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Abstract: Studies are showing that the stress hormone cortisol can reach high levels in the gingival
sulcus and induce shifts in the metatranscriptome of the oral microbiome. Interestingly, it has also
been shown that cortisol can influence expression levels of Type IX Secretion System (T9SS) genes
involved in gliding motility in bacteria belonging to the phylum Bacteroidota. The objective of this
study was to determine if cortisol impacts gene expression and surface translocation of Porphyromonas
gingivalis strain W50. To conduct these experiments, P. gingivalis was stabbed to the bottom of soft
agar plates containing varying cortisol concentrations (0 µM, 0.13 µM, 1.3 µM, and 13 µM), and
surface translocation on the subsurface was observed after 48 h of incubation. The results show that
when grown with certain nutrients, i.e., in rich medium with the addition of sheep blood, lactate, or
pyruvate, cortisol promotes migration of P. gingivalis in a concentration-dependent manner. To begin
to examine the underlying mechanisms, quantitative PCR was used to evaluate differential expression
of genes when P. gingivalis was exposed to cortisol. In particular, we focused on differential expression
of T9SS-associated genes, including mfa5, since it was previously shown that Mfa5 is required for cell
movement and cell-to-cell interactions. The data show that mfa5 is significantly up-regulated in the
presence of cortisol. Moreover, an mfa5 deletion mutant showed less surface translocation compared
to the wild-type P. gingivalis in the presence of cortisol, and the defects of the mfa5 deletion mutant
were restored by complementation. Overall, cortisol can stimulate P. gingivalis surface translocation
and this coincides with higher expression levels of T9SS-associated genes, which are known to be
essential to gliding motility. Our findings support a high possibility that the stress hormone cortisol
from the host can promote surface translocation and potentially virulence of P. gingivalis.
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1. Introduction

The collective pathogenic potential of an oral microbial community depends upon
the susceptibility of the host, the composition of the community, and the outcome of
interbacterial interactions [1]. Host susceptibility to periodontitis is the transition from
host–microbe symbiosis to dysbiosis and disease, and is determined by a variety of factors
such as genetics, diet, stress, or behaviors such as smoking. Among the host factors, stress
has been known as a significant risk factor for a variety of diseases including periodontal
disease since it can impact the composition of the commensal microbiota in the human
microbiome [2]. Recent studies have shown that stress hormones, including cortisol, can
induce shifts in the gene expression profile of the oral microbiome [3–5].

Cortisol is the most abundant glucocorticoid in humans, and its levels in saliva and
serum have been shown to increase with the severity of periodontal disease [6,7]. In
the oral cavity, glucocorticoids including cortisol depress immunity by inhibiting the
production of secretory immunoglobulins, and neutrophil functions, all of which may
disrupt homeostasis [8].

Porphyromonas gingivalis is a Gram-negative anaerobic bacterium that is strongly asso-
ciated with severe periodontitis [9–11]. Recent reports indicate that P. gingivalis infection
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is also linked to systemic inflammatory disorders such as diabetes, Alzheimer’s disease,
cardiovascular disease, and rheumatoid arthritis [12–18]. Like other members of the phy-
lum Bacteroidota, P. gingivalis has a type IX secretion system (T9SS) that is responsible
for the secretion of over thirty P. gingivalis proteins bearing a specific C-terminal domain,
including the trypsin-like gingipains, which are key virulence determinants [19]. Recently,
it has been proposed that cortisol can regulate expression levels of T9SS-associated genes
and biofilm formation in Flavobacterium columnare, an aquatic bacterium of the phylum
Bacteroidota [20]. While other Bacteroides species display a T9SS-mediated gliding motility
that is readily apparent on the surface of an agar plate [19,21], P. gingivalis does not display
this type of motility. However, surface translocation at the interface of soft agar and a glass
or plastic surface has been demonstrated and it was determined that the T9SS and fimbrial
proteins are central to this process [22].

Importantly, the metabolism of P. gingivalis is atypical. This bacterium is highly
proteolytic and asaccharolytic, utilizing protein substrates as the main source for energy
production and proliferation [23–26]. In addition, metabolic coupling has been discovered
that allows P. gingivalis to combine amino acid fermentation with the consumption of
pyruvate and lactate to generate energy. This affects not only central carbon metabolism,
but also the expression of fimbrial adhesins, a requirement for surface colonization and
migration [27]. P. gingivalis produces two distinct fimbriae, major fimbriae and minor
fimbriae, on its cell surface [28]. The major fimbriae are encoded by the fim gene cluster
with fimA as the main polymerizing subunit, fimB as the anchor, and fimC/D/E as the tip
proteins. Similarly, the minor fimbriae are encoded the mfa gene cluster with mfa1 as the
main polymerizing subunit, mfa2 as the anchor, and mfa3/4/5 as the tip proteins. Among
the Mfa subunits, Mfa5 is unique in that it contains a C-terminal domain (CTD) that directs
its secretion through the T9SS, and it also contains a von Willebrand factor type A (vWF)
domain, which is widely distributed among archaea, bacteria, and eukaryotes [29,30]. vWF
domains have been studied in integrins, extracellular matrix proteins, and magnesium
chelatases and are known to perform diverse functions, yet vWF domains are primarily
involved in protein–protein interactions or adhesion [31]. In bacteria, vWF-containing
proteins at the tips of fimbrial fibers in a few Gram-positive pathogenic bacteria have been
reported to play important roles in attachment to host cells [30,32,33]. Previously, it was
determined that P. gingivalis loses its ability to surface translocate when the vWF-containing
tip protein mfa5 is deleted [22]. Here, we show that the stress hormone cortisol can stimulate
P. gingivalis surface translocation and elicit higher expression levels of T9SS-associated
genes including mfa5.

2. Materials and Methods
2.1. Bacterial Strains and Culture Conditions

P. gingivalis strain W50, strain 381, and derivatives were grown on agar plates con-
taining Todd Hewitt broth (BD BactoTM) supplemented with 5µg/mL hemin, 1µg/mL
menadione (THBHK) and 5% defibrinated sheep blood (BAPHK) (Northeast Laboratory
Services, Winslow, ME, USA), at 37 ◦C, in an anaerobic chamber (Coy Lab Products, Grass
Lake, MI, USA) with an atmosphere containing 5% hydrogen, 10% carbon dioxide, and
85% nitrogen. Broth cultures of P. gingivalis were grown anaerobically in THBHK medium.
Bacterial growth was then monitored by measuring the optical density at 600 nm and
presented as the mean ± standard deviations (n = 3).

2.2. Stabbing to the Subsurface of Soft Agar Plates (Macroscopic Migration Assay)

To generate plates with surface translocating cells, first, we prepared THBHK soft agar
(0.35% agar) plates with and without 2.5% defibrinated sheep blood along with or without
cortisol (10 µM) NAD (23 µM), pyruvate (45 mM), or lactate (45 mM). To prepare the
inoculum, we grew P. gingivalis for 4 days on BAPHK plates in the anaerobic chamber, and
then sub-cultured the cells to new BAPHK plates. After overnight incubation, P. gingivalis
cells were removed from the surface of the agar and suspended in the 500 µL PBS. These
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high cell density suspensions were then normalized to an OD600 of 50.0 (determined using
dilutions). To concentrate the cells further, aliquots (500 µL) of the cell suspensions were
centrifuged at 5000× g for 15 min. After centrifugation, 400 µL PBS was discarded and
the cells were resuspended in the remaining 100 µL of PBS. This concentrated suspension
of P. gingivalis cells was used for inoculation. The cell resuspension (1 µL) was delivered
through the soft agar layer until cells resided at the bottom on the polystyrene plate surface.
Plates were observed after 48 of incubation for surface translocation. At least three replicates
were used for each set of samples.

2.3. Construction of Mutants and in Trans Complementation

P. gingivalis strain W50 ∆mfa5 was generated as previously described [34,35]. Briefly,
primers were designed to generate upstream and downstream products of ~1 kb flanking
mfa5, as well as an erythromycin resistance gene (ermF) obtained from plasmid pVA2198.
All primers used in this study are listed in Supplementary Table S1. These oligonucleotides
were used to prime PCRs using genomic DNA from P. gingivalis strain W50 and Phusion
high-fidelity PCR master mix with HF buffer according to the manufacturer’s instructions.
The products were purified and combined using the NEBuilder HiFi DNA Assembly
Master Mix (New England BioLabs, Ipswich, MA, USA) according to the instructions
provided by the manufacturer. The final product was mixed with previously frozen cells
of P. gingivalis and transformed by electroporation. P. gingivalis deletion mutants were
maintained by supplementing media with 10µg mL−1 erythromycin. Complementation
of the ∆mfa5 mutant was performed by inserting mfa5 gene under the control of groES
promoter region into plasmid pT-COW, generating pT-mfa5. Complemented strain was
generated by conjugation as previously described [34,35]. In brief, BAPHK containing
tetracycline (1 µg mL−1) was used to select for pT-COW containing P. gingivalis strains, and
gentamicin (200 µg mL−1) was used to counterselect the E. coli S17-1 donor. Transconjugants
were obtained after 7 days of anaerobic incubation. Clones were isolated, verified by PCR,
and maintained on BAPHK containing tetracycline (1 µg mL−1). Details of bacterial strain
and plasmid constructions are provided in Supplementary Table S2.

2.4. Microscopy Imaging

Microscopy of translocating cells was performed as previously described with slight
modifications [22]. In brief, chamber slides were filled with THBHK soft agar medium
(0.35% agar) containing cortisol (10 µM) plus or minus lactate (45 mM). The medium was
allowed to solidify for 30 min. To prepare the inoculum, we grew P. gingivalis for 4 days on
BAPHK plates in the anaerobic chamber, and then sub-cultured the cells to new BAPHK
plates. After overnight incubation, P. gingivalis cells were removed from the surface of
the agar and suspended in the 500 µL PBS. These high cell density suspensions were then
normalized to an OD600 of 50.0 (determined using dilutions). To concentrate the cells
further, aliquots (500 µL) of the cell suspensions were centrifuged at 5000× g for 15 min.
After centrifugation, 400 µL PBS was discarded and the cells were resuspended in the
remaining 100 µL of PBS. This concentrated suspension of P. gingivalis cells was used for
inoculation. Then, a coverslip inoculated with 0.3 µL of P. gingivalis cells at the center was
inverted and placed onto the chamber filled with medium and mounted with nail polish.
Imaging was performed at the interface of the agar medium and coverslip. Phase-contrast
images and recorded videos were performed using an inverted Nikon Eclipse Ti microscope
system (Nikon, Tokyo, Japan) equipped with a motorized stage (Nikon), an Andor Zyla
5.5 scientific complementary metal oxide semiconductor (sCMOS) camera, a Perfect Focus
system, and automated controls (NIS-Elements; Nikon). The microscope was located inside
a Coy anaerobic chamber under the conditions described above. Using a Nikon 100 × 1.40-
numerical-aperture (NA) lens objective, surface translocation was monitored and recorded
for about 20 s for 0 h and 24 h after cell inoculation. Chamber slides were also observed
after 48 h of incubation using a Nikon SMZ 745T stereo microscope.
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2.5. RNA Extraction, and Quantitative PCR (qPCR) Analysis

P. gingivalis strain W50 cells were stabbed into pre-reduced BAPHK soft agar with and
without 10 µM cortisol in the anaerobic chamber. After 4 h of incubation, cultures were
scraped off the plates in the anaerobic chamber, and the RNA extraction was performed
using the Direct-zol RNA Miniprep kit (Zymo Research, Irvine, CA, USA), according to
the instructions provided by the manufacturer with a slight modification. The qPCR was
performed as described previously [36,37]. Briefly, cDNA was generated from 2.5 ng RNA
using RNA to cDNA EcoDry premix (Clontech, Mountain View, CA, USA). For relative
quantification of desired genes, qPCR was conducted in a total volume of 20 µL containing
1 µL of 1:10 diluted cDNA, a 0.5 µM concentration of each primer (Supplementary Table S1),
6 µL of PCR-grade water, and 10 µL of 2× iQ SYBR green supermix (Bio-Rad, Hercules,
CA, USA). Amplification and detection of product were performed using a CFX96 Touch
real-time PCR detection system (Bio-Rad), and the cycling conditions were as follows:
95 ◦C for 3 min and then 39 cycles of 95 ◦C for 20 s, 55 ◦C for 20 s, and 72 ◦C for 20 s.
Fluorescence was detected after each cycle. In each experiment, the target and control
samples were amplified in the same plate, and the experiments were conducted in triplicate
and normalized internally using the average cycle quantification (Cq) value for the reference
gene (16S rRNA). To confirm the specificity of the amplified products, automated melting
curve analysis was performed.

3. Results
3.1. Cortisol Promotes Surface Translocation of P. gingivalis in a Concentration-
Dependent Manner

Since it has been shown that the stress hormone cortisol can influence the expression
level of Type IX Secretion System (T9SS) genes involved in gliding motility in bacteria
belonging to the phylum Bacteroidota, we hypothesized that the cortisol could potentially
impact the expression level of T9SS-associated genes in P. gingivalis. To determine if cortisol
alters the migration of P. gingivalis, an assay was used that provides an interface between
soft agar and a plastic surface. Specifically, P. gingivalis was stabbed to the subsurface of soft
agar plates until cells resided at the bottom on the polystyrene plate surface, and the plates
were observed after 48 h of anaerobic incubation. Interestingly, P. gingivalis cells showed
activated surface translocation from the point of inoculation in the presence of 10 µM
cortisol, as opposed to the control with no cortisol (Figure 1A). To test whether the impact
of cortisol on surface translocation of P. gingivalis is concentration dependent, cells were
stabbed to the subsurface of soft agar plates containing increasing concentrations of cortisol
(0 µM, 0.13 µM, 1.3 µM, and 13 µM), and the plates were observed after 48 h of anaerobic
incubation for surface translocation. As shown in Figure 1B, higher cortisol concentrations
led to more migration of P. gingivalis cells. These data support the model that cortisol
promotes surface translocation of P. gingivalis in a concentration-dependent manner.
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(0.35% agar) with 2.5% defibrinated sheep blood was used for the migration assay. Cortisol was
added as indicated. (A) In the presence of 10 µM cortisol, there is activated movement from the point
of inoculation, as opposed to the control. (B) P. gingivalis cells were stabbed to the subsurface of soft
agar plates containing varying cortisol concentrations (0 µM, 0.13 µM, 1.3 µM, and 13 µM), and the
plates were observed after 48 h of incubation for surface translocation. Experiments were performed
independently at least three times with similar results, and a representative of the results is shown.

3.2. Cortisol Promotes P. gingivalis Migration in Rich Medium with the Addition of Lactate
or Pyruvate

Intriguingly, P. gingivalis cells showed little activated surface translocation in THBHK
soft agar supplemented with cortisol in the absence of sheep blood as shown in Figure 2A.
Previously, it was shown that when combined with protein, exogenous pyruvate and lactate
are energy substrates for P. gingivalis that affect not only central carbon metabolism, but
also the expression of fimbriae, a requirement for surface colonization [27]. Given that red
blood cells contain abundant pyruvate and lactate [38,39], and that exogenous pyruvate
and lactate influence P. gingivalis biofilm development, we hypothesized that cortisol can
activate P. gingivalis surface translocation in rich medium with the addition of lactate or
pyruvate. To determine if these monocarboxylates simply enhance growth, the growth
rate of P. gingivalis in liquid cultures was tested with the addition of lactate, pyruvate,
cortisol, or nicotinamide adenine dinucleotide (NAD) as a control. The data indicate that
the cortisol, NAD, and lactate have no effect on the growth rate of P. gingivalis in the Todd
Hewitt broth supplemented with 5 mg/mL hemin and 1 mg/mL menadione (THBHK)
liquid culture, in contrast pyruvate slightly enhanced the growth in the THBHK liquid
culture compared to the control (Figure 2B). To observe the surface translocation effect
of cortisol, P. gingivalis cells were stabbed to the subsurface of soft agar plates containing
cortisol, lactate, pyruvate, or NAD. Although cortisol cannot activate surface translocation
in the THBHK soft agar supplemented with NAD (Supplementary Figure S1), P. gingivalis
showed activated surface translocation in THBHK soft agar supplemented with lactate or
pyruvate in the presence of cortisol (Figure 2A).

To analyze P. gingivalis behavior at the subsurface of soft agar (migration assay) in
the presence and absence of cortisol via microscopy, a chamber slide system was used to
microscopically observe the cells inside the anaerobic incubator. By placing P. gingivalis
cells at the interface of a glass coverslip and THBHK soft agar supplemented with lactate
in the presence and absence of cortisol, we were able to record short videos of surface
translocating cells. Shortly after inoculation, the cells showed little movement regardless of
the presence (Supplementary Video S1) or absence (Supplementary Video S2) of cortisol.
However, 24 h after inoculation, the cells showed active wriggling motion with cooperative
cell-on-cell rolling in the presence of cortisol (Supplementary Video S3) compared to the
control (Supplementary Video S4). Overall, the results indicate that cortisol can promote
surface translocation of P. gingivalis in the rich medium with the addition of sheep blood or
exogenous lactate and pyruvate.
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Figure 2. In the absence of blood, cortisol promotes surface translocation of P. gingivalis in the rich
medium with the addition of lactate or pyruvate. (A) THBHK and 0.35% soft agar without sheep
blood were used for the surface translocation analysis, and cortisol (10 µM), lactate (45 mM), or
pyruvate (45 mM) were added as indicated. Plates were imaged after 48 h of incubation. Experiments
were performed independently at least three times with similar results and a representative of the
results is shown. (B) Growth curve showing that the cortisol has no effect on the growth rate in the
THBHK liquid culture. Cortisol (10 µM), NAD (23 µM), pyruvate (45 mM) or lactate (45 mM) added
as indicated. Points indicate the mean values, and error bars indicate standard deviations from three
technical replicates.

3.3. Genetic Responses of P. gingivalis Surface Translocation-Associated Genes Are Substantially
Altered in the Presence of Cortisol

To determine if cortisol alters the expression level of genes in P. gingivalis, we per-
formed quantitative reverse transcription PCR (qPCR) analysis on RNA samples extracted
from subsurface P. gingivalis cells in THBHK soft agar supplemented with sheep blood
with and without adding cortisol. In particular, we focused on differential expression
of the T9SS-associated genes and fimbrial genes since these genes have been shown to
be up-regulated during surface translocation of P. gingivalis (Figure 3A). Figure 3B rep-
resents the relative expression level of target genes of P. gingivalis in response to cortisol.
The comparison of relative gene expression showed that the mfa1, mfa5 genes encoding
the components of minor fimbriae were highly upregulated among various target genes.
Further, we determined that cortisol in the medium coincided with the higher transcript
levels of porY, sigP, porP, sprA, PG1881, fimC, rhs, ppad, porV, and porX, while the expression
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of gingipains (kgp, rgpA, rgpB) and hmuY remained unchanged. Overall, our data show
that cortisol can up-regulate the expression level of T9SS-associated and fimbrial genes in
P. gingivalis cells during migration.
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Figure 3. Transcript levels of P. gingivalis genes previously shown to be linked to surface translocation
are substantially altered in the presence of cortisol. (A) Schematic illustration represents surface
proteins of P. gingivalis. Since T9SS genes have been shown to be up-regulated during surface
translocation, we focused on differential expression of the T9SS-associated genes. The number of
rectangles reflects the number of proteins involved in a given system. OM; outer membrane, IM;
inner membrane. (B) Quantitative PCR was used to evaluate differential expression of genes integral
to surface translocation when P. gingivalis was exposed to cortisol. The results are presented as the
relative levels (mean ± S.D. of triplicate determinations) compared with the transcript levels of the
strain W50 in the absence of cortisol. The data were analyzed using the Student’s t-test. * p ≤ 0.05,
** p ≤ 0.01, n.s. p > 0.05.

3.4. The mfa5 Deletion Mutant Showed Less Surface Translocation Compared with the Parent
Strain in the Presence of Cortisol

Previously, it was shown that the P. gingivalis strain 381 can surface translocate when
sandwiched between two surfaces [22]. To identify the underlying mechanism controlling
surface translocation in the presence of cortisol, we used four mutant strains in P. gingivalis
strain 381, specifically, strains with deletions in mfa5, sprA (or sov), fimC, or ppad, since the
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qPCR data showed upregulated expression level of those genes in the presence of cortisol.
The sprA gene encodes a major component of the envelope spanning T9SS multiprotein
complex [40]. SprA is necessary for secretion of various factors including a peptidylarginine
deiminase (PPAD) which converts charged arginine residues within peptides to citrulline.
FimC is a tip protein of the major fimbriae. Studies have shown that this protein pro-
motes surface attachment and biofilm formation. Lastly, Mfa5 is incorporated into the
polymerization process of minor fimbriae affecting the incorporation of other accessory
subunits [29]. As shown in Figure 4, the mfa5 deletion mutant showed less surface translo-
cation compared with the wild-type 381 strain and other mutant strains in the presence
of cortisol. To evaluate the effect of the loss of mfa5 in the P. gingivalis strain W50, we
generated a W50 mfa5 deletion mutant and compared the mutant with the parent strain.
Addition of cortisol (10 µM) showed no effect on the growth rate of P. gingivalis strain
wild-type W50 and mfa5 deletion mutant in the THBHK liquid culture (Figure 5A), and the
surface translocation defects of the mfa5 deletion mutant were restored by complementation
(Figure 5B). Overall, our data support the model that cortisol can upregulate the expression
levels of T9SS-associated genes including mfa5 and activate the surface translocation of
P. gingivalis.
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Figure 4. Stabbing of wild-type P. gingivalis strain 381 and its derivatives into blood agar plate in the
absence and presence of cortisol. THBHK soft agar (0.35% agar) with 2.5% defibrinated sheep blood
were used for the surface translocation analysis, cortisol added as indicated. Plates were imaged
after 48 h of incubation for migration from the point of inoculation. Experiments were performed
independently at least three times with similar results and a representative of the results is shown.
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Figure 5. The surface translocation defects of the mfa5 deletion mutant were restored by comple-
mentation. (A) Wild-type W50 and the ∆mfa5 mutant were grown in THBHK liquid media in the
presence and absence of cortisol. Points indicate the mean values, and error bars indicate standard
deviations from three replications. (B) When the mfa5 deletion mutant was complemented by a
plasmid (pT-mfa5), surface translocation was restored. THBHK soft agar (0.35% agar) with 2.5%
defibrinated sheep blood was used for the migration assay, and cortisol was added as indicated.
Plates were imaged after 48 h of incubation for surface translocation. Experiments were performed
independently at least three times with similar results, and a representative of the results is shown.

4. Discussion

Studies have shown that both bacterial and human hormones are important mech-
anisms for host–microbial interaction and the interplay is highly complex [5,41]. For
instance, host hormones can affect bacterial gene expression, which in turn can impact
the host’s innate immune response. A few recent studies have shown that stress hor-
mones, including cortisol, significantly affect endogenous periodontal pathogens [3–5].
Cortisol levels have been shown to be higher in saliva and serum in subjects with peri-
odontal disease [6,7]. While salivary cortisol levels have been reported to range between
0.02 ± 0.008 µM for healthy adults and the levels can increase to greater than 0.15 µM in
periodontitis patients [6,42,43]; normal cortisol levels in human serum have been reported
to have a broad range between 0.14 to 0.55 µM and can increase to greater than 1.24 µM in
times of stress [44]. In this study, we found that P. gingivalis does not migrate far from the
point of inoculation when exposed to relatively low levels of cortisol (0.13 µM), yet higher
stress-level concentrations of cortisol (1.3 µM) promoted migration, and the response can
be elicited in a dose dependent manner. Importantly, the impact of cortisol on surface
translocation was only observed under certain growth conditions. As noted above, P.
gingivalis is highly proteolytic, obtaining its nutrients from protein. To generate peptides
for uptake, proteolytic enzymes are released from the cells into the environment either on
outer membrane vesicles or extended out into the surrounding from the cell surface via
nanotubule protrusions [45,46]. The need for P. gingivalis cells to spread proteases seems
especially true in our sandwich model/migration assay where P. gingivalis is growing on a
substratum and is limited for substrate. Additionally, of significance to this study, many of
these secreted enzymes lyse erythrocytes. Since the primary function of erythrocytes is to
bind and transport oxygen, we typically think of P. gingivalis lysing erythrocytes within
bleeding pockets to obtain heme/iron. However, because erythrocytes lack mitochondria
and rely completely on the glycolytic pathway to generate ATP, it follows that lysis of
erythrocytes would not only releases hemoglobin (iron source), but also glycolytic metabo-
lites, such as lactate and pyruvate into the immediate surroundings. Recently, a metabolic
coupling system in P. gingivalis was identified that enables the utilization of protein coupled
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with exogenous pyruvate and lactate [27]. This information, combined with the fact that
oral streptococci are known to be able to produce high levels of lactate, we hypothesized
that select metabolites, in particular, those that are contained within erythrocytes (or pro-
duced by other bacteria), were potentially the underlying reason why the impact of cortisol
on surface migration was only detected when sheep blood was provided. Indeed, our
study discovered that under our assay conditions, sheep blood could be replaced with
lactate or pyruvate, yet not NAD (Figures 2A and S1). It is likely that other metabolites
within erythrocytes or produced by other oral microbiota also impact P. gingivalis surface
translocation, yet these findings provide a foundation for further studies.

In regard to the fimbrial tip protein Mfa5, in this study and in a previous study, it was
confirmed that P. gingivalis loses its ability to surface translocate when mfa5 is deleted [22].
We have also shown that exposure to cortisol in the presence of sheep blood can result
in higher mfa5 transcript levels, suggesting that cortisol impacts mfa5 expression, but the
effect is context dependent. Importantly, disruption of the T9SS in P. gingivalis inhibits
export of Mfa5 to the outer membrane, and Mfa5 is unique among the fimbrial proteins in
that it is transported via the T9SS and it is a large multi-domain protein, one of which is
a von Willebrand factor (vWF) domain. Since Mfa5 has a vWF domain and shows weak
homology (21% identity) with RemA, a mobile cell surface adhesin [47], there is a high
possibility that Mfa5 may have a similar function in P. gingivalis as a surface translocation
adhesin. Additionally, of interest was the discovery that the lipoprotein encoded by PG1881,
which is described as a structural homolog to FimA and Mfa1 in silico [48,49], was also
upregulated in the presence of cortisol. This pilin-forming lipoprotein was found to be
expressed at high levels during migration [22]. Experiments to identify the role of PG1881
in adherence and surface translocation are on-going.

Importantly, since SprA is a central component of the T9SS and essential for type
IX secretion, it was expected that the sprA deletion mutant would not migrate, yet the
mutant showed a low level of migration compared to the parent strain in the presence of
cortisol. The simplest explanation for these results is that some T9SS cargo proteins can
be secreted at a certain level via another secretion system, yet further studies are needed
to clarify these findings. Lastly, one of the most remarkable discoveries of this study was
that genes that encode T9SS structural proteins, including PorP, PorV, and SprA along with
the PorXY two component system (TCS) and the extracytoplasmic function (ECF) sigma
factor SigP that regulates the transcriptional level of T9SS genes were upregulated in the
presence of cortisol. Although it is intriguing to think that the PorXY TCS may be involved
in sensing cortisol and directly regulating gene expression, the mfa5 deletion mutant could
be complemented in trans with a non-native promoter, suggesting that impact of cortisol
is an indirect effect on mfa5 transcription. Further studies are required to determine the
cortisol sensing and signal transduction mechanisms.

5. Conclusions

Our working model is that the increased level of cortisol under conditions of stress can
elicit changes in P. gingivalis gene expression and activate surface translocation; in particular,
exposure to cortisol in the presence of pyruvate or lactate elicits higher expression levels of
T9SS-associated genes. Since the von Willebrand factor type A domain-containing proteins,
such as Mfa5 at the tips of fimbrial fibers, play important roles in adhesion and surface
migration, there is a high possibility that Mfa5 plays a central role in P. gingivalis surface
translocation. Although the underlying mechanisms for translocation in the presence of
cortisol remains to be determined, we propose that our findings open a new avenue for
studying how P. gingivalis and other subgingival members of the oral Bacteroidota adjust
their lifestyle in response to host hormones.
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https://www.mdpi.com/article/10.3390/pathogens11090982/s1, Figure S1: In the absence of blood,
cortisol plates showed the same surface translocation of P. gingivalis compared to the control regard-
less of adding NAD; Table S1: Primers used in this study; Table S2: Strains and plasmids used in
this study; Video S1: Shortly after inoculation, the cells showed little movement in the presence
of cortisol; Video S2: Shortly after inoculation, the cells showed little movement in the absence of
cortisol; Video S3: 24 h after inoculation, the cells showed active wriggling motion with cooperative
cell-on-cell rolling in the presence of cortisol; Video S4: 24 h after inoculation, the cells showed little
movement in the absence of cortisol. References [22,50,51] are cited in the supplementary materials.
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