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Coronavirus disease (COVID-19), caused by SARS-CoV-2, has affected over 65 million 

individuals and killed over 1.5 million persons (December 8, 2020; www.who.int)1. While 

fatality rates are higher among the elderly and those with underlying comorbidities2, host 

factors that promote susceptibility to SARS-CoV-2 infection and severe disease are 

poorly understood. Although individuals with certain autoimmune/inflammatory 

disorders show increased susceptibility to viral infections, there is incomplete 

knowledge of SARS-CoV-2 susceptibility in these diseases.3-7 We report that the 

autoimmune PTPN2 risk variant rs1893217 promotes expression of the SARS-CoV-2 

receptor, ACE2, and increases cellular entry mediated by SARS-CoV-2 spike protein. 

Elevated ACE2 expression and viral entry were mediated by increased JAK-STAT 

signalling, and were reversed by the JAK inhibitor, tofacitinib. Collectively, our findings 

uncover a novel risk biomarker for increased expression of the SARS-CoV-2 receptor 

and viral entry, and identify a clinically approved therapeutic agent to mitigate this risk. 

Despite tremendous effort to understand COVID-19 pathogenesis, risk factors for severe 

disease are still poorly defined. While most attention has focused on symptoms in the airways, 

gastrointestinal (GI) symptoms were reported in 46% of all cases and 33% presented with GI 

symptoms in the absence of respiratory symptoms.8,9 GI symptoms are associated with longer 

duration and more severe COVID-19 (e.g. increased prevalence of acute renal insufficiency10), 

emphasizing their importance for early diagnosis and prognosis.11 SARS-CoV-2 can directly 

infect intestinal epithelial cells,12,13 and viral particles have been detected in feces even after 

virus clearance from the respiratory tract14,15. This indicates viral shedding in the gut, which may 

serve as a reservoir of virus replication, and possible oral-fecal transmission although presence 

of live virus in feces is disputed.12,16  

SARS-CoV-2 entry into host cells is mediated by its spike glycoprotein (S protein), which is 

cleaved by cell surface-associated transmembrane protease serine protease 2 (TMPRSS2) and 

TMPRSS4 to generate the S1 and S2 subunits in a so-called ‘priming’ process.16,17 S1 binds to 

angiotensin I converting enzyme 2 (ACE2), a monocarboxypeptidase controlling cleavage of 

several peptides within the renin-angiotensin system.16,17 S2 drives the subsequent fusion of 

viral and host membranes.18 Interferon (IFN)-JAK-STAT signaling is a suggested major driver of 

ACE2 expression likely via STAT1/3 binding sites in the ACE2 promoter19. ACE2, TMPRSS2, 

and TMPRSS4 are highly expressed on the surface of epithelial cells such as lung type 2 

pneumocytes and absorptive intestinal epithelial cells.12,18-21  
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About 16-20% of the general population carries the single nucleotide polymorphism (SNP) 

rs1893217 located in the gene locus encoding protein tyrosine phosphatase non-receptor type 2 

(PTPN2, also called TCPTP)22,23. This SNP causes PTPN2 loss of function and is associated 

with increased risk for chronic inflammatory and autoimmune diseases including inflammatory 

bowel disease (IBD), Type 1 diabetes (T1D), and rheumatoid arthritis (RA).24,25 PTPN2 directly 

dephosphorylates several transducers of cytokine receptor signaling including the STAT family 

of transcription factors (STATs 1/3/5/6)) and Janus kinases (JAK)1 and JAK 3 that are activated 

by inflammatory cytokines such as IFNγ.26-28 JAK inhibitors have emerged as an effective new 

therapeutic class in many patients with autoimmune diseases. Indeed a JAK-inhibitor, 

baricitinib, is in clinical trial (ACTT-2) to reduce disease severity and hospitalization time in 

COVID-1929. Tofacitinib (Xeljanz®) is a pan-JAK inhibitor that preferentially inhibits JAK1 and 

JAK3, is approved to treat RA and the IBD subtype, ulcerative colitis (UC), and we have shown 

that tofacitinib corrects the consequences of PTPN2-loss in IECs30. 

Using intestinal samples and peripheral blood mononuclear cells (PBMC) from IBD patients 

harbouring the autoimmune PTPN2 risk variant rs1893217, human intestinal and lung epithelial 

cell lines as well as Ptpn2-deficient mouse models, we determined that PTPN2-loss promotes 

ACE2 expression and entry of viral particles expressing SARS-CoV-2 spikes. Elevated ACE2 

expression and viral entry were mediated by increased epithelial JAK-STAT signalling, and were 

reversed by the clinically-approved JAK inhibitor, Tofacitinib. Collectively, our findings not only 

describe a risk factor for increased SARS-CoV-2 invasion (entry), but also identify a clinically 

approved drug that may be utilized to mitigate this risk31. 
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Results 
PTPN2 regulates ACE2 expression in vivo and in vitro 
Mucosal biopsy samples from IBD patients in the Swiss IBD cohort previously genotyped for the 

IBD-associated loss-of-function SNP rs1893217 in PTPN232 were subjected to RNA 

sequencing. Using the Database for Annotation, Visualization and Integrated Discovery 

(DAVID), gene ontogeny (GO) biological pathway analysis indicated “Digestion” as the most 

significantly regulated function based on PTPN2 genotype (presence of risk ‘C’ allele, patients 

with the CT or the CC genotype) independent of disease severity (Supplementary Table 1). This 

biological process included the ACE2 gene, which was also found in three other processes that 

were increased in ‘C’ allele carriers (Supplementary Table 1). Quantitative PCR and Western 

blotting on intestinal biopsies isolated from Crohn’s disease (CD) and ulcerative colitis (UC) 

patients (Supplementary Table 2) confirmed increased mRNA and protein expression of ACE2 

in C-allele carriers (Figure 1A+B). Furthermore ACE2 protein expression negatively correlated 

with PTPN2 phosphatase activity (Figure 1C). To confirm these findings in Ptpn2-knockout (KO) 

mice, which exhibit a severe inflammatory phenotype and die within few weeks after birth33, we 

explored ACE2 expression in 3-week-old mice when the intestinal epithelium appears relatively 

normal compared to heterozygous (Het) and wild-type (WT) littermates. Although Ptpn2-KO 

mice did not exhibit any difference in Ace2 mRNA expression in whole intestinal samples 

compared with wild-type (WT) mice (Supplementary Figure 1A), Ace2 mRNA and protein 

expression in intestinal epithelial cells (IEC) from these mice was significantly increased 

(Supplementary Figure 1A, Figure 1D). In addition, Ace2 mRNA expression in lung and cardiac 

tissue was significantly increased in Ptpn2-KO mice (Figure 1D, Supplementary Figure 1B+C). 

Given the strong increase of ACE2 expression in IECs of Ptpn2-KO mice, and to explore 

whether PTPN2 regulates ACE2 in the absence of inflammation, we confirmed these findings in 

mice lacking PTPN2 specifically in IECs (Ptpn2∆IEC mice). Also in these mice, Ace2 mRNA and 

protein expression were clearly elevated in PTPN2-deficient IECs (Figure 1E, Supplementary 

Figure 1D), demonstrating that the increase in Ace2 expression was not dependent on 

inflammation. This effect was confirmed in intestinal epithelial, lung epithelial and monocyte cell 

lines upon PTPN2 knockdown, where depletion of PTPN2 resulted in elevated ACE2 expression 

(Supplementary Figure 1E).28 Notably, the serine proteases TMPRSS2 and TMPRSS4, which 

are additional cofactors of SARS-CoV-2 viral entry, were not altered in PTPN2 knockdown 

(PTPN2-KD) cells (Supplementary Figure 2). This suggests that PTPN2 specifically regulates 

ACE2 expression. 
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PTPN2 negatively regulates SARS-CoV-2 spike protein-mediated viral entry into epithelial 

and immune cells 

To assess the functional consequence of increased ACE2 expression in PTPN2-deficient cells, 

we assessed whether deletion of PTPN2 affects the uptake of virus-like particles (VLPs) 

expressing SARS-CoV-2 spikes. Apical uptake of empty VLPs (-), which served as a negative 

control, or uptake of VLPs covered with spike G glycoprotein of the rhabdovirus vesicular 

stomatitis virus (G), which served as a positive control for viral entry, was not affected in 

PTPN2-KD Caco-2BBe (Figure 2A) and HT-29.cl19A IECs (Figure 2B) or A549 lung epithelial 

cells (Figure 2C), thus indicating that non-specific uptake was not affected upon PTPN2 

knockdown. In contrast, VLPs expressing SARS CoV-2 spikes entered PTPN2-KD epithelial 

cells more efficiently than control cells (Figure 2A-C), indicating that PTPN2 deficiency not only 

promotes ACE2 expression but also viral uptake into intestinal and lung epithelial cells. Notably, 

loss of PTPN2 also caused a significant increase in ACE2 expression in PTPN2-KD monocytes 

(Supplementary Figure 1) and increased CoVS entry (Figure 2D). This indicates that PTPN2 

regulation of ACE2 and SARS-CoV-2 spike-expressing VLP entry is not restricted to epithelial 

cells but has similar functional consequences in immune cells. Furthermore, increased uptake of 

SARS-CoV-2 spike-expressing VLPs in PTPN2-deficient cells was no longer observed upon 

inhibition of ACE2 with a blocking antibody (Supplementary Figure 3), indicating that ACE2 

mediated SARS-CoV-2 spike-expressing VLP uptake. In summary, this indicates that loss of 

PTPN2 promotes SARS-CoV-2 uptake by promoting ACE2 expression. 

IFN-γ  promotes ACE2 expression and SARS-CoV-2 Spike protein uptake 

It has been suggested that ACE2 expression is induced by interferons34 and its promoter is 

reported to have putative STAT1 binding sites19,35, although newer findings debate whether 

interferons can induce ACE2 expression, or if it drives expression and release of a shorter 

version of the protein36. Since PTPN2 is a potent suppressor of IFN-γ-induced signaling 

cascades27,37, and directly dephosphorylates STAT138, we assessed whether IFN-γ treatment 

promotes ACE2 expression in our cell culture models. Indeed, IFN-γ promoted ACE2 expression 

and this was further increased in PTPN2-KD cells (Figure 3A, Supplementary Figure 4). 

Silencing of STAT1 using siRNA constructs prevented IFN-γ-induced ACE2 mRNA and protein 

expression and STAT1-siRNA treated PTPN2-KD Caco-2BBe, A549 and THP-1 cells expressed 

ACE2 levels comparable to those in Ctr cells (Figure 3B+C and Supplementary Figure 5). In line 

with these effects on ACE2 expression, uptake of SARS-CoV-2 S protein-expressing VLPs was 

elevated in IFN-γ-treated control and PTPN2-KD cells, while STAT1 silencing normalized the 
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uptake, both in Ctr cells and PTPN2-KD cells (Figure 3D+E, Supplementary Figure 5). This 

strongly suggests that deletion of PTPN2 promotes ACE2 expression and SARS-CoV-2 entry in 

a STAT1-dependent manner and inhibition of STAT signaling may mitigate elevated ACE2 

expression and SARS-CoV-2 entry into host cells. 

Tofacitnib reverses ACE2 overexpression and increased SARS-CoV-2 entry in PTPN2-

deficient human cells and mice  

To test whether inhibition of STAT activation can indeed prevent elevated ACE2 expression in 

PTPN2-deficient cells, we next treated Caco-2BBe IECs with the pan-JAK-inhibitor tofacitinib. 

Similar to our findings in cells treated with STAT1 siRNA, inhibition of JAK-STAT signalling in 

Caco-2BBe cells using tofacitinib prevented IFN-γ-induced increases in ACE2 mRNA and 

protein expression and normalized the elevated ACE2 levels in PTPN2-KD cells (Figure 4A+B). 

Moreover, tofacitinib reduced ACE2-mediated SARS-CoV-2 spike-expressing VLP uptake in 

both PTPN2-KD and in IFN-γ-treated cells (Figure 4C). Similar effects were observed in A549 

lung epithelial cells (Supplementary Figure 6), indicating that tofacitinib treatment might not only 

reduce ACE2-mediated intestinal viral uptake, but also reduce viral uptake in the respiratory 

tract, the primary entry site of SARS-CoV-2. We next tested if tofacitinib altered ACE2 levels in 

human subjects. Levels of soluble ACE2, which has been suggested to reduce viral binding to 

host cells39, were not altered in UC patients treated with tofacitinib when compared to UC 

patients under anti-TNF treatment with similar disease activity (Figure 4D, Supplementary Table 

3). This suggests that tofacitinib treatment does not reduce shedding/release of ACE2 into 

serum. In contrast, when analysing ACE2 levels in PBMCs from IBD patients carrying the 

PTPN2 loss-of-function SNP rs1893217, we again observed that ACE2 mRNA and protein 

levels and SARS-CoV-2 spike-expressing VLP entry were clearly elevated in variant carriers 

compared to non-carriers (Figure 4E-G). Notably, treatment with tofacitinib not only reduced 

ACE2 levels and viral entry in variant carriers, but also in non-carriers (Figure 4E-G). These 

findings indicate that loss of PTPN2 or presence of the loss-of-function variant in PTPN2 

promotes ACE2 expression and subsequently facilitates uptake of SARS-CoV-2-spike-

expressing VLPs, and that treatment with tofacitinib can mitigate this potential risk by reducing 

ACE2 cellular expression rather than affecting release of soluble ACE2. Furthermore, our data 

strongly indicate that treatment with tofacitinib might not only be beneficial in PTPN2 variant 

carriers, but also for non-carriers.  
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Our data consistently demonstrate that PTPN2 dysfunction promotes expression of ACE2 and 

uptake of SARS-CoV-2 spike protein, and this is further increased by inflammation. This is 

striking given a recent paper identifying that non-genotyped IBD patients (+/- inflammation) 

showed no change in ACE2 or TMPRSS2 expression, while experimental colitis in mice 

reduced gut epithelial Ace2 expression.40 This indicates that inflammation does not promote 

ACE2 expression per se, but that the elevated ACE2 levels in patients or mice with reduced 

PTPN2 activity are indeed due to PTPN2 deficiency. 

Summarized, we demonstrate that SNP rs1893217 in PTPN2 is associated with increased 

expression of ACE2 and SARS-CoV-2 entry, and potentially represents one of the first identified 

COVID-19 genetic susceptibility biomarkers. By using samples collected well before the COVID-

19 outbreak, our identification of a genetic susceptibility marker avoids the potential for 

ascertainment bias in most genetic studies of COVID-19, as clinically significant COVID-19 

patients are more likely to be included in research projects than asymptomatic cases41. With 

respect to genetic markers of COVID-19 susceptibility, studies have proposed the involvement 

of ABO blood groups, with blood group O associated with lower risk, while blood group A was 

associated with higher risk of acquiring COVID-19 compared with non-A blood groups41-44. 

However, this correlation did not culminate in therapeutic implications. Moreover, a cluster of 

genes on chromosome 3 has been linked with increased severity, although this may have 

distinct geographic distributions41,45. In contrast, our finding of increased ACE2 expression/viral 

particle uptake in PTPN2 variant cells might not only indicate a potentially novel genetic marker 

for increased disease, but also identifies tofacitinib – a drug already approved for treatment of 

arthritis and IBD – and potentially other JAK inhibitors such as baricitinib, as a potential 

therapeutic strategy to specifically mitigate this risk.  
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Methods 
Patient samples. Samples from IBD patients used for RNA and protein isolation were obtained 

from the Swiss IBD cohort and the sample use approved by the local ethic’s board (Ethic’s 

board of the Kanton Zurich, Switzerland; approval number EK1977). Serum samples were 

obtained from University of California San Diego under IRB Protocol # 131487. All patients 

provided informed consent. 

Mice. PTPN2-knock-out (KO) mice in the BALB/c background were a gift from Prof. M. 

Tremblay at McGill University in Montreal. To generate mice lacking PTPN2 specifically in 

intestinal epithelial cells (ΔIEC mice), mice with a loxP-flanked exon 3 of the PTPN2 gene 

(PTPN2-fl/fl mice, originally obtained from EUCOMM, abbreviated as fl/fl) were crossed with 

VillinCre-ERT2 mice (Jackson Laboratories). Translocation of the Cre-ERT2 construct and 

subsequent recombination and deletion of the floxed gene was induced by tamoxifen-injections 

(i.p., 1mg/mouse/day) on 5 consecutive days. All mouse experiments were conducted according 

to protocols approved by the IACUC commission of the University of California Riverside 

(AUP20190032). 

Protein isolation and Western blotting. Protein isolation and Western blotting were performed 

according to standard procedures. For protein isolation from cells, the cells were washed with 

ice cold PBS and lysed in RIPA buffer containing phosphatase and protease inhibitors (Roche, 

South San Francisco, CA). For mouse and human biopsies, the samples were dissociated in 

RIPA buffer using a bead-beater and metal beads. All samples were then sonicated for 30 

seconds, centrifuged (10 min. at 12’000 g at 4°C), and the supernatant transferred into fresh 

tubes. Protein concentration was detected using a BCA assay (Thermo Fisher Scientific, 

Waltham, MA). For Western blots, aliquots with equal amounts of protein were separated by 

electrophorese on polyacrylamide gels, and the proteins blotted on nitrocellulose membranes. 

The membranes were then blocked in blocking buffer (3% milk, 1% BSA in tris-buffered saline 

with 0.5% Tween) for 1 h and incubated over night at 4°C with anti-ACE2 (Clone E-11, Santa 

Cruz Biotechnology), anti-phospho-STAT1 (Tyr701, clone 58D6; Cell Signalling Technologies, 

Danvers, MA), anti-STAT1 (clone 42H3; Cell Signalling Technologies), or anti-β-actin (Clone 

AC-74, Sigma-Aldrich, St. Louis, MO) antibodies. On the next day, the membranes were 

washed in tris-buffered saline with 0.5% Tween, incubated with HRP-coupled secondary 

antibodies (Jackson Immunolabs, West Grove, PA), washed again, and immunoreactive 
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proteins detected using ELC substrate (Thermo Fisher Scientific) and X-ray films (GE 

Healthcare, Chicago, IL).   

PTPN2 phosphatase assay. For PTPN2 activity measurements, 100 µg protein lysates were 

pre-cleared for 1 h using Sepharose A beads, incubated with 2 µl anti-PTPN2 antibody (Clone 

D7T7D, Cell Signaling Technologies) over night, incubated with Sepharose A beads for 1 h and 

centrifuged (3 min. at 12’000 g at 4°C). The precipitates were washed 3 times with ice cold PBS 

and the beads resuspended in phosphatase assay buffer (Thermo Fisher Scientific) and 

phosphatase activity measured using the EnzCheck Phosphatase assay (Thermo Fisher 

Scientific) according to the manufacturer’s instructions. 

RNA isolation and qPCR. For RNA isolation, biopsies were disrupted in RLT buffer (Qiagen, 

Valencia, CA) using a bead beater and metal beads. Cells were washed twice in ice-cold PBS 

before lysis in RLT buffer. All samples were then passed 3-5 times through a 26G needle prior 

to RNA isolation using the RNAeasy mini kit from Qiagen. RNA concentrations were estimated 

by absorbance measurement at 260 and 280 nm, and cDNA generated using the qScript 

reverse transcriptase (Quantabio, Beverly MA). Quantitative real-time PCR was performed 

using iQ SYBR Green Supermix (BioRad, Hercules, CA) on a C1000 Thermal cycler equipped 

with a CFX96 Real-Time PCR system using BioRad CFX Manager 3.1 Software. Measurements 

were performed in triplicates using GAPDH as an endogenous control. Results were analyzed 

by the ΔΔCT method. The real-time PCR included an initial enzyme activation step (3 minutes, 

95 °C) followed by 45 cycles consisting of a denaturing (95 °C, 10 seconds), an annealing (53°-

60°C, 10 seconds) and an extending (72 °C, 10 seconds) step. The used primers are listed in 

Supplementary Table S3. 

 VLPs and measurement of VLP uptake.  To produce pseudoparticles, 293T cells were 

transfected with plasmids encoding a minimal HIV (pTRIP, CSGW, CSPW) provirus expressing 

the Gaussia Luciferase (Gluc), gag-pol, and S protein of SARS-CoV-2 virus using 

polyethylenimine (PEI) transfection reagent46-48. Supernatants were collected at 24, 48 and 72 

hours post-transfection, pooled, filtered (0.45 mm), aliquoted and stored at -80°C. 

Pseudoparticle infections were performed in the presence of 4 µg/ml polybrene. Appropriate 

amounts of pseudoparticle were added onto target cells and plates incubated for 3 hrs (37°C) 

before changing media. Gaussian luciferase was measured at 24, 48, and 72 hrs after infection.  
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To measure VLP uptake into cells, the VLP-containing medium was diluted 1:2 in cell culture 

medium and applied to the cells. After 1 h, the cells were washed with PBS and fresh medium 

added to the cells. In experiments with IFN-γ (1000 IU/ml; Roche, Belmont CA), the replacement 

medium for cells infected in presence of IFN-γ contained IFN-γ as well. To determine VLP 

uptake, luciferase luminescence in cell culture supernatant was determined using the Renilla 

luciferase activity assay from Thermo Fisher Scientific.  

Cell culture, PTPN2 knockdown, siRNA treatment and IFN-γ treatment. HT-29.cl19A were 

obtained from Kim E. Barrett (University of California, San Diego, California), Caco-2BBe, A549 

and THP-1 cells were originally obtained from ATCC and cultured according to the 

manufacturer’s recommendation in medium with 10% FCS. For PTPN2 knockdown, the cells 

were infected with lentiviral particles containing non-targeting control shRNA (Ctr) or PTPN2-

specfic shRNA as described previously49 and stable clones selected using puromycin. For 

STAT1 silencing, the cells were transfected with previously validated, STAT1-specific or non-

targeting control siRNA constructs (Dharmacon) using DharmaFECT transfectionre agents as 

described previously50. In experiments with STAT1 siRNA and IFN-γ treatment, the culture 

medium was replaced with serum-free medium 8 h prior to addition of IFN-γ (1000 IU; Roche). 

In experiments with Tofacitinib, the cells were treated with tofacitinib (50 µM, MedChemExpress, 

Monmouth Junction, NJ). Control cells were treated with an equal amount of vehicle (dimethyl 

sulfoxide, DMSO, 0.5%, Sigma-Aldrich). 

ELISA. Human ACE2 ELISA was obtained from R&D and performed according to the 

manufacturer’s instructions with undiluted serum.  

RNA sequencing. RNA sequencing was performed and analyzed by the Integrative Genomics 

Core, City of Hope National Medical Center (Duarte USA). The RNA-seq libraries were 

constructed with Kapa mRNA HyperPrep Kit (Roche) following the manufacturer’s 

recommendation. The libraries were then sequenced on an Illumina Hiseq 2500 with single end 

50 bp reads to a depth of about 35M. The sequences were aligned to human genome assembly 

hg38 using Tophat2 v2.0.14. RNA-seq data quality was evaluated using RSeQC v2.5. For each 

sample, expression counts for Ensembl genes (v92) were summarized by HTseq v0.6.1, and 

reads per kilobase of transcript per million mapped reads (RPKM) were calculated. Count 

normalization and differential expression analyses between groups were conducted using 

Bioconductor package “DESeq2” v1.14.1. Heatmaps were generated using R package 
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“heatmap3”. The Gene Ontology and pathway analysis was performed using DAVID online tools 

and Ingenuity Pathway Analysis (IPA). 

Statistics. Data are represented as mean of a series of n biological repetitions ± standard 

deviation (SD). Data followed a Gaussian distribution and variation was similar between groups 

for conditions analyzed together. Significant differences were determined using GraphPad 

Prism v9 software using analysis of variance (ANOVA). p-values below 0.05 were considered 

significant. Mice for ex vivo analyses were matched for age and sex. Numbers of replicates are 

given in the figure legends. No data points were excluded from statistical analysis.  
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Figure 1. Presence of SNP rs1893217 in PTPN2 promotes ACE2 expression. A) Ileum and colon 
biopsies from IBD patients homozygous for the major allele (TT), heterozygous (CT) or homozygous for 
the inflammatory disease-associated minor allele (CC) in PTPN2 SNP rs1893217 were analyzed for A) 
ACE2 mRNA and B) ACE2 protein expression. Depicted are representative Western blot pictures and 
values below the blot indicate relative band density normalized to β-actin and TT controls. C) PTPN2 
phosphatase activity levels were analyzed in the same samples as in B and correlated with relative 
PTPN2 protein levels. D+E) Representative Western blot pictures and respective densitometric analysis 
for ACE2 and β-actin in intestinal epithelial cells (IEC) from the illeum, lung tissue, and heart tissue from 
3-week-old wild-type (WT), whole-body Ptpn2 heterozygous (Het) or Ptpn2 knock-out (KO) mice (D) or 
mice in which Ptpn2 was specifically deleted in IECs (ΔIEC) or their control littermates (fl/fl) (E). 
Statistical differences are indicated in the figures (One-way ANOVA (A+B, D+E) or linear regression 
(C)), A-C: n = 8 per genotype, D+E: n = 4. Each dot represents a biological replicate.		
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Figure 2. PTPN2 knockdown facilitates entry of VLPs expressing SARS-
CoV-2 spike S protein. A) Caco-2BBe, B) HT-29.cl19A, C) A549, and D) THP-1 
cells expressing non-targeting control (Ctr) or PTPN2-specific (KD) shRNA were 
incubated with virus like particles (VLPs) expressing renilla luciferase and 
SARS-CoV-2 spike protein (S), no additional proteins (-, negative control), or the 
spike G glycoprotein of the rhabdovirus vesicular stomatitis virus (G, positive 
control). 48 h after infection, luminescence values of the supernatant were 
measured as an approximation of VLP uptake. Statistical differences are 
indicated in the figure (Student’s t test, n = 3 independent experiments). Each 
dot represents the average of an independent experiment with 2-3 technical 
replicates, each.		
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Figure 3. IFN-γ promotes uptake of SARS-CoV2 spike-expressing VLPs in a STAT1-dependent manner. A) Caco-2BBe cells 
expressing non-targeting control (Ctr) or PTPN2-specific (KD) shRNA were treated with IFN-γ for 24 h and analyzed for ACE2 mRNA 
expression. B) Ctr and KD Caco-2BBe cells were treated with non-targeting control (siCtr) or STAT1-specific (siSTAT1) siRNA prior to 
incubation with IFN-γ for 24 h and analysis for ACE2 mRNA expression. C) Representative Western blot images for the indicated 
proteins from cells treated as in B. D) Ctr and KD Caco-2BBe cells were infected with VLPs expressing SARS-CoV-2 spike protein in the 
presence or absence of IFN-γ and luminescence measured after 48 h.  E) Ctr and KD Caco-2BBe cells were treated with non-targeting 
control (siCtr) or STAT1-specific (siSTAT1) siRNA prior to infection with VLPs expressing SARS-CoV-2 spike protein in the presence or 
absence of IFN-γ and luminescence measured after 48 h. Statistical differences are indicated in the figure (One-way ANOVA, n = 4). 
Each dot represents the average of an independent experiment with 2-3 technical replicates, each.		
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Figure 4. Tofacitinib prevents ACE2 upregulation and reduces SARS-CoV-2 VLP-uptake. A-C: Caco-2BBe cells expressing non-
targeting control (Ctr) or PTPN2-specific (KD) shRNA were treated with vehicle (DMSO) or Tofacitinib for 1 h prior to infection with VLPs 
expressing SARS-CoV-2 spike protein in the presence or absence of IFN-γ. A) Relative mRNA expression of ACE2 and B) representative 
Western blot pictures for the indicated proteins 24 h after VLP treatment, C) luminescence values as an approximation of VLP uptake after 
48 h. D) Serum from ulcerative colitis patients treated with tofacitinib or anti-TNFα were analyzed for ACE2 protein level (R = responder; 
NR = non-responder). E-G) Peripheral blood mononuclear cells from IBD patients homozygous for the major allele (TT) or heterozygous 
for the disease-associated risk allele in SNP rs1893217 in PTPN2 were treated with Vehicle (DMSO) or Tofacitinab for 24 h and analyzed 
for E) ACE2 mRNA and F) ACE2 protein expression. G) After 24 h Tofacitinib-treatment, the cells were infected with VLPs expressing 
SARS-CoV-2 spike protein and luminescence analyzed after 48 h as an approximation for VLP uptake. Statistical differences are indicated 
in the figure (One-way ANOVA, A-C: n = 4; D: Tofacitinib treated patients n = 12, anti-TNF-treated patients n = 6); E-G: n = 6). Each dot 
represents the average of an independent experiment (A-C) or a biological sample (D-G) with 2-3 technical replicates, each.		
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