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Abstract
Background  Alzheimer’s disease (AD) and Parkinson’s disease (PD) are leading neurodegenerative disorders marked 
by protein aggregation, with AD featuring amyloid-beta (Aβ) and tau proteins, and PD alpha-synuclein (αSyn). 
Dementia with Lewy bodies (DLB) often presents with a mix of these pathologies. This study explores naturally 
occurring autoantibodies (nAbs), including Immunoglobulin (Ig)G, IgM, and IgA, which target αSyn, Aβ and tau to 
maintain homeostasis and were previously found altered in AD and PD patients, among others.

Main text  We extended this investigation across AD, PD and DLB patients investigating both the affinities of IgGs and 
levels of IgGs, IgMs and IgAs towards αSyn, Aβ and tau utilizing chemiluminescence assays. We confirmed that AD 
and PD patients exhibited lower levels of high-affinity anti-Aβ and anti-αSyn IgGs, respectively, than healthy controls. 
AD patients also showed diminished levels of high-affinity anti-αSyn IgGs, while anti-tau IgG affinities did not differ 
significantly across groups. However, DLB patients exhibited increased anti-αSyn IgG but decreased anti-αSyn IgM 
levels compared to controls and PD patients, with AD patients showing a similar pattern. Interestingly, AD patients 
had higher anti-Aβ IgG but lower anti-Aβ IgA levels than DLB patients. DLB patients had reduced anti-Aβ IgM levels 
compared to controls, and anti-tau IgG levels were lower in AD than PD patients, who had reduced anti-tau IgM levels 
compared to controls. AD patients uniquely showed higher anti-tau IgA levels. Significant correlations were observed 
between clinical measures and nAbs, with negative correlations between anti-αSyn IgG affinity and levels in DLB 
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Background
Neurodegenerative diseases are mainly characterized by 
the pathological accumulation of specific proteins, which 
play a pivotal role in disease progression. Alzheimer’s dis-
ease (AD) is characterized by abnormal accumulation of 
extracellular amyloid-beta (Aβ) and intracellular tau [1], 
while Parkinson’s disease (PD) is characterized by abnor-
mal intracellular accumulation of alpha-synuclein (αSyn) 
[2]. Dementia with Lewy bodies (DLB) is characterized 
by increased Lewy body pathology by disease defini-
tion, but also shares pathologies with both AD, includ-
ing Aβ plaques and tau neurofibrillary tangles, in up to 
76% of cases. In contrast, non-dementia PD patients 
share pathology with AD in fewer cases (7–10%) [3–6]. 
Although still debated, the consensus emphasizes that 
the aggregation and toxicity of intermediate toxic seed 
structures of these pathogenic proteins are considered to 
be key in disease initiation and progression [7–9].

Naturally occurring autoantibodies (nAbs) are a dis-
tinct set of antibodies that recognize self- and non-self-
antigens without prior immunization and play a pivotal 
role in immune clearance of neoepitopes, aggregated 
and misfolded protein [10]. Although they likely cannot 
reach the intracellular compartment, they contribute to 
the engulfment of dying cells and aid in their clearance, 
while also surveilling the extracellular space, inhibiting 
the transmission of pathological proteins from cell to 
cell. They have been found in large amounts in healthy 
individuals as well in aberrant levels in patients with 
neurodegenerative diseases such as AD, PD, DLB, and 
other neurological disorders (summarized in Table S1) 
[11]. Previous studies have shown alterations in the lev-
els and affinity of nAbs against αSyn, Aβ, and tau in these 
diseases, suggesting that dysfunction in the immune 
clearance of pathological proteins may play an consid-
erable role in the development of neurodegenerative 
diseases [12, 13]. Generally, there is a consistent pattern 
observed in the levels and functionality of nAbs in neu-
rodegenerative diseases. Early PD and DLB are char-
acterized by increased levels of anti-αSyn nAbs. On the 
other hand, AD patients, in general, exhibit reduced lev-
els of anti-Aβ nAbs, while no significant differences are 
observed in anti-tau nAbs (Table S1). Most studies have 

predominantly focused on IgG nAbs, under the assump-
tion that immune responses following class-switching 
are of primary importance. However, significant immune 
functions are also found in the IgM and IgA antibody 
classes. IgM nAbs, often regarded as the immune sys-
tem’s “first responders,” can rapidly react to alterations 
in pathological proteins or result in depletion of inhibi-
tors for protein aggregation [14, 15]. IgA’s on the other 
hand play a crucial role in mucosal and gut immunity, 
which has been implicated as a potential mediator in the 
pathogenesis of neurodegenerative disorders, such as 
PD and AD [16, 17]. Furthermore, studies evaluating the 
functionality of nAbs have revealed important insights. 
PD patients have been found to have reduced affinity of 
anti-αSyn autoantibodies in both plasma and cerebro-
spinal fluid (CSF), respectively [18, 19]. This reduction in 
affinity is also observed in prodromal phases of PD and 
the atypical parkinsonian disorder multiple system atro-
phy (MSA) [20]. Similarly, AD patients exhibit reduced 
affinity for anti-Aβ nAbs [21]. The precise role of nAbs 
in neurodegenerative disorders, however, remains a sub-
ject of ongoing debate and whether these differences in 
levels, specificity, and efficacy between healthy individu-
als and those with PD, AD or DLB, suggest that they may 
contribute to disease onset or progression. However, 
promising results have been obtained in preclinical ani-
mal models, where nAbs have been evaluated in terms of 
passive immunization (reviewed by [22]). More recently, 
positive results have been reported in clinical trials for 
AD using donanemab and lecanemab, both of which tar-
get Aβ structures [23, 24].

Here, we evaluated the repertoire of high affinity 
Immunoglobulin (Ig)G nAbs specific to αSyn, Aβ, and 
tau in AD, PD, and DLB patients compared to healthy 
controls. We also investigated the levels of nAbs of dif-
ferent classes (Immunoglobulin (Ig)G, IgM, and IgA). 
Understanding the connection between nAbs and pro-
tein pathology could provide valuable insight into disease 
mechanisms and identify potential targets for therapeutic 
treatment.

patients and a positive correlation with anti-αSyn IgA levels in PD patients. Disease-specific changes in nAb levels and 
affinity correlations were identified, highlighting altered immune responses.

Conclusion  This study reveals distinctive nAb profiles in AD, DLB, and PD, pinpointing specific immune deficiencies 
against pathological proteins. These insights into the autoreactive immune system’s role in neurodegeneration 
suggest nAbs as potential markers for vulnerability to protein aggregation, offering new avenues for understanding 
and possibly diagnosing these conditions.

Keywords  Alzheimer’s disease, Dementia with lewy bodies, Parkinson’s disease, Naturally occurring autoantibodies, 
Alpha-synuclein, Amyloid-beta, Tau
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Materials and methods
Demographics
A total of 235 plasma samples were collected from three 
different biobanks for this study (Table 1 and 2). (1) The 
samples included 38 PD and 15 DLB patients samples, 
and 29 control samples from the Bispebjerg Movement 
Disorder Biobank (BMDB) at the Department of Neu-
rology, Bispebjerg-Frederiksberg Hospital, Copenhagen 
University Hospital, Denmark (2) 69 AD and 31 DLB 
patient samples were obtained from the Danish Demen-
tia BioBank (DDBB), Rigshospitalet, Copenhagen Uni-
versity Hospital, Denmark, and (3) 12 PD patients and 
41 controls from the research-biobank at the Centre for 
Neuroscience and Stereology, Bispebjerg-Frederiksberg 
Hospital, Copenhagen University Hospital, Denmark. 
Only cases that met the international criteria for prob-
able disease were included in the study [25–28]. The 
healthy control individuals had no central nervous sys-
tem conditions, immunological disorders, or ongoing 
immunomodulatory treatment. All participants provided 
written consent for inclusion in the biobanks, adhering to 
the World Medical Association Declaration of Helsinki.

αSyn/Aβ/tau competition electrochemiluminescence 
immunoassay (ECLIA)
The affinity of anti-αSyn/Aβ/tau nAbs was assessed based 
on a competitive antigen-antibody reaction, whereby 
increasing antigen concentrations in the fluid phase 
facilitated distinguishable repertoires of high-affinity 
and low-affinity antibody fractions, previously developed 

in-house [18]. In this study the assay was adapted and 
optimized for Aβ and tau. In brief, 96-well mesoscale dis-
covery (MSD) plates were coated overnight at 4  °C with 
antigens (αSyn: 20 ng/mL (rPeptide, #S-1001), standard 
small spot MSD plate (MSD, #L45XA); Aβ1− 42: 1  µg/
mL (rPeptide, #A-1002), standard small spot MSD plate 
(MSD, #L45XA); tau: 1 ng/mL (rPeptide, #T-1001), high 
bind plate (MSD, #L15XB)) in ice-cold 0.1 M carbonate 
buffer, pH 8.5 (Sigma‒Aldrich, #C3041). Next, the plates 
were blocked for 1  h at 800  rpm (αSyn: PBS + BSA 3% 
(Sigma‒Aldrich, #05482); Aβ: Intercept™ Blocking Buf-
fer in PBS (LI-COR, #927-90001); tau: ROTI®Block1X 
(Carl Roth, #A151). Meanwhile, plasma samples were 
diluted (αSyn: 1:200; Aβ/tau: 1:100) in PBS + BSA-0.1% 
(Sigma‒Aldrich, #05482) and preincubated with the 
antigen (αSyn: 1000 nM/2 nM/0.2 nM, 0 nM; Aβ: 600 
nM/6 nM/0.06 nM/0.0006 nM/0 nM; tau: 100 nM/1 
nM/0.01 nM/0 nM) for 1  h before adding onto a newly 
washed antigen-coated plate (5 times with PBS + 0.05%-
Tween-20 (Sigma‒Aldrich, #P7949)) and incubated for 
1 h at 800 rpm. After an additional washing step (5 times 
with PBS + 0.05%-Tween-20 (Sigma‒Aldrich, #P7949)), 
SULFO-tag goat anti-human (1:10,000; MSD, #R32AJ-1) 
in PBS + BSA-0.1% (Sigma‒Aldrich, #05482) was added 
and eventually incubated for 1 h at 800 rpm. Finally, the 
plate was washed (5 times with PBS + 0.05%-Tween-20) 
and Read Buffer T (1:2 (MSD, #R92TC)) was added upon 
reading the plate immediately before the MSD Sector 
Imager/QuickPlex SQ 120 Reader (MSD, LLC, USA). The 
percentage of max binding for each sample and pool was 
calculated as follows:

	

% of max binding

=
(ECLIAsample OD −ECLIAOD at 1000 nM competitor (0% binding))

ECLIAOD at 0 nM competitor (100% binding)
× 100

.IgG, IgM and IgA anti-αSyn/Aβ/tau measurements
Total levels of anti-αSyn/Aβ/tau nAbs were measured 
by indirect ELISA as previously described [19, 20, 29] 
with few adjustments. In brief, 96-well polystyrene 
microtiter plates (Nunc MaxiSorp® flat-bottom) were 
coated overnight with antigens (αSyn: 5  µg/mL (rPep-
tide, #S-1001-2); Aβ1–42: 5  µg/mL (rPeptide, A-1002); 
tau: 0.5  µg/mL (rPeptide, T-1001)) in ice-cold 0.1  M 
carbonate buffer, pH 8.5 (Sigma‒Aldrich, #C3041). The 
plates were then emptied and blocked for 2 h at RT with 
PBS + BSA-3% (Sigma‒Aldrich, #05482) + Tergitol-0.1% 
(Sigma‒Aldrich #NP40S). Following a subsequent wash-
ing cycle of 5 times with PBS + 0.05%-Tween-20 (Sigma‒
Aldrich, #P7949), plasma samples were diluted (1:50 
for anti-αSyn/Aβ/tau IgA and 1:100 for anti-αSyn/Aβ/
tau IgG/IgM) in dilution buffer (PBS + 0.1%BSA + 0.05% 
+ Tween-20) and incubated for 1 h at RT. After another 
washing cycle (5 times with PBS + 0.05%-Tween-20), 
secondary HRP-conjugated anti-Ig antibodies (anti-IgG 

Table 1  Demographic and clinical data
AD 
(N = 69)

PD 
(N = 50)

DLB 
(N = 46)

NC 
(N = 70)

p values

Age [years] 70.4 (8.1) 
[51–89]

68.4 (7.4) 
[52–84]

72.8 (6.4) 
[56–88]

71.4 
(9.1) 
[52–90]

0.020*

Sex (M/F) 35/34 24/26 33/13 31/39 0.027**
Age at 
onset 
[years]

68.0 (8.6) 
[48–88]; 
81%

61.4 (8.3) 
[44–78]

69.6 (8.8) 
[38–87]; 
98%

- 0.267#

MMSE 24.1 (3.9) 
[12–30]

- 25.8 (4.0) 
[16–30]; 
67%

- 0.016#

H&Y - 2.3 (0.9) 
[1–5]; 
72%

2.4 (0.9) 
[1–3]; 32%

- 0.461#

Disease 
Duration 
[years]

2.2 (1.2) 
[0.5-5]; 
81%

7.0 (4.1) 
[0–15]

3.2 (3.3) 
[0–21]; 98%

- < 0.001%

Biobank DDBB BMDB; 
CNS-lab

DDBB; 
BMDB

BMDB; 
CNS-lab

*: Welch ANOVA. **: chi-squared test. #: Mann‒Whitney test. %: Kruskal-wallis 
test. MMSE: Mini Mental State Examination (MMSE); H&Y: Hoehn & Yahr (7-
scale); M: Male; F: Female; DDBB: Danish Dementia BioBank; BMDB: Bispebjerg 
Movement Disorder Biobank; CNS-lab: Centre for Neuroscience and Stereology. 
$: PD vs. DLB (collectively), p < 0.05
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(1:20,000; Abcam, #ab98624), biotin-conjugated anti-IgM 
(1:5,000; Sigma‒Aldrich, #B1265), and anti-IgA (1:1,000 
for αSyn/Aβ; 1:2000 for tau; Thermo Fisher Scientific, 
#PA1-74395) were diluted in dilution buffer, added to 
the plates and incubated for 2 h at RT. An additional step 
was carried out for the biotin-conjugated IgM antibody, 
with streptavidin–peroxidase (1:10,000; Sigma‒Aldrich, 
#S5512) for 30 min at RT. Next, the plates were washed 
once again (5 times with PBS + 0.05%-Tween-20), and tet-
ramethylbenzidine (TMB) Liquid Peroxidase Substrate 
(Sigma‒Aldrich, #T8665) was added for 30  min in the 
dark at RT prior to reaction termination by the addition 
of 0.5 N sulfuric acid (Sigma‒Aldrich, #319570). Finally, 
the absorbance was measured at 450  nm and 620  nm 
on a MultiSkan™ FC Microplate Reader (Thermo Fisher 
Scientific, USA). All data were normalized to positive 
controls on each individual plate. Positive controls con-
sisted of pooled plasma samples, from controls and 
patients, added to each plate to account for plate-to-plate 
variability.

Statistical analyses
For demographic group comparison, we applied Welch 
ANOVA followed by the Games-Howell test for multiple 
comparisons for age since the data was normally dis-
tributed but has difference in variances, the chi-squared 
test for sex, the Mann‒Whitney U test for age at onset, 
MMSE, Hoehn & Yahr and disease duration. Outliers 
were removed from analyses using ROUT with false dis-
covery rate (FDR), Q = 1%. Normality was assessed using 
the D’Agostino Omnibus test. For group comparison, we 
applied multiple linear regression modeling including 
covariates age and sex, since small discrepancies between 
groups were observed, using ANOVA from the car pack-
age [30]. For multiple comparisons, the glht and mcp 
functions from the multicomp package [31] were applied 
using Tukey’s range test. Correlations between measured 
outcomes and clinical data were assessed using Spear-
man’s rank-order correlation. Spearman’s correlation 
matrices were constructed using corrplot package [32]. 
Data were analyzed using R v. 3.5.2 [33] and GraphPad 
Prism 9.4.1 (GraphPad Software Inc., USA).

Results
Anti-αSyn/Aβ/tau high-affinity nAbs in AD, DLB and PD 
patients
To assess the functionality of nAbs and their capacity to 
form stable immunocomplexes across various diseases, 
we analyzed the binding affinity of anti-αSyn, -Aβ, and 
-tau IgG nAbs in patients with AD, DLB and PD, as well 
in control individuals. To perform these analyses, we 
utilized our well-characterized competition assay with 
minor adjustments [19, 20, 34]. Based on initial com-
petition curves obtained from a subset of 10 randomly 

selected age- and sex-matched patients and control indi-
viduals (Fig. 1A, D and G), we chose two different condi-
tions to firmly evaluate the high-affinity nAb repertoire. 
The analysis of individual samples revealed notable dif-
ferences in the high-affinity repertoire of anti-αSyn and 
anti-Aβ IgG nAbs. When exposed to 0.2 nM free αSyn, 
PD patients (p = 0.045) and AD patients (p = 0.037) 
(Fig.  1B; Table  3) exhibited a significantly reduced rep-
ertoire of high-affinity anti-αSyn IgG compared to con-
trols. Additionally, when exposed to 0.6 nM free Aβ, AD 
patients only demonstrated significantly lower amounts 
of high-affinity anti-Aβ IgG compared to controls. 
No differences in tau affinity reactivity were observed 
between groups.

Anti-αSyn/Aβ/tau IgG, IgM and IgA nAbs in AD, DLB and PD 
patients
To explore the reactivity of different antibody classes in 
the immune system, namely, IgG, IgM, and IgA, toward 
αSyn, Aβ, and tau in patients with AD, DLB, PD, and 
controls, we conducted indirect ELISA analyses. Explor-
ing the repertoires of anti-αSyn IgG, IgM, and IgA nAbs, 
we observed that AD and DLB patients exhibited sig-
nificantly higher levels of anti-αSyn IgG than controls 
(AD: p = 0.023; DLB: p < 0.001) (Fig.  2A; Table  3). More 
significantly, DLB patients exhibited increased levels of 
anti-αSyn IgG compared to both AD (p = 0.003) and PD 
patients (p < 0.001) (Fig.  2A; Table  3). In terms of anti-
αSyn IgM, both AD and DLB patients demonstrated 
reduced levels compared to PD (AD: p = 0.007; DLB: 
p = 0.045) and controls (AD: p < 0.001; DLB: p < 0.001) 
(Fig. 2B; Table 3). For Aβ, the levels of anti-Aβ IgG were 
significantly higher in AD patients than in controls 
(p = 0.032) (Fig.  2D; Table  3). In contrast, DLB patients 
exhibited reduced levels of anti-Aβ IgM compared to 
controls (p = 0.020) (Fig. 2E; Table 3). Furthermore, DLB 
patients had increased levels of anti-Aβ IgA compared 
to AD patients (p = 0.011) (Fig.  2F; Table  3). Regarding 
tau, AD patients demonstrated decreased levels of anti-
tau IgG compared to PD (p < 0.005) patients (Fig.  2G; 
Table  3), whereas AD patients had increased levels of 
anti-tau IgA compared to DLB patient (p = 0.011). In 
terms of anti-tau IgM, PD patients had reduced levels 
compared to controls (p = 0.027) (Fig. 2H; Table 3).

Clinical correlation
Clinical associations were examined to assess the rela-
tionship between nAb affinity and levels, and clinical 
parameters in AD, DLB and PD patients (Table S2, Fig. 
S1). Interestingly, DLB patients were presented with 
decreased levels of anti-aSyn IgG levels following disease 
duration (r=-0.457; p = 0.002) (Fig. S1A, Table S2)  and 
Hoehn and Yahr (H&Y) staging (r=-0.651; p = 0.048) (Fig. 
S1B, Table S2), a commonly used clinical measure 
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of disease severity in diseases with motor impair-
ment, whereas the levels of high affinity anti-aSyn IgG 
nAbs also decreased during disease duration (r = 0.365; 
p = 0.047)  (Fig. S1C, Table S2). In PD patients, a signifi-
cant association was observed between anti-αSyn IgA 
levels and H&Y staging (r = 0.458; p = 0.006)  (Fig. S1D, 
Table S2).

Correlation analysis
Comprehensive analysis utilizing Spearman’s rank corre-
lation matrices to examine the interrelationships among 
measured nAbs unveiled multiple significant associa-
tions. In the group of healthy controls, positive correla-
tions were observed among the anti-αSyn, anti-Aβ and 
anti-tau IgG and IgM across all three nAbs, as indicated 

Fig. 1  Affinity profiles of anti-αSyn (A), -Aβ (D) and -tau (G) IgG nAbs. Data are presented as two-site inhibition curves of random pooled age- and 
sex-matched plasma samples (n = 10) from normal controls (black triangles and line), AD (green dots and line), PD (blue triangles and line) and DLB (red 
squares and line). Binding affinities of individual samples of nAbs to αSyn were analyzed in the presence of (B) 0.2 nM and (C) 2 nM, to Aβ in the presence 
of (E) 0.06 nM and (F) 0.6 nM, and to tau in the presence of (H) 0.1 nM and (I) 1 nM. Data are presented as “% of max binding” in truncated violin plots with 
median (horizontal line). Group comparisons were performed by applying multiple linear regression models including covariates age and sex and post 
hoc multiple comparison testing using Tukey’s range test. Statistically significant p-values (< 0.5) are depicted
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in Fig. 3A and Table S3. This was with the exception of the 
anti-Aβ IgG versus anti-tau IgM relationship (r = 0.230, 
p = 0.059). Notably, strong correlations persisted across 
all four examined groups (AD, DLB, PD and controls) for 
the anti-tau IgA, IgG, IgM and the anti-Aβ IgA, IgG, IgM 
(Fig. 3A-D, Table S1-4), respectively. Furthermore, a pos-
itive correlation was found between anti-Aβ IgM and IgG 
(r = 0.284, p = 0.019), and similarly between anti-αSyn IgM 

and IgG (r = 0.525, p = 1.2E-05). A positive correlation was 
also observed between the affinity of anti-tau IgG for two 
concentrations of free tau (r = 0.466, p = 4.3E-04). Inter-
estingly, in controls, no correlation was between the two 
affinity measures for anti-Aβ IgGs (r=-0.082, p = 0.601), 
contrasting with the positive correlations observed in AD 
(r = 0.693, p = 1.2E-08), DLB (r = 0.456, p = 0.009) and PD 
(r = 0.567, p = 1.7E-04) patients.

Fig. 2  Relative anti-αSyn (A-C), -Aβ (D-F) and -tau (G-I) IgG, IgM and IgA nAb levels in AD, DLB and PD patients as well as controls. Data are presented 
as normalized optical (normalized to positive controls on each individual plate) densities in truncated violin plots with median (horizontal line). Group 
comparisons were performed by applying multiple linear regression models including covariates age and sex and post hoc multiple comparison testing 
using Tukey’s range test. Statistically significant p-values (< 0.5) are depicted
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In AD patients, while many correlations remained 
(Fig. 3B, Table S4), there were five exceptions, in addition 
to the previously described Aβ high-affinity correlation. 
These exceptions included four positive correlations: 
between high-affinity anti-αSyn 0.2 nM and anti-αSyn 
2 nM (r = 0.492, p = 4.4E-04), anti-αSyn IgA and anti-Aβ 
IgM (r = 0.289, p = 0.024), high affinity anti-tau 0.1 nM 

and anti-tau 1 nM (r = 0.835, p = 3.2E-13) and anti-tau IgG 
versus anti-tau IgM (r = 0.259, p = 0.034). Additionally, a 
negative correlation was noted between anti-Aβ IgM and 
high-affinity anti-Aβ IgGs (r=-0.285, p = 0.047).

In case of DLB patients compared to healthy controls, 
eight positive correlations associated with anti-αSyn IgA, 
IgG, and IgM versus anti-Aβ, and anti-tau IgG, and IgM 

Fig. 3  Spearman’s correlation matrix of the anti-αSyn/Aβ/tau affinities and IgGs, IgMs and IgAs levels. Aβ: amyloid-beta, Ig: immunoglobulin, αSyn: alpha-
synuclein. Scalebar ranging from Spearman’s r = -1 (red, negative correlation) to + 1 (blue, positive correlation). Only significant correlations are showed. 
P-values < 0.05 were considered significant
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were eliminated (Fig. 3C, Table S5). Moreover, anti-αSyn 
IgA and IgG showed negative correlations with high-
affinity anti-Aβ IgG (r=-0.462, p = 0.012) and high-affinity 
anti-αSyn IgG (r=-0.430, p = 0.018), respectively. Addi-
tionally, the anti-αSyn IgG and anti-αSyn IgM interrela-
tionship was ablated (r=-0.117, p = 0.497).

In PD patients, compared to healthy controls, there was 
a notable impact on the correlations involving anti-αSyn 
and anti-tau IgGs (Fig.  3D, Table S6). Specifically, anti-
αSyn IgG exhibited a negative correlation with high-affin-
ity anti-Aβ IgGs (r=-0.418, p = 0.013), diverging from the 
previously observed positive correlations with anti-Aβ 
IgG, anti-tau IgG and IgM in controls, which were no 
longer present. Furthermore, anti-αSyn IgA was found 
to be negatively correlated with high-affinity anti-αSyn 
IgGs (r=-0.403, p = 0.020). Positive interrelationships were 
observed between anti-tau IgG and high-affinity anti-Aβ 
IgGs (r = 0.460, p = 0.004), anti-tau IgM and anti-Aβ IgGs 
(r = 0.369, p = 0.008), and between anti-αSyn IgM and 
high-affinity anti-αSyn IgGs (r = 0.394, p = 0.023).

Discussion
In the explorations of neurodegenerative diseases such as 
Alzheimer’s disease (AD) and Parkinson’s disease (PD), 
the role of immune clearance has emerged as a topic of 
significant interest. This stems from the historical prec-
edent set by the discovery of nAbs against the Aβ protein 
in AD as early as 2001 [35]. However, even with decades 
of research, the exact function, and implications of these 
nAbs remain a subject of debate. Our study offers a fresh 
perspective by examining the binding affinity of nAbs 
to essential proteins associated with AD, DLB and PD 
patients.

By employing our well-characterized competition 
assay [18–20, 34], we analyzed the high-affinity rep-
ertoire of nAbs against αSyn, Aβ, and tau in AD, DLB 
and PD patients, as well as healthy control subjects. We 
extended our prior findings in PD to include AD, dem-
onstrating significantly reduced high-affinity anti-αSyn 
IgG nAbs compared to controls, and further demon-
strating reduced high-affinity Aβ nAbs in AD compared 
to controls. Although the common paradigm separates 
αSyn pathology into PD and Aβ pathology into AD, the 
broader landscape of neurodegenerative disorders reveals 
that between 20 and 40% of all AD cases show pathologi-
cal αSyn accumulation in the brain [36, 37]. In addition 
to co-occurrence in pathology, several mechanisms have 
been proposed for the role of αSyn involvement in AD. 
αSyn interacts with Aβ and tau, promoting their aggrega-
tion and toxicity and contributing to the complexity and 
severity of neurodegenerative processes [38]. It is likely 
a key effector in neurotransmitter release and synaptic 
function, which have been shown to be compromised in 
AD [39]. Additionally, emerging evidence suggests that 

αSyn acts as a culprit in neuroinflammatory processes 
and contributes to activating microglia, as observed both 
in PD and potentially AD [40, 41]. Although these poten-
tial links are intriguing, we can only speculate which pro-
cesses are present in this study’s AD patients and whether 
they have αSyn co-pathology, which could explain their 
reduced functionality of anti-αSyn nAbs.

Earlier research has emphasized the ability of IgG 
nAbs to regulate inflammation and to facilitate the clear-
ance of neurotoxic aggregates [42]. The presence of dis-
ease-specific IgG nAbs targeting pathological proteins 
such as αSyn, Aβ and tau suggests an intricate inter-
play between the immune system and the pathogenesis 
of neurodegenerative disorders [11, 43]. Although the 
intracellular location of αSyn and tau aggregates makes 
it unlikely that nAbs penetrate the cell membrane and 
clear the aggregates intracellularly, they are more likely 
to scavenge the extracellular space, clearing material 
transmitting between cells and aiding in the degrada-
tion of cellular material after apoptosis. Considering that 
nAbs play a crucial role in regulating immune clearance 
mechanisms, any abnormalities in the nAb profile could 
potentially exacerbate the pathogenesis of neurological 
conditions. This observation was recently established by 
the success of two different passive immunization strate-
gies in treating AD. The effectiveness of lecanemab and 
donanemab in AD patients [23, 24] manifests the impor-
tance of functional regulation of key pathological pro-
teins. Passive immunization seems to have the potential 
to bolster compromised immune system functions in 
neurodegenerative diseases. To date, no conclusive study 
of passive immunization in PD patients has proven suc-
cessful. However, promising secondary outcomes were 
recently achieved in the AMULET study, a Phase II pas-
sive immunization trial in MSA patients. This trial was 
based on the hypothesis that the treatment would not 
clear existing aggregates but would instead slow down 
or halt the spread and seeding of aSyn to other cells 
[44]. These results, taken together with the lacanemab 
and donanemab trials in AD, further imply that intrave-
nously administrated antibodies can partially reach the 
brain, consistent with previous findings showing differ-
ences in nAbs in CSF samples from PD and AD, which 
also correlate with plasma levels [19, 35, 45–48]. Several 
factors, including the absence of precise antibody candi-
dates, defined pathological hallmarks, and challenges in 
enrolling patients with varying disease durations or early 
in the disease onset into the trials, could contribute to 
this lack of success. Furthermore, the fact that the main 
pathological processes are different would be the most 
obvious reason. This contrast may suggest distinct nAb-
associated disease mechanisms or pathological responses 
between AD and PD. Confirming this, recent studies 
offer seemingly paradoxical perspectives on the role of 
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B cells in disease pathogenesis. For instance, Scott et al. 
[49]. posited that B cells play a protective role in a PD 
model, whereas a 2021 study hinted at their pathological 
role in an AD model [50].

Plasma IgM levels were altered in AD, DLB and PD 
patients. Interestingly, we observed that AD and DLB 
patients had reduced anti-αSyn IgM titers compared to 
PD patients and controls. DLB patients also presented 
reduced anti-Aβ IgM titers. IgM nAbs bind to disease-
specific proteins and influence the aggregation of these 
proteins [42, 51]. The pentameric structure of IgM 
endows it with multivalency, allowing it to bind to mul-
tiple copies of proteins, such as αSyn, Aβ and tau [52, 53]. 
This property could facilitate more efficient clearance. 
IgM’s relatively unspecific yet rapid immune response 
makes it an essential component of the innate immune 
system. In neurodegenerative diseases, this could mean 
that IgM acts as an early responder to neural inflamma-
tion or protein aggregation, is secreted quickly, and plays 
a role in complement activation. Harvesting these prop-
erties has been proposed as a passive immunization strat-
egy, with the scFv-Fc format allowing for multimerization 
into pentameric structures, improving the binding and 
functionality of the antibodies [54]. On the other hand, 
reduced antigen-specific IgM nAbs have been observed 
leading to increased IgG nAbs towards self-antigens [55], 
possibly explaining the subsequent increased anti-aSyn 
IgG nAbs in AD and DLB. Further understanding the 
multifaceted roles of IgM in AD, DLB and PD could offer 
novel insights into neurodegenerative disease pathogen-
esis and explore its potential as a therapeutic approach.

Finally, this study is the first to explore the relevance 
of pathology-related IgA compartments in neurodegen-
erative diseases. Our data suggest a positive correlation 
between the Hoehn and Yahr (H & Y) scale and anti-
αSyn IgA nAbs in individual plasma samples from PD 
patients (Fig.  S1D). IgAs are primarily known for their 
role in mucosal immunity, such as lining the gastrointes-
tinal tract, as well as other openings inside the nose and 
mouth [56]. In addition to their localization at muco-
sal sites, IgAs are also found in the circulatory system 
[56]. One of their critical functions is to maintain har-
monious homeostasis between the microbiota and the 
host’s immune response [57]. The role of the gut-brain 
axis, especially in PD, has attracted increasing interest. 
One intriguing observation is the identification of αSyn 
pathology at the gut’s mucosal lining in PD patients [58, 
59]. Furthermore, specific infections such as Helicobacter 
pylori have been implicated in PD [60], and urinary tract 
infections have been associated with the atypical parkin-
sonian disorder, MSA [61], possibly triggering αSyn mis-
folding, which can spread to the brain via the vagus nerve 
[62, 63]. Specifically, related to IgA in the context of the 
gut-brain axis, recent studies found that the IgA to IgM/

IgD ratio was nearly 2-fold increased in PD patients [64]. 
Moreover, IgA-producing plasma cells are not only pres-
ent in the meningeal venous sinuses but also associated 
with increases during aging and after an intestinal barrier 
breach [65]. B-cell receptor sequencing further identified 
these cells as originating from the intestine [65]. In the 
realm of AD, recent research has reported elevated IgA 
levels in the plasma and brain tissue of APOE-ε4 non-
carriers, establishing intracerebral transfer of IgA’s [17]. 
These and our discoveries indicate a possible connection 
between gut-specific IgA responses, healthy aging and 
the onset or progression of PD and related neurodegen-
erative conditions.

As neurodegenerative pathologies progress and redis-
tribute, distinct changes in nAb function and concen-
tration emerge, with variability across diseases. In AD, 
Aβ pathology accumulates prior to tau pathology [66], 
and both occur before clinical symptoms manifest. This 
sequence implies that nAb-response dynamics may dif-
fer between Aβ and tau. Similarly, in PD and DLB, αSyn 
accumulation is an early event, possibly starting many 
years prior to disease onset [67, 68], which may explain 
the heightened anti-αSyn response observed in early 
and prodromal PD stages [20, 45] and in idiopathic REM 
sleep behavior disorder (iRBD) patients [49].

The precise interactions among nAb affinity, disease 
pathology, and immune regulation remain complex and 
incompletely understood. However, differential responses 
in nAbs targeting key neurodegenerative proteins sug-
gest intricate interplay between nAb affinity and disease 
processes. One of the most striking observations is the 
lack of correlation between the affinity of anti-Aβ IgGs 
in controls (Fig. 3A) and the strong positive correlations 
in AD and PD patients (Fig. 3B and D). One hypothesis 
posits that nAb-producing B cells is pre-existing and 
slight antigenic pushes, drives generation of IgGs and 
IgAs by differentiating into plasma cells. This process 
enables hypermutation and class-switching, as suggested 
by Reynefeld et al. 2020 [69]. The further persistence of 
IgG and IgM correlations, particular in controls, sug-
gest that these nAbs may serve protective and regulatory 
roles, which become disrupted in disease. The reduction 
in these correlations in patients implies an overall break-
down in the immune system’s ability to coordinate the 
recognition and removal of misfolded proteins. On the 
other hand, the disruptions could merely be driven by the 
chronic presence of Aβ plaques and increased Aβ1–42 
levels in the brains of AD patients and αSyn Lewy body 
aggregates in PD patients, or both in DLB patients and 
that these high-affinity nAbs are sequestered in the brain, 
which could contribute to their lower levels in periph-
eral circulation. However, the non-changes in relation 
to tau and the absence of correlation between affinity 
and disease duration, cognitive impairment and motor 
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disability talks against it. Only in DLB patient, a signifi-
cant decrease was observed in relation to anti-αSyn IgG 
affinity and levels, suggesting that both affinity and lev-
els are decreased during disease progression (Table S2), 
suggesting a link between development of αSyn accu-
mulation and anti-αSyn nAbs. This needs to be explored 
further, in brain and body, and although, we can only 
speculate at this stage, the breakdown of interrelation-
ships between different nAbs across disease groups sup-
port the theory that chronic neuroinflammation and 
immune dysregulation are shared features across neuro-
degenerative diseases.

The present study, while insightful, has several limita-
tions. First, its cross-sectional design captures antibody 
dynamics at a single time point, limiting understand-
ing of their progression over time. Longitudinal studies 
are needed to clarify these changes, potentially in the 
prodromal stages. Second, peripheral blood measure-
ments may not fully reflect central nervous system (CNS) 
pathology, as blood-brain barrier integrity and antibody 
sequestration in the brain were not directly assessed. The 
study also focuses on Aβ, tau, and αSyn autoantibodies, 
potentially overlooking other disease-relevant proteins. 
The mechanisms behind the observed antibody varia-
tions, particularly the role of nAbs in disease progression, 
remain speculative. Finally, the study did not explore 
other immune pathways or antibody subclasses that may 
play critical roles in neurodegeneration. Future research 
addressing these limitations is necessary for deeper 
mechanistic understanding.

Conclusions
The multifaceted nature of neurodegenerative diseases 
is reflected in the aberrant levels of nAbs and their 
classes. While the utility of nAbs as diagnostic biomark-
ers remains a subject of ongoing debate, we argue that 
their inherent variability among groups and individu-
als limits their effectiveness in this role. However, their 
importance in elucidating disease mechanisms should 
not be underestimated, and they may prove valuable in 
identifying subgroups within the disease spectrum. Our 
study provides evidence of a dysfunctional immune sys-
tem in neurodegenerative diseases, suspected to impair 
the endogenous clearing mechanism of pathological 
proteins, namely Aβ, αSyn and tau. This suggests a rela-
tionship between disease-specific immunoglobulins and 
pathogenesis, although the specific nature of this rela-
tionship has yet to be clearly defined.
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