrated a prolonged radiologic progres-
sion-free survival of 13.8 months with olaparib plus abir-
aterone versus only 8.2months in the abiraterone
monotherapy group [171]. Interestingly enough, even
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patients without homologous recombination repair also
benefited from the combination therapy. Of note, there
were more reports of TRAEs in the combination group
compared to the control group. To build on the promising
survival data, a phase III trial has commenced evaluating
olaparib with abiraterone, but now as a first-line treatment
for mCRPC (NCT03732820).

Yu and colleagues recently presented various treatment
combinations with olaparib in 41 men in cohort A of the
KEYNOTE-365 trial. These men were previously treated
with second-generation hormonal therapy, chemotherapy,
and docetaxel. Of the 28 patients with RECIST-measurable
disease, 39% experienced a reduction in tumor burden. The
ORR for the RECIST-measurable group was 7%. Overall,
results showed a median OS of 13.5 months, PFS of 4.7
months, and PSA response of 12% [172]. Yu and colleagues
are expanding the current study into a phase III trial, KEY-
LYNK-010, and will now be including patients who have
also been previously treated with abiraterone and enzaluta-
mide (NCT03834519).

Emerging biomarker-guided therapy

Germline mutations in DNA damage repair (DDR) genes
have garnered much attention among PC investigators.
Studies have revealed a prevalence of various DDR de-
fects in about 10% of primary tumors and almost 25% of
metastatic tumors [173]. The majority of the germline or
somatic aberrations in the DDR genes include BRCA1/2,
CDK12, ATM, FANCD2, and RAD51C, with BRCA2 be-
ing the most common [174]. Further, the PROREPAIR-B
study demonstrated that germline BRCA2 mutation
carriers developed resistance to ADT quicker than non-
carriers. The median time from initiation of ADT to
CRPC was 28 months in non-carriers versus 13.2 months
in carriers [175]. Not only is there evidence for quicker
time to resistance, DDR mutation-positive (DDRm") pa-
tients also suffer from shorted PFS rates [176].

At the 2019 ASCO conference, promising results of
PARP inhibitors have in DDRm" patients were pre-
sented. The previously mentioned TOPARP-A trial re-
ported efficacy of olaparib in unselected metastatic
mCRPC patients [170]. Thereafter, Mateo and colleagues
conducted a phase 1II trial of olaparib in DDRm™ patients
with mCRPC. The study consisted of 98 heavily pre-
treated patients. Of note, the majority of patients had
also been treated with abiraterone/enzalutamide. The
overall radiological response was 54% in 400 mg-dose
cohort, and 39% in 300 mg dose cohort. The mPFS was
5.4 months. Subgroup analysis revealed that BRCA1/2
had the highest response rate at 83% (mPFS 8.1 months),
with the PALB2 defect group with the second highest re-
sponse rate at 57% (mPFS 5.3 months), followed by
ATM and CDK12 defects. Similarly, the BRCA1/2 and
PALB2 groups also had the highest PSA 50%-fall
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response rates at 73% and 63%, respectively. Nearly 33%
of olaparib-treated patients have not shown radiographic
progression at the 1-year follow-up [177].

The development of new targeted strategies begs the
question of the role of germline/somatic DDRm" screen-
ing in all patients with advanced PC.

Next-generation sequencing studies reveal that 25% of
metastatic PC patients harbor DDR defects, a prevalence
significantly higher than previously recognized [178, 179].
Determination of DDRm" patients is emerging as an essen-
tial step to successfully personalize treatment and could
guide clinical decisions at key junctures in the course of PC
treatment [180]. Widespread genetic testing remains cum-
bersome due to the high prevalence of PC in developed
countries; however, future trial design incorporating DDR
defect status will likely convey a survival advantage and fur-
ther advance precision medicine outcomes.

Emerging chemotherapy

For years, docetaxel with prednisone has been the well-
established chemotherapeutic agents for CRPC [181].
Several studies have focused on other taxane agents but
have failed to show significant improvement in OS.
Thus, combination therapies involving docetaxel have
become the mainstay of ongoing research in CRPC
chemotherapy. Docetaxel is believed to have dual anti-
neoplastic mechanisms: (1) inhibition of microtubular
depolymerization and (2) attenuation of the effects of
bcl-2 and bcl-xL gene expression. Enhanced microtubule
stability leads to G(2)M phase arrest in the cell cycle and
induces bcl-2 phosphorylation, eventually inducing
apoptosis [182]. Studies had shown docetaxel to have a
higher affinity for tubulin compared to other taxane
agents such as paclitaxel. The combination of docetaxel
to ADT was evaluated in the STAMPEDE trial, which
was remarkable for improved PFS [183]. Thus, the
addition of docetaxel for men who were committing to
long-term ADT therapy became the standard of care. In
the most recent studies, the combination of the two
frontline agents for mCRPC, docetaxel and enzaluta-
mide, has been under investigation (NCT02453009).
Both have shown increased OS in their respective treat-
ment regimens; however, little is known about the ef-
fects of the combination of the two. According to the
preliminary results in the phase II CHEIRON trial, the
combination of both had an improved 6 month PFS rate
in patients with mCRPC compared to docetaxel alone. A
6-month PFS rate of 89% was observed in the combin-
ation group compared to 72.8% in the docetaxel mono-
therapy group. However, there has been no difference in
median OS between the two groups [184]. Early doce-
taxel treatment concomitant with ADT has also been
studied over the past years. The open label phase II
CHAARTED study measured the efficacy of adding
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docetaxel plus ADT versus ADT alone. Results showed
the mOS was 57.6 months in the combination study ver-
sus 47.2 months with ADT monotherapy [185]. How-
ever, the mOS in patients with high-volume disease was
51.2 months in the combination treatment group versus
34.4 months in the ADT monotherapy group. The au-
thors concluded increased responsiveness in the subset
of patients with high-volume mCSPC. Intriguing com-
bination treatments with docetaxel are continuing to
undergo investigation with multiple clinical trials
underway.

Although platinum derivatives have failed to show OS
benefit in patients with advanced PC, efficacy has been
demonstrated in a distinct subset of patients [186].
Homologous recombination defects have been linked
with increased sensitivity to platinum-based chemother-
apy [187]. A recent case series revealed the effectiveness
of carboplatin in three patients. Two of the three pa-
tients demonstrated BRCA2 and ATM mutations, re-
spectively. Although BRCA2 mutation has been linked
with poorer prognoses, the patient survived 15 years
post-treatment compared to the reported 6-year median
survival [188]. In an alternative report, eight men were
identified with BRCA2 variants from a group of 141
men [180]. Six out of the eight men exhibited a PSA >
50% decline in 12 weeks compared to 23 of 133 non-car-
riers (95% CI 27-28%; p < 0.001). Although these re-
ports have limitations, they allude to the potential of
carboplatin in this subset of patients with advanced PC.
These data are consistent with studies indicating in-
creased responsiveness of BRCA2 carriers in the breast
and ovarian cancer population to carboplatin.

Emerging targeted therapy

Men living with mCRPC have a 90% rate of bone metas-
tases, resulting in increased incidence of pathological
fractures, spinal cord compression, and pain [189]. Acti-
vation of osteoblasts to increase bone mass and osteo-
clasts to resorb bone has been the primary mode of
prevention. Zoledronic acid and denosumab successfully
provided objective data on both HRQoL and prevention
skeletal-related events; however, they have not been
linked to increased OS [190]. Radium-223 is the first
bone-targeting agent that has led to a significant survival
benefit, both mPFS and OS [191]. Ongoing trials are
evaluating the efficacy of radium-223 with other estab-
lished agents linked with an increased OS; however,
results to date have been underwhelming. Specifically, a
randomized, double-blind, phase III trial compared con-
current use of radium-223 with abiraterone versus abira-
terone (NCT02043678). Final results provided no
skeletal event-free survival benefit with median symp-
tomatic skeletal event-free survival of 22.3 months in the
combination arm versus 26.0 months in the placebo
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group. More perplexing was that the incidence of frac-
tures was 29% in the combination group and 11% in the
placebo group [192]. Concurrent use of radium-223 and
abiraterone is currently under further investigation but
is not advised for clinical use at this time.

A promising bone-targeted therapy involves radiola-
beled molecules bound to prostate-specific membrane
antigen (PSMA), allowing targeted delivery of beta-radi-
ation. PSMA is a 750 amino acid type II transmembrane
glycoprotein [193]. It is thought to play a role in cell mi-
gration, nutrient uptake, and cell survival [194]. The
levels of PSMA are low in normal prostate epithelium,
however are found elevated 1000-fold in almost all PCs
[194]. The PSMA receptor undergoes endocytosis when
bound to its receptor proteins, allowing PSMA-labeled
radioisotopes to concentrate within the cell [195].
7L utetium (*”’Lu) is a therapeutic radionuclide and a
medium-energy p-emitter (490 keV) with a maximum
energy of 0.5MeV and a maximal tissue penetration of
<2mm. The gamma rays emitted from '"’Lu allows for
visualization and localization of metastatic cancer cells
[196]. In a phase II trial, 50 patients with mCRPC and
PSMA positivity received four cycles of ”’Lu-617 every
6 weeks (ACTRN12615000912583). An astonishing 64%
observed PSA decline greater than 50%, and of those,
44% observed at least an 80% decline in PSA. Further-
more, of the 14 patients who did not undergo adequate
PSA regression, 9 of them observed a PSA decline
greater than 50% after a median of two subsequent cy-
cles [197]. The correlation between PSA response and
whole-body tumor dose was significant. Albeit a rela-
tively small study, early results are promising and well
tolerated in these patients who have already undergone
standard of care therapy with docetaxel, abiraterone,
and/or enzalutamide. More longitudinal investigation is
needed to determine durability of response, but this is
an exciting time for radiolabeled molecule targeting in
PC.

Discussion

We have now entered an era that has been characterized
as “revolutionary” for therapeutic treatments in GU can-
cers. Over the past 20 years, we have come to recognize
the necessity of understanding malignancy at the mo-
lecular level in order to better guide drug design and dis-
covery [198]. We have made marked advances in our
understanding of the molecular interplay within the
tumor microenvironment. To this end, immunotherapy
has emerged as possibly the most exciting oncological
development of our generation, with CPI, TVs, and cyto-
kine modulation providing objective and sometimes even
sustained responses. Targeted therapy, predominantly
via anti-angiogenesis, allow for a precision medicine ap-
proach that has also led to meaningful outcomes [198].
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Moreover, the combination of immunotherapy and anti-
angiogenesis has been validated as an approach that not
only targets dual pathways of tumorigenesis but also func-
tions in a synergistic approach enhancing each other’s
therapeutic effects. As a result, we have witnessed a rapid
evolution in the armamentarium of agents available for
GU malignancies. There are ongoing paradigm shifts to
therapy as treatment options are now being extended to
the fourth- and fifth-line settings. There is no sign of stag-
nation in drug development as investigators are tooled
with a deeper understanding of oncogenic drivers and tar-
gets. However, the rate by which novel therapeutic agents
are being developed has not been reconciled by the litera-
ture with clear level one data to guide treatment choice.
Study design has generally focused on proof-of-principle
models and clinical efficacy of novel agents and not on
head-to-head studies which would elucidate optimal se-
quence of agents. Nonetheless, the excitement and enthu-
siasm behind each emerging agent offers greater hope for
clinical advances.

The treatment landscape for patients with advanced PC
is continuing to evolve, now more than ever. STAMPEDE
and LATITUDE were groundbreaking for abiraterone as
the standard of care for mCRPC. The PREVAIL and
PROSPER trials have been equally as groundbreaking for
consideration of enzalutamide. Even with well-established
drugs like enzalutamide and abiraterone, ongoing research
for novel agents is essential. Although chemotherapeutic
options are limited, novel hormonal agents such as apalu-
tamide, darolutamide, and seviteronel are the upcoming
frontrunners in battling castration resistance. The SPAR-
TAN trial was pivotal and provided the framework for the
FDA approval of apalutamide. The drug’s metastases-free
survival rivaled that of the current frontline treatment of
nmCRPC. Better understanding of abiraterone resistance
has led us to the development of seviteronel. Seviteronel
has shown superiority in certain AR mutant cohorts,
potentially overcoming the barrier of resistance in some.

In the last year, immunotherapy has lost its status in
advanced PC treatment. However emerging clinical trials
are beginning to release promising preliminary results.
Better knowledge of the tumor microenvironment, pro-
tein alterations, and treatment resistance mechanisms
may further advance the role of immunotherapy in PC
with better tailored drug design. The presence of PD-L1
expression is continuing to be explored in advanced PC.
Trials combining immunotherapy with hormonal ther-
apy and PARP inhibitors continue to grow and show
great promise. Furthermore, identifying high-risk pa-
tients through gene sequencing can help delineate which
subset of patients may most benefit from PARP inhibi-
tors. Radiolabeled molecule targeting has been well tol-
erated and will likely have an important role in the
future for CRPC.
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With regards to UC and RCC, both can aptly be de-
scribed as suffering a 20—30-year standstill of slow drug
development with less than ideal clinical outcomes. Plat-
inum-based chemotherapeutic agents continue their role
in treatment cascades, albeit this role may be diminish-
ing. CPI has had a transformative impact on patients
with durable outcomes in a subset of individuals and
with tolerable AE profiles. The approval of FGFR TKI
erdafitinib provided new option for metastatic bladder
cancer. Undoubtedly, combination therapies with dual
immunotherapies, cytokine modulators, or with TKIs
will be the focus on trial development for years to come.
Combination therapy has the potential to overcome
drug-resistance barriers as well as augment immunogen-
icity of the tumor—even in patients who lack significant
response to CPI monotherapy. More exciting are the
identification of novel molecular targets for CPI and the
likely emergence of CPI therapies other than PD-1/PD-
L1/CTLA-4 inhibitors. To this end, immunotherapy will
have a strong foothold in the treatment landscape for
both UC and RCC for years to come.

Both UC and RCC are at a crossroads for role of neoadju-
vant cystectomy and cytoreductive nephrectomy (CN), re-
spectively. CN in RCC was formerly the standard of care
before the emergence of targeted therapies and CPIL Treat-
ment paradigms transitioned over the past few years and the
decision for CN is now more nuanced with consideration of
MSKCC and IMDC prognosis scores [71]. The phase III
CARMENA and SURTIME trials have provided concrete
data on the effects of CN in various RCC populations. CN is
only recommended in patients with a good-to-intermediate
prognosis. However, this dogma is challenged by many ex-
perts and argues that CN should be considered on an indi-
vidualized basis and that overarching trials offer RCC
patients a disservice by excluding patients who may benefit
from CN. There remains room for better trial design and
further investigation of the clinical benefits (or lack thereof)
for CN. Bladder preservation therapy (BPT) is an emerging
concept that is gaining traction in UC. Neoadjuvant chemo-
therapy followed by radical cystectomy is the standard of
care for MIBC. BPT has had favorable outcomes in ongoing
studies. However, with the approval of CPI in the first-line
setting in UC, large-scale clinical trial investigation of BPT
with CPI remains an urgent unmet need. Early phase I/II
single-arm trials are underway and will likely provide the
biologic rationale for more expansive studies soon.

The pace by which we have identified novel thera-
peutic targets and the emergence of novel agents in GU
oncology has been unprecedented. However, we are just
entering the era of personalized medicine. We now ap-
preciate that race, gender, and age all affect tolerability
of various agents between individuals [199-201]. Early
studies have demonstrated the power of genetic profiling
as an invaluable tool with implications in diagnoses,
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therapeutics, and prognosis of cancers [78]. Further,
leaders in the field have suggested that using next gener-
ation tumor sequencing to assess for genomic alterations
may aid in treatment selection and should be considered
[16]. Ghatalia and colleagues presented an elegantly de-
signed study in which 35 patients with RCC underwent
gene expression profiling. The study paired intrapatient
kinase gene-expression analysis in primary dormant
RCC, matched normal kidney, and mRCC and identified
novel drivers of metastasis [202]. Alternatively, several
studies have conducted gene analyses and found a pre-
dictive role for certain gene signature profiles. A 25-gene
IEN-y gene expression signature has been correlated
with nivolumab responsiveness in UC [19]. A commer-
cially produced NanoString gene expression platform
specific to an 18-gene signature has been shown to
effectively predict pembrolizumab responsiveness [203].
Altogether, gene expression profiling provides a platform
for high-throughput genetic evaluation of patient tumors
and is an exemplary example of the impact personal-
ized may have in the future of GU oncology. Pre-de-
termination of responsiveness to CPI would be
invaluable for patient selection for immunotherapy.
Lastly, studies experimenting with GU circulating
tumor cells, circulating tumor DNA, and tumor orga-
noids have been a novel approach to harness genomic
data from in vivo cancer specimen to create a “per-
sonalized” genomic panel [204—206]. Prospective clin-
ical trials are warranted to further validate these
technologies as a tool for personalized therapy.

Conclusion

In conclusion, major advances in our understanding of
GU cancer biology have had a transformative impact in
the field. The emergence of novel agents, particularly
immunotherapeutics, are having a profound impact in
the field. The future is bright for GU oncology and con-
tinued validation of biomarkers in conjunction with
combination therapies will likely optimize the efficacy of
our treatments. We have highlighted the data behind
emerging agents, and we will continue to learn the
strengths and weakness as the novel agent’s trial results
mature. Validation of molecular signatures and bio-
marker expression will be essential to stratify respective
patients for proper treatment courses. Ultimately, inves-
tigators will be challenged with the task of sequencing
ideal treatment cascades and to provide consensus
agreements on optimal drug selection for each disease
setting. This has proven a challenge in the current treat-
ment landscape and will likely become more challenging
with the rapid rate of drug development. Nonetheless,
this is a welcomed challenge as PFS and OS continue to
improve in this exciting time.
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