



# Monitoring Minimal Residual Disease in Patients with Multiple Myeloma by Targeted Tracking Serum M-Protein Using Mass Spectrometry (EasyM)

Huishou Fan<sup>1,2,3</sup>, Bing Wang<sup>4</sup>, Lihui Shi<sup>1,3</sup>, Ni Pan<sup>4</sup>, Wengiang Yan<sup>1,3</sup>, Jingyu Xu<sup>1,3</sup>, Lixin Gong<sup>1,3</sup>, Lingna Li<sup>1,3</sup>, Yuntong Liu<sup>1,3</sup>, Chenxing Du<sup>1,3</sup>, Jian Cui<sup>1,3</sup>, Guoqing Zhu<sup>1,3</sup>, Shuhui Deng<sup>1,3</sup>, Weiwei Sui<sup>1,3</sup>, Yan Xu<sup>1,3</sup>, Shuhua Yi<sup>1,3</sup>, Mu Hao<sup>1,3</sup>, Dehui Zou<sup>1,3</sup>, Xiequn Chen<sup>5</sup>, Lugui Qiu<sup>1,3</sup>, and Gang An<sup>1,3</sup>

## ABSTRACT

**Purpose:** We investigated both the clinical utilities and the prognostic impacts of the clonotypic peptide mass spectrometry (MS)-EasyM, a blood-based minimal residual disease (MRD) monitoring protocol in multiple myeloma.

**Experimental Design:** A total of 447 sequential serum samples from 56 patients with multiple myeloma were analyzed using EasyM. Patient-specific M-protein peptides were sequenced from diagnostic samples; sequential samples were quantified by EasyM to monitor the M-protein. The performance of EasyM was compared with serum immunofixation electrophoresis (IFE), bone marrow multiparameter flow cytometry (MFC), and next-generation flow cytometry (NGF) detection. The optimal balance of EasyM sensitivity/specificity versus NGF ( $10^{-5}$  sensitivity) was determined and the prognostic impact of MS-MRD status was investigated.

**Results:** Of the 447 serum samples detected and measured by EasyM, 397, 126, and 92 had time-matching results for compar-

ison with serum IFE, MFC-MRD, and NGF-MRD, respectively. Using a  $\text{dopt} > 0.9$  as the MS-MRD positive, sensitivity was 99.6% versus IFE and 100.0% versus MFC and NGF. Using an MS negative cutoff informed by ROC analysis (<1.86% of that at diagnosis), EasyM sensitivity remained high versus IFE (88.3%), MFC (85.1%), and NGF (93.2%), whereas specificity increased to 90.4%, 55.8%, and 93.2%, respectively. In the multivariate analysis, older diagnostic age was an independent predictor for progression-free survival [PFS; high risk (HR), 3.15; 1.26–7.86], the best MS-MRD status (MS-MRD negative) was independent predictor for both PFS (HR, 0.25; 0.12–0.52) and overall survival (HR, 0.16; 0.06–0.40).

**Conclusions:** EasyM is a highly sensitive and minimal invasive method of MRD monitoring in multiple myeloma; MS-MRD had significant predictive ability for survival outcomes.

## Introduction

Multiple myeloma is characterized by the neoplastic generation plasma cells from bone marrow, which interfere with hematopoiesis and immunologic function, leading to hypercalcemia, renal insuffi-

ciency, anemia, and bone lesions (1, 2). Although the prognosis of patients with multiple myeloma has substantially improved over the past decades due to the advancements of novel agents and upfront autologous stem cell transplantation (ASCT), multiple myeloma remains incurable (3–5). Patients with multiple myeloma who achieve deep remission after treatment can still relapse due to recrudescence of tumor cells remaining in bone marrow, termed minimal residual disease (MRD) (6–8).

MRD is the most relevant prognostic factor for multiple myeloma and achieving undetectable MRD is associated with improved progression-free survival (PFS) and overall survival (OS; refs. 9–12) among patients whether they are newly diagnosed or have relapsed disease (9–11, 13–19). For this reason, patients often receive ongoing MRD monitoring, most commonly with multiparameter flow cytometry (MFC), next-generation flow cytometry (NGF), or next-generation sequencing (NGS). However, these methods require costly and painful bone marrow aspiration, limiting their utility for repeated sampling, and are subject to the risk of false-negative results due to non-representative sampling of focally-distributed plasma cells and hemodilution (20). Using serum protein electrophoresis (SPEP) and serum immunofixation electrophoresis (IFE) to measure patients' peripheral blood (PB) M-protein levels is a more practical and minimally invasive way of monitoring MRD, but these methods do not have sufficient sensitivity to evaluate patients who achieve remission deeper than complete response (CR). Therefore, the International Myeloma Working Group (IMWG) recommended that MRD assessments should be further evaluated on the basis of the treatments' existing efficacy evaluation (21). Given that longitudinal MRD monitoring could help inform dynamic risk stratification and adjustments

<sup>1</sup>State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin, China. <sup>2</sup>Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.

<sup>3</sup>Tianjin Institutes of Health Science, Tianjin, China. <sup>4</sup>Shanghai Kuaixu Biotechnology Co., Ltd., Shanghai, China. <sup>5</sup>Department of Hematology, Affiliated Hospital of Northwest University, Institute of Hematology, Northwest University, Xian, Shaanxi, China.

H. Fan, B. Wang, and L. Shi contributed equally as the co-first authors to this article.

Clinical Trial registration IDs: NCT05536700 and NCT04645199.

**Corresponding Authors:** Gang An, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 288 Nanjing Road, Tianjin, 300020, China. E-mail: angang@ihcams.ac.cn; and Lugui Qiu, E-mail: qiulg@ihcams.ac.cn

Clin Cancer Res 2024;30:1131–42

**doi:** 10.1158/1078-0432.CCR-23-2767

This open access article is distributed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.

©2024 The Authors; Published by the American Association for Cancer Research

## Translational Relevance

Monitoring minimal residual disease (MRD) is one of the most important aspects of multiple myeloma clinical management, although it is challenging to conduct ongoing assessments because the commonly used MRD monitoring techniques currently require invasive bone marrow aspiration. EasyM, a clonotypic peptide mass spectrometry (MS) approach with extremely high detection sensitivity, enables targeted, quantitative tracking of M-protein in patients with multiple myeloma using peripheral serum, permitting both minimally invasive and longitudinal MRD monitoring in patients with multiple myeloma. In our comparison of the performance of EasyM with the serum immunofixation electrophoresis (IFE), multiparameter flow cytometry (MFC), and next-generation flow cytometry (NGF), we verified that the EasyM has comparable sensitivity to NGF ( $10^{-5}$ ). This study also demonstrated the valuable application of EasyM in early prediction of disease progression and prognostic evaluation, underscoring its potential for extensive practical applications for minimally invasive MRD monitoring in patients with multiple myeloma.

to treatment strategies (22–26), a highly sensitive and blood-based MRD monitoring method is much-needed for patients with multiple myeloma.

Mass spectrometry (MS) is capable of detecting M-protein levels with high sensitivity in PB, and thus has the potential to monitor MRD with minimal invasiveness (27–37). MS methods such as the intact protein method and the clonotypic peptide method are now recommended by the IMWG (38). The clonotypic peptide method identifies patient-specific M-protein clonotypic peptide sequences to target and quantitatively track them, even after achieving deep remission (39–43). However, its application has been primarily explored in the context of clinical trials. For example, the MS-based EasyM assay was 1,000- and 200-fold more sensitive than SPEP and IFE, respectively, for the detection of M-protein in patient serum samples, which allowed earlier identification of relapse in a trial (35). EasyM had superior performance to MFC at  $10^{-4}$  sensitivity but was not compared at  $10^{-5}$  sensitivity, and the prognostic value of EasyM MS-MRD was not assessed. As an extension of this work, we evaluated the clinical utility of blood-based MS for longitudinal M-protein monitoring during the disease course of multiple myeloma in the real-world setting. To this end, we analyzed serial serum samples of 56 patients with multiple myeloma and compared the MS results with those determined using IFE, MFC, and NGF to establish the concordance between different disease-monitoring methods. In addition, we determined the optimal cutoff value of EasyM MS negativity to balance the sensitivity and specificity of MS versus NGF and explored the prognostic impact of MS-MRD status.

## Materials and Methods

### Study design and participants

This is a retrospective study (ClinicalTrials.gov ID: NCT05536700). It used a prospectively maintained institutional database of patients in China with multiple myeloma, the National Longitudinal Cohort of Hematological Diseases-Multiple Myeloma (NICHE-MM; ClinicalTrials.gov ID: NCT04645199). Additional data elements were obtained or confirmed by review of patient medical records and follow-up phone calls. Written informed consent was obtained

from all patients for use of their medical record data and PB serum samples for research. The study was conducted according to the Declaration of Helsinki and approved by the institutional review board of the Institute of Hematology and Blood Diseases Hospital (IHBDH) on October 26, 2021.

Patients in the NICHE-MM cohort were eligible for inclusion in this study if they met the following criteria: (i) patients with newly-diagnosed multiple myeloma (NDMM) admitted at the lymphoma and myeloma treatment center of IHBDH from October 2013 to June 2019; (ii) received relatively consecutive treatment, defined as  $\geq 4$  cycles of induction treatment; (iii) with diagnosed M-protein type of IgG or IgA; (iv) had initial serum M-protein quantification of  $\geq 5$  g/L; and (v) availability of serum samples at baseline and  $\geq 2$  timepoints post-treatment. Of the 61 patients who met the inclusion criteria, 1 patient was excluded due to having biclonal M-protein (IgGκ and IgAκ) and 4 patients were excluded due to insufficient time intervals in their consecutive serum sample collection. This left 56 patients who fulfilled all criteria and were included in the study.

All included patients had started treatment with  $\geq 4$  cycles of bortezomib-based or lenalidomide-based induction therapy followed by either ASCT or three additional cycles of consolidation therapy. Patients were then treated with lenalidomide or bortezomib maintenance for  $\geq 1$  year unless intolerance or continual progression were observed. Routine monitoring of treatment response was performed every two courses during induction treatment, before and 3 months after ASCT or post-consolidation treatment, approximately every 3 months during maintenance, and when patients began exhibiting signs of recurrence or progression. The patient response assessments were conducted using the IW MG response criteria (44). The study participant demographics were considered to be representative for the general Chinese population (Supplementary Table S1).

### MS for detection of monoclonal Ig

#### Materials

The following reagents were purchased from Sigma-Aldrich (Shanghai Titan Scientific Co., Ltd.): dithiothreitol, iodoacetamide, ammonium sulfate, urea, and acetone. MS-grade formic acid (FA) and acetonitrile were from Thermo Fisher Scientific. ProteaseMAX Surfactant, PNGaseF, pepsin, trypsin, chymotrypsin, LysC, GluC, and AspN were from Promega.

#### M-protein enrichment, sequencing, and quantification by MS

A simple and universal method was used for M-protein enrichment, salting out by ammonium sulfate solution with gradient concentration. This method is low-cost and suitable for different M-protein types including IgG, IgA, IgM, and IgD. In brief, 10  $\mu$ L serum was diluted with 10  $\mu$ L PBS, and then saturated ammonium sulfate solution was added to 35% (mass percentage). Immunoglobulins including M-protein were precipitated. According to the SDS-PAGE results of the precipitated proteins, the approximate purity and M-protein type were obtained. The following M-protein digestion using different enzymes and mass analysis were consistent with previous reports (35). Quantification of M-protein by using MS was performed as previously described and detailed in the Supplementary Materials and Methods.

#### Data analysis

The M-proteins were *de novo* sequenced following the same procedure as described (35). Parallel reaction monitoring (PRM) assays

were analyzed using Skyline software. The peak area of a target peptide was normalized to that of the spiked-in SILuMAb's peptide with the closest RT. The measurement for diagnostic samples was set to 100%. The percent residual M-protein was calculated by dividing the level in the next consecutive sample by that of the diagnostic sample and multiplying by 100. Assay specificity was evaluated by applying the PRM assay of one patient to control serum and to diagnostic samples of other patients with multiple myeloma.

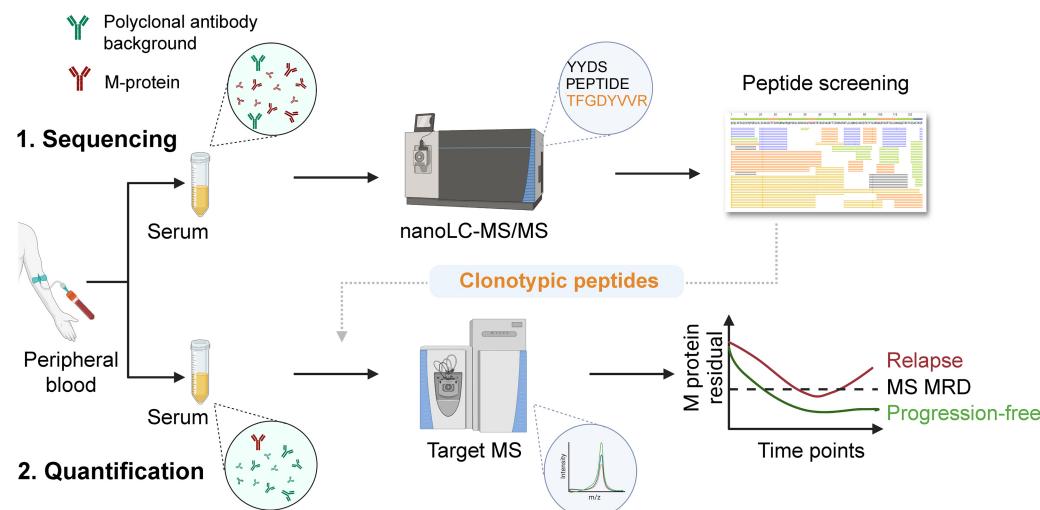
The LOD was defined as the lowest M-protein concentration where the ion distribution pattern was similar to that of the diagnostic sample. In other words, a dopp score of  $\geq 0.9$  was used as the threshold for limit of detection (LOD). The lower limit of quantification (LLQ) was defined as the lowest M-protein concentration, where calculated values were within 80% to 120% of the expected values and the coefficient of variation (CV) of duplicate injections was less than 20%.

#### Identification of clonotypic peptide of personalized M-protein

A novel LC/MS-based proteomics method was used to detect PB-based MRD in patients with multiple myeloma before and after treatment, as illustrated in **Fig. 1**. In the M-protein sequencing step, salting out by ammonium sulfate solution with a gradient concentration was an efficient and universal method for all different M-protein types except for free light chain. Thus, SDS-PAGE was performed as a preliminary quality control for M-protein enrichment evaluation. In the M-protein quantification step, the SILuMAb was added to patient serum at a known concentration as an internal quantification standard. Compared with the Digestif previously used in (35), SILuMAb has similar physicochemical properties to the M-protein, and the similar solubility and enzyme digestion efficiency may potentially help improve quantitative accuracy and stability. Tryptic peptides that both overlap with one of the CDR regions and contain at least one mutation compared with the germline gene were regarded as clonotypic and evaluated for their quantification sensitivity. The M-protein LLoQ and LOD were determined for two to three of the best quantotypic peptides for each patient. The PI sample was serially diluted in the control

serum, digested with trypsin, and analyzed with PRM assay on a Q Exactive Hybrid Quadrupole-Orbitrap. The LLoQ was determined as the highest dilution at which the observed amount deviated from the expected amount by  $<20\%$  and CV of duplicate injections was  $<20\%$ .

#### Risk stratification by FISH


Purified CD138<sup>+</sup> plasma cells followed by interphase FISH (iFISH) and panels were performed as reported previously (45). High-risk (HR) patients were defined at diagnosis by any presence of cytogenetic abnormalities (CA) including t(4;14), t(14;16), and Del(17P) and 1q21 gains/amplifications (1q21+; ref. 46); patients without any of these CAs were considered as standard risk (SR). The cut-off level for translocation, deletions, and gains was set at 10%. Besides, the International Staging System (ISS) and Revised International Staging System (R-ISS) were also employed for risk stratification at baseline.

#### Flow-based MRD monitoring

The longitudinal MRD assessments performed in this study were assessed by using two combinations of eight-color panel MFC during January 2013 to December 2017, with a sensitivity for MFC MRD negativity of at least  $1 \times 10^{-4}$  as reported previously (45). Beginning in January 2018, we employed NGF methods (Euroflow standard) and patients were considered to have undetectable NGF-MRD when phenotypically aberrant clonal PCs  $<20$  after recording  $\geq 2,000,000$  events in a corresponding sample (a sensitivity for MRD negativity of at least  $1 \times 10^{-5}$ ), the panels of NGF were detailed in Supplementary Table S2.

#### Statistical design and analysis

PFS was measured from the start of treatment to disease progression, death, or the last follow-up, whichever occurred first. OS was defined as the time period from the start of treatment to any-cause death or the last follow-up. Both PFS and OS estimates were calculated using the Kaplan-Meier method, and log-rank tests were used to



**Figure 1.**

The process of MS detection and quantification of M-protein. In Step 1, the M-protein was *de novo* sequenced from diagnostic serum of patients, then specific clonotypic peptides were selected for quantification. In Step 2, unique patient-specific tryptic peptides from heavy and light chains are measured with PRM assay throughout all time points. Created with BioRender ([www.biorender.com](http://www.biorender.com)).

compare the survival curves. ROC analyses were performed to set the best MS negative cut-off value to achieve the optimal balance of EasyM sensitivity and specificity.

HR was calculated using a univariate Cox proportional hazard model. Variables with  $P < 0.1$  in the univariate Cox analysis were included in the multivariate Cox analysis. The prognostic impacts of MS-MRD status were evaluated in a multivariable Cox regression model including established risk factors. A  $P < 0.05$  was considered statistically significant for the multivariable analyses. Statistical analyses were performed using SPSS (v25.0; IBM) and R (v4.1.2, Foundation for Statistical Computing) software.

### Data availability

The raw data contain sensitive personal information such as patient-specific M-protein sequence, which are not authorized by the informed consent to share. However, the derived data that support the findings of this study are available from the corresponding authors upon reasonable request. To obtain access rights, the data requestor needs to sign the data access agreement.

## Results

### Characteristics, survival, and M-protein sequences of the study population

The patient baseline characteristics are presented in Supplementary Table S3. A total of 56 patients with NDMM [ $n = 22$  (39.3%) female] were included in the analyses; the median age at diagnosis was 56 years. Thirty-eight patients had IgG type multiple myeloma and 18 had IgA type multiple myeloma. Forty-seven patients (83.9%) received bortezomib-based induction therapy and 44 (78.6%) received first-line ASCT. Half (50.0%) of patients had baseline risk stratification of ISS level II whereas 71.4% were RISS level II. The most common cytogenetic abnormalities were 1q21+, pos (51.9%); del (13q), pos (48.1%); and t (4;14), pos (30.4%). Among the entire population, the median follow-up time was 61.3 months, median PFS (mPFS) was 45.1 [95% confidence interval (CI), 31.0–59.1] months, and median OS (mOS) was not reached (NR; Supplementary Fig. S1).

**Table 1** lists the patient-specific information for the M-protein of all 56 patients, including the baseline M-protein concentration measured by SPEP, the isotype, heavy chain complementarity determining region 3 (HCDR3) sequences, as well as the clonotypic peptides selected for quantification and their corresponding LOD and LLoQ.

### Identification of personalized M-protein clonotypic peptide and longitudinal targeted monitoring

The identified clonotypic peptides overlapped with complementarity-determining regions. Supplementary Figure S2 shows a typical peak shape of the unique fragments of peptide NFVLLNWGR detected in a diagnostic sample from patient 23 (M-protein: 17.95 g/L; LLoQ: 1.15 mg/L), but not in the negative control serum sample. The lowest LOD and LLoQ values for all patients are listed in **Table 1**. The LLoQ differed substantially in a peptide-specific manner, with the highest sensitivity of 0.77 mg/L observed for peptide ASQSINLYVN-WYQQQRPGK. Although several unique peptides were identified for each patient, only the peptide with the lowest LLoQ was used for M-protein monitoring.

For the longitudinal monitoring of M-protein across the disease course, a patient's serum was digested with trypsin and analyzed with the patient-specific PRM assay. The patient-specific peptides were normalized on the spiked-in protein standard peptides, and the

normalized value in the follow-up sample was divided by the normalized value of M-protein in the diagnostic sample to yield the percent residual M-protein value. The dynamic curve of M-protein residual (EasyM) for the 56 patients across the disease course and their corresponding clinical response are listed in Supplementary Table S4.

An example of the typical percent residual M-protein monitoring curve among disease-free (CR) patients is shown in **Fig. 2A**. The continual drop of the amount of M-protein measured with EasyM is consistent with the M-protein values detected by SPEP and IFE (see inset table in **Fig. 2A**). Furthermore, the high sensitivity of EasyM allowed for the detection and quantification of M-protein even when quantification was not possible with conventional assays. Of the 56 patients in the cohort, 25 were observed to have a similar curve dynamic with a steady decrease in M-protein over time (Supplementary Table S4).

Importantly, the improved sensitivity of M-protein detection provided by EasyM allowed for earlier and more accurate detection of relapse compared with SPEP and IFE. In this study, a minimum of a two-fold increase in M-protein level in any two consecutive tests, or a significant three-fold increase on a single test, was considered an indication of a relapse using EasyM. As shown in **Fig. 2B**, clinical response evaluation indicated that patient 29 (P29) was still in CR at timewpoint 7 (T7), whereas a significant 3-fold increase in M-protein quantification was observed from T6 to T7. Not surprisingly, consistent with the prediction by EasyM, P29 experienced clinical progression 4 months post-T7. For patient 51 (P51; Supplementary Table S4), CR was maintained from T4 to T6, across 6 months. The quantitative value of M-protein detected by EasyM continually increased 3-fold from T4 to T6 for P51, whereas the bone marrow evaluation by NGF were negative at T6. However, P51 experienced disease progression at 12 months post-T6. This case further indicated that continuous dynamic trends may provide more accurate predictions than single timewpoint detection. Early prediction of relapse by EasyM can also be observed for P19, P20, and P44 (Supplementary Table S4).

Patients within CR or poor response had high EasyM values at various time points, which were consistent with the conventional SPEP and IFE results (examples in **Fig. 2C** and **D**, respectively).

### Methodologic comparison of MS-MRD with IFE, MFC-MRD, and NGF-MRD

A total of 447 sequential serum samples from 56 patients with multiple myeloma were analyzed by EasyM. Of these samples, 397, 126, and 92 could be compared with IFE performed on serum samples, and MFC-MRD and NGF-MRD performed on bone marrow aspirates, at the same timewpoints, respectively.

Using a  $dotp > 0.9$  as the MS-MRD positive, among the 397 comparable results between MS-MRD and IFE collected at the same timewpoints, 70.8% (281/397) of the samples were both MS-MRD positive and IFE-positive, 3.3% (13/397) were both MS-MRD negative and IFE-negative, and 25.7% (102/397) were MS-positive and IFE-negative. Interestingly, there was one sample which was IFE-positive and MS-negative. To investigate this disagreement between methods, we further reviewed the patient's medical records and confirmed that the reason was due to the patient with IgA $\lambda$  diagnostic M-protein and having an oligoclonal band of IgG $\kappa$  after he achieved stringent CR. Overall, the sensitivity of MS-MRD was 99.6% in comparison with IFE, with 11.3% specificity (**Fig. 3A**), indicating that MS-MRD is more sensitive than a routine M-protein diagnostics protocol using IFE and provides enhanced ability to detect MRD-positive patients. Besides, we also performed analysis of sensitivity and specificity between

**Table 1.** Overview of *de novo* M-protein sequencing in the patient cohort.

| Patient | M-protein by SPEP (g/L) | Type  | HCDR3                     | Quantification peptide and location    | LOD (mg/L) | LLoQ (mg/L) |
|---------|-------------------------|-------|---------------------------|----------------------------------------|------------|-------------|
| P1      | 10.13                   | IgG1κ | ARLA VAGTRFYFDY           | ASQDISNYLHWYQQKPGR, LCDR1              | 3.24       | 3.24        |
| P2      | 39.12                   | IgG1λ | ASGLKCTGPSCPFDP           | AGQAPVLVYDDR, LCDR2                    | 12.52      | 12.52       |
| P3      | 14.02                   | IgG2κ | AKEEGDYGLDP               | LVIYLGNSR, LCDR2                       | 0.90       | 0.90        |
| P4      | 11.36                   | IgG1κ | ARSEETKENEGFTVTAEG        | ASQTILSYLNWYQQKPGK, LCDR1              | 3.64       | 3.64        |
| P5      | 23.95                   | IgG1κ | AREVLSTSYSSYYSYMDV        | QDGSETNYVDSVK, LCDR2                   | 7.66       | 7.66        |
| P6      | 9.20                    | IgAκ  | MRPRELDGTNT               | ELDGNTWGGTQLTVSSASPTSPK, LCDR3         | 2.94       | 2.94        |
| P7      | 43.44                   | IgAλ  | ARDRPPYKCGGGGNYCYNDV      | VTISCSGSNSNIGGNAVTWYQR, LCDR1          | 0.56       | 2.78        |
| P8      | 50.09                   | IgG1λ | ARGESSAAADRLGYYVMAV       | QAPGQGLEWMGGIIPDVGVVK, LCDR2           | 3.21       | 3.21        |
| P9      | 56.44                   | IgAλ  | ARPREGYQLLRRGAAFDL        | GLEWITIISNDGSQK, LCDR2                 | 18.06      | 18.06       |
| P10     | 36.29                   | IgG1λ | ARLRADCRTTCLRGDAYLPDS     | LLIYSHNQRPSGVPR, LCDR2                 | 2.32       | 2.32        |
| P11     | 33.41                   | IgG1κ | ARDLYSGWYGLTG             | LSCEASGLFSSYAMHWVR, LCDR1              | 10.69      | 10.69       |
| P12     | 34.28                   | IgAλ  | VERQSSADGYSYFAN           | RPSGIPGR, LCDR2                        | 10.97      | 10.97       |
| P13     | 28.00                   | IgG2λ | ARASSEGPLVPFDL            | SVQWYQQKPGQAPVVVHADSAR, LCDR2          | 8.96       | 8.96        |
| P14     | 100.00                  | IgG1λ | AKDKTLMAGTVYLES           | SLSLSCAASGFTFDDYAMHWVR, LCDR1          | 32.00      | 32.00       |
| P15     | 33.14                   | IgAκ  | ARA A STYYHDSSVFGGSELD F  | ASNLENGVPSR, LCDR2                     | 10.60      | 10.60       |
| P16     | 34.00                   | IgG2λ | ARGRYDSTS VFYGM DV        | QAPGQGLEWMGWINTYTGK, LCDR2             | 10.88      | 10.88       |
| P17     | 12.01                   | IgG1κ | ALRREP DYGDHFYFD P        | ASQSINLYVNWYQQKPGK, LCDR1              | 0.15       | 0.77        |
| P18     | 44.57                   | IgA2λ | ARAYSSGWPDHHDY            | GLEWIGSIFHSGSTYINPSLK, LCDR2           | 2.85       | 2.85        |
| P19     | 41.16                   | IgAλ  | THSPEAFRSEETKENEGFTVTAEG  | IIYDVS DRPSGVSR, LCDR2                 | 13.17      | 13.17       |
| P20     | 44.25                   | IgAκ  | VR RASMRQLYFYFYMDV        | ASQTINTFLNWYQQKPGK, LCDR1              | 14.16      | 14.16       |
| P21     | 37.47                   | IgG1κ | ARD SALS GLTYFDF          | LLYQASSLQGP GAPS R, LCDR2              | 0.48       | 2.40        |
| P22     | 21.76                   | IgAλ  | ARLQGTPV A QMTE DAVNVERLT | VEAGDEAGYYCQVWDDSSSDH R, LCDR3         | 6.96       | 6.96        |
| P23     | 17.95                   | IgG1κ | ARDPRNFVLLN               | NFVLLNWGR, LCDR3                       | 0.23       | 1.15        |
| P24     | 48.78                   | IgG1λ | ARALSYYGSGSYGWGWLDP       | GLEWIGCINNSGSSSN YK, LCDR2             | 15.61      | 15.61       |
| P25     | 21.16                   | IgAκ  | ARSEETKENEGFTVTAEG        | VLIYAASSLQSGVPSR, LCDR2                | 6.77       | 6.77        |
| P26     | 60.80                   | IgAλ  | VRSPVGGVLGRTHFDY          | LLIHNDQRPSGLPDR, LCDR2                 | 19.46      | 19.46       |
| P27     | 47.37                   | IgG1κ | ARSLAVPTPQGGY YGLDV       | GLEWVLFI SYDGSNEYYADSVK, LCDR2         | 15.16      | 15.16       |
| P28     | 54.39                   | IgG1κ | ARQSLVQGVQLRGFDY          | GLEWVA V A S YDGGN K, LCDR2            | 17.40      | 17.40       |
| P29     | 29.20                   | IgG1λ | ARGNPWG FGEVNWFDP         | GLEWIGTIYTVTYYNPSLK, LCDR2             | 9.34       | 9.34        |
| P30     | 23.50                   | IgG2κ | VRLRDTT MLYPTDN           | LLIYDV S NR, LCDR2                     | 1.50       | 7.52        |
| P31     | 10.45                   | IgG1κ | ARL RGS S SLE GDSL SDI    | YSVNWYQQKPG EAPK, LCDR1                | 3.34       | 3.34        |
| P32     | 33.36                   | IgG1κ | ARLGGSL TETTPFDF          | LEAEDV GLYYCMQGIDLPH TFGQGT K, LCDR3   | 10.68      | 10.68       |
| P33     | 29.61                   | IgG1λ | AKV PVYELLTGAYGM DV       | VEVGD EAD YCQVWDDSTDHWVFGG GTK, LCDR3  | 9.48       | 9.48        |
| P34     | 57.23                   | IgG4λ | ARMKTTVTPYRRPGNYGM DV     | ALEWL AHIFSNDENSYSTSLR, LCDR2          | 18.31      | 18.31       |
| P35     | 41.18                   | IgG3λ | AR GEKGCS GRCFLD WFD T    | QRPQSPVLLIYQDNK, LCDR2                 | 0.53       | 2.64        |
| P36     | 19.14                   | IgAκ  | VRGQWERSGFDLGFYLDY        | WPSFGQGT K, LCDR3                      | 1.22       | 6.12        |
| P37     | 59.61                   | IgG1κ | VRGHDFTGPFDY              | ASQT VSSN LAWYQQKPGQAPR, LCDR1         | 0.76       | 3.82        |
| P38     | 40.67                   | IgG1κ | AHLLATN TYYFDF            | ASQFVG SWL AWYQQKPGTAPK, LCDR1         | 13.01      | 13.01       |
| P39     | 54.59                   | IgG1κ | ARLGAGNS GDYP DY          | LLIHD ASTR, LCDR2                      | 3.49       | 17.47       |
| P40     | 16.28                   | IgAκ  | ALDRQE WLGEKTCFD P        | DSLNWYQQK, LCDR1                       | 5.21       | 5.21        |
| P41     | 52.94                   | IgG1λ | ARYV DWL WSADF V          | YDYV SWYR, LCDR1                       | 16.94      | 16.94       |
| P42     | 92.47                   | IgG1κ | ARETGRHSSLWHLDAF          | LSCAASGFSFSTFGIHW VR, LCDR1            | 5.92       | 29.59       |
| P43     | 40.29                   | IgG1λ | VREARGLLTFGGLLPVYFFD Y    | LSCAAAGFTFDNYNMN WVR, LCDR1            | 0.52       | 2.58        |
| P44     | 40.60                   | IgG1κ | ARPPGGNF GTRPF D Y        | LSCAASGFTFNSYGMHW VR, LCDR1            | 12.99      | 12.99       |
| P45     | 50.85                   | IgG1λ | ARDY MVATMRHGM DV         | HGM DVWG QGATTVSSASTK, LCDR3           | 3.25       | 16.27       |
| P46     | 68.49                   | IgG1κ | ANKLG YCGS VSC HGWFD P    | NSPFD FGP GTK, LCDR3                   | 21.92      | 21.92       |
| P47     | 66.80                   | IgG1λ | ARDG RYR DF               | GLEW VSLI WSD ATT K, LCDR2             | 4.28       | 21.38       |
| P48     | 24.34                   | IgG1λ | ARHKG DSYDFD F            | LGTEYACWYQQKPGQSPV LVIYEDSK, LCDR1     | 0.31       | 1.56        |
| P49     | 49.79                   | IgG1κ | AKDLVAVAGTRRHCFDP         | DLVAVAGTR, LCDR3                       | 0.64       | 3.19        |
| P50     | 56.91                   | IgG1λ | ARHSRGVATPFEY             | DTERPSWIPDR, LCDR2                     | 18.21      | 18.21       |
| P51     | 47.46                   | IgG1κ | VRVFFDWLPSGGPFD P         | ASQSVDN LAWYQQKPGQAPR, LCDR1           | 0.61       | 3.04        |
| P52     | 37.43                   | IgAλ  | GSQR VMEW Q A WLQY        | GLEWIGSIHHS K, LCDR2                   | 2.40       | 11.98       |
| P53     | 77.99                   | IgG1κ | SRACCS STSCNF FHGM DV     | SSGF SFGD YALT WVR, LCDR1              | 1.00       | 4.99        |
| P54     | 60.52                   | IgAλ  | SHYD WVFDS                | AEDEAD YYCS SYAGMNNF VV FGG GTK, LCDR3 | 19.37      | 19.37       |
| P55     | 28.02                   | IgAκ  | ARDR QNTA LNPLL PAN       | LSCTGSGFTFSSYGMHW VR, LCDR1            | 8.97       | 8.97        |
| P56     | 15.34                   | IgG1κ | AKANWG GLD Y              | FLAWYQQKPGQAPS LLIYDASTR, LCDR1        | 0.98       | 4.91        |

Abbreviations: HCDR, heavy chain complementarity determining region; IgA, immunoglobulin A; IgG, immunoglobulin G; LCDR, light chain complementarity determining regions; LLoQ, lower limit of quantification; LOD, limit of detection; SPEP, serum M-protein electrophoresis.

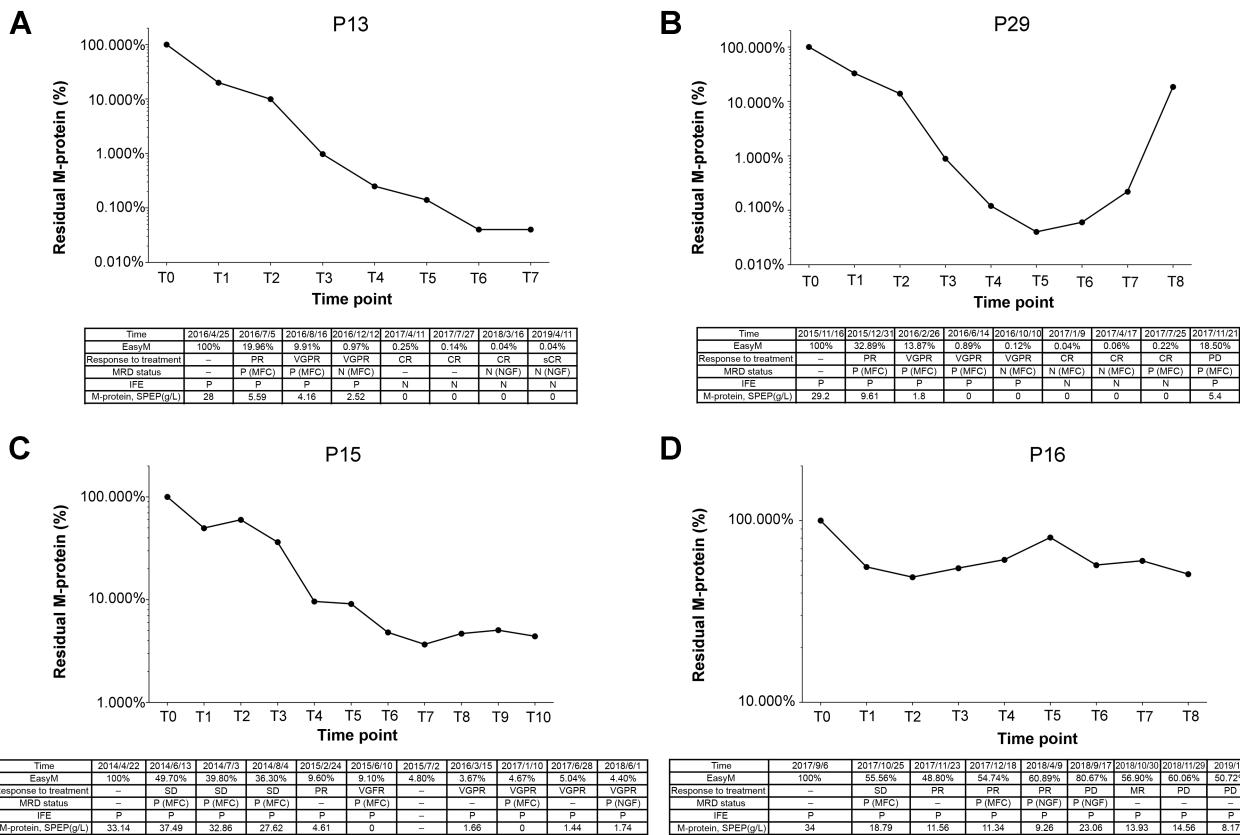


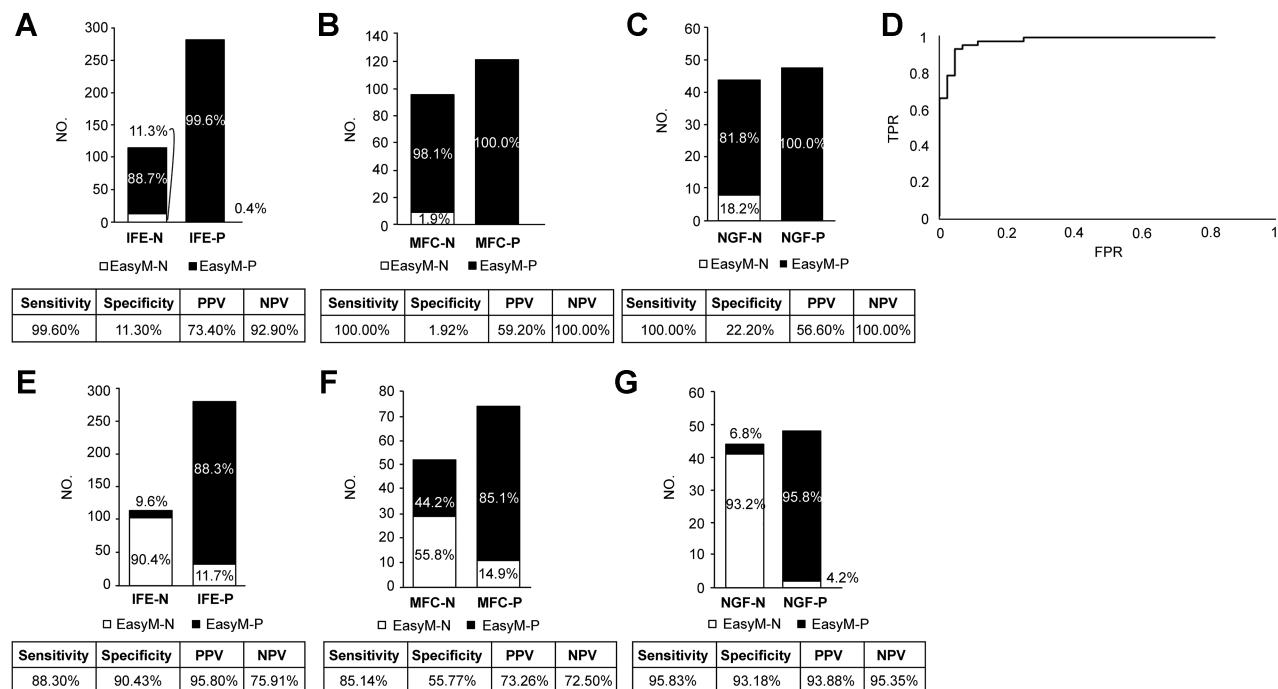

Figure 2.

Representative patterns of disease remission defined by longitudinal M-protein monitoring by EasyM. **A**, Patient #13 with deep response; **B** patient #29 showed relapse after remission; **C** patient #15 with partial response, and **D** patient #16 with poor response. Abbreviations: MFC, multiparameter flow cytometry; PD, progressive disease; PR, partial response; sCR, stringent CR; SD, stable disease; T, time; VGPR, very good partial response.

EasyM and serum-free light chains (sFLC) ratio at the same timepoints ( $n = 55$ ), the sensitivity of MS-MRD was 100% in comparison with sFLC ratio, with specificity of 2.5% (Supplementary Fig. S3A).

Flow cytometry MRD was performed on 218 bone marrow aspirates in this cohort, including 126 analyzed with MFC and 92 analyzed with NGF. MS-MRD detection was also performed on comparable serum acquired at the same time points. The sensitivity of MS-MRD was 100.0% in comparison with both MFC and NGF, with specificity of 1.9% and 22.2%, respectively (Fig. 3B and C), suggesting that MS-MRD also has higher sensitivity and ability to detect MRD real-positive patients compared with these testing modalities.

#### Optimal balance of EasyM sensitivity and specificity


Considering the overly high sensitivity of EasyM at a cutoff of  $dotp > 0.9$ , we used the NGF as the standard for detection (i.e., a detection sensitivity  $\leq 10^{-5}$ ) and set the EasyM MS negative cutoff value using ROC analysis, determined to be  $< 1.86\%$  of that at first diagnosis (Fig. 3D). Using these assumptions, we again performed the aforementioned analyses comparing the sensitivity and specificity between EasyM and IFE, MFC, and NGF. Under this scenario, the sensitivity of EasyM remained high in comparison with IFE (88.3%), MFC (85.1%), and NGF (93.2%), but the specificity was greatly increased to 90.4%, 55.8%, and 93.2%, respectively (Fig. 3E–G). Similar situations can also be found in the comparative analysis of easyM and sFLC ratio, the

sensitivity of MS-MRD was 86.7% in comparison with sFLC ratio, with specificity dramatically increased to 75% (Supplementary Fig. S3b).

#### Prognostic impact of MS-MRD

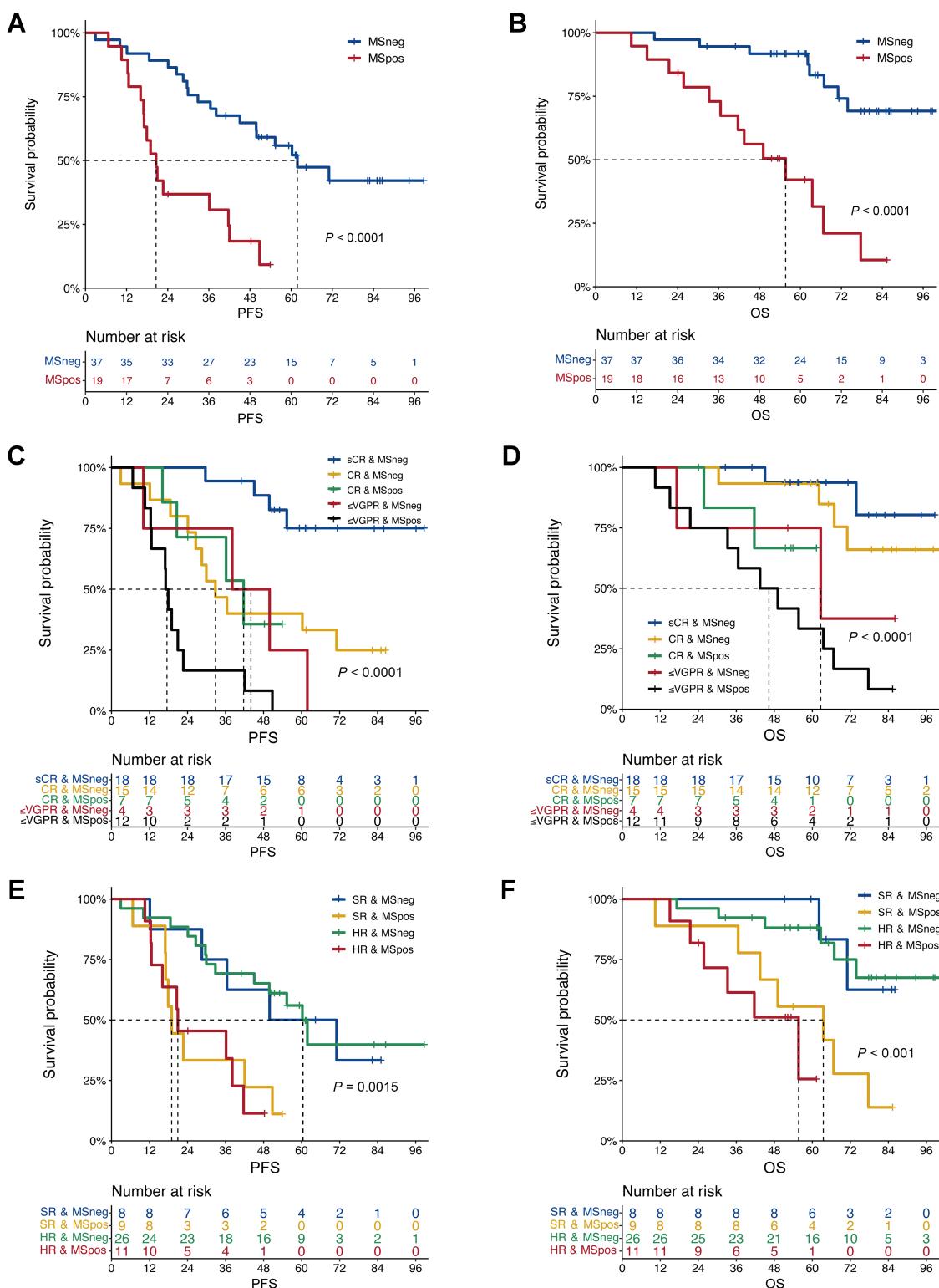
First, all 56 patients were divided into MS-MRD positive ( $n = 19$ ) and MS-MRD negative ( $n = 37$ ) groups according to whether they achieved MS-MRD negativity, and mPFS and mOS were calculated for each group. The mPFS of the MS-MRD positive and MS-MRD negative groups was 20.6 (95% CI, 16.3–24.9) and 61.8 (95% CI, 41.6–82.0) months, respectively (Fig. 4A). The mOS was 55.7 (95% CI, 34.5–76.9) months for the MS-MRD positive group and not reached (NR) for the MS-MRD negative group (Fig. 4B). Both mPFS and mOS were significantly longer among the MS-MRD negative group compared with the MS-MRD positive group (both  $P < 0.001$ ). The survival outcomes according to the best MS-MRD status were similar to those for the best NGF-MRD status (Supplementary Fig. S4).

Next, we investigated the prognostic impact of MS-MRD at two levels: prognostic utility of further risk stratification by combined best MS-MRD status and traditional response to treatment, and prognostic effectiveness of dynamic risk stratification by combined final MS-MRD status and baseline genetic risk stratifications. By combining best response with best MS-MRD status, five groups of patients were classified as sCR and MS negative ( $n = 18$ ), CR and MS negative ( $n = 15$ ), CR and MS positive ( $n = 7$ ),  $\leq$ VGPR and MS negative ( $n = 4$ ), and  $\leq$ VGPR and MS positive ( $n = 12$ ). The mPFS of the groups were

**Figure 3.**

Performance of EasyM as compared with serum IFE and bone marrow MRD. Performance of EasyM as compared to (A) serum IFE, (B) bone marrow MFC, and (C) bone marrow NGF at EasyM MS negative cutoffs of  $\text{dotp} > 0.9$ ; (D) balanced cutoff value of EasyM sensitivity and specificity established by ROC analysis with NGF as the detection standard. Performance of EasyM as compared with (E) serum IFE, (F) bone marrow MFC, and (G) bone marrow NGF at EasyM MS negative cutoff <1.86% of that at first diagnosis. Abbreviations: FPR, false positive rate; N, negative; No, number; NPV, negative predictive value; P, positive; PPV, positive predictive value; TPR, true positive rate.

NR, 32.8 (95% CI, 22.8–42.8), 41.7 (18.8–64.6), 38.1 (0–77.2), and 17.0 (15.5–18.7) months, respectively ( $P < 0.001$ ; Fig. 4C). The mOS were NR, NR, NR, 62.6 (95% CI, 0–130.6), and 43.5 (95% CI, 22.3–64.7) months, respectively ( $P < 0.001$ ; Fig. 4D). Four groups of patients were identified according to their baseline genetic risk stratification and final MS-MRD status as SR and MS negative ( $n = 8$ ), SR and MS positive ( $n = 9$ ), HR and MS negative ( $n = 26$ ), and HR and MS positive ( $n = 11$ ). The mPFS was 49.9 (95% CI, 8.9–90.7), 18.9 (95% CI, 15.8–22.2), 60.8 (95% CI, 51.8–68.7), and 20.9 (95% CI, 26.8–57.2) months, respectively ( $P = 0.0015$ ; Fig. 4E). The mOS was NR, 63.5 (95% CI, 28.4–98.5) months and NR, 55.6 (95% CI, 31.5–79.8) months, respectively ( $P < 0.001$ ; Fig. 4F). HR and MS negative patients had significantly longer mPFS and mOS than those who were HR and MS positive (both  $P = 0.002$ ). SR and MS negative patients had numerically longer mPFS ( $P = 0.067$ ) and significantly longer mOS ( $P = 0.038$ ) than those who were SR and MS positive.


Finally, to investigate whether EasyM MS-MRD status remained an independent predictor of PFS and OS when other prognostic factors (i.e., patients' diagnostic age, baseline ISS stage, LDH levels, risk stratification, and treatment options) were taken into account, we initially performed univariate analyses of PFS and OS. For PFS, the univariate analysis showed that both diagnostic age and best MS-MRD status were significant prognostic factors (both  $P < 0.01$ ), and the multivariate analysis verified the independent impacts of older diagnostic age (HR, 3.15; 95% CI, 1.26–7.86) and best MS MRD status of MS-MRD negative (HR, 0.25; 95% CI, 0.12–0.52) on PFS (both  $P < 0.05$ ; Table 2). For OS, diagnostic age, receiving upfront ASCT, and best MS-MRD status demonstrated stronger prognostic impacts in the univariate analysis (all  $P < 0.1$ ). When including these established

prognostic impactors into a multivariable analysis, the results revealed that only the best MS-MRD status of MS-MRD negative remained a significant independent factor for improved survival (HR, 0.16; 95% CI, 0.06–0.40;  $P < 0.001$ ; Table 2).

## Discussion

The two different strategies for M-protein detection by MS, include the intact protein method and clonotypic peptide method (41, 43, 47). Briefly, the intact method is rapid and high-throughput using MALDI-TOF MS, but it is more affected by the polyclonal background. Marion and colleagues compared the performance of MALDI-TOF MS head-to-head with an established MRD assay by flow cytometry, and the results suggested that MALDI-TOF MS adds value to bone marrow-based MRD testing (27). Puig and colleagues demonstrated that, in comparison with IFE, EXENT and FLC-MS are better able to identify and characterize the M-protein of patients with multiple myeloma in baseline samples and detect residual disease in a higher proportion of cases during treatment monitoring, to more accurately predict patients' outcome (30). Clonotypic peptide assay has ultra-high sensitivity although it is personalized and patient-specific, requiring advanced bioinformatic algorithms to obtain unique peptides for each patient. The methodology of EasyM is similar to that of the contemporaneous Sebia assay (48), using a spiked monoclonal stable isotope-labeled Ig as a reference, which provides an advantage in quantitative quality control.

This study is the first to evaluate the clinical and prognostic utilities of EasyM blood-based MS-MRD among a real-world cohort with multiple myeloma by comparing its sensitivity and specificity with

**Figure 4.**

Prognostic impact of EasyM MS-MRD (A) PFS and (B) OS by best MS-MRD status. (C, D) PFS and (E, F) OS by best MS-MRD status in combination with best clinical response. (E, F) PFS and (F) OS by final MS status in combination with baseline genetic risk stratifications. Abbreviations: HR, high risk; MRD, minimally residual disease; SR, standard risk.

**Table 2.** Univariate and multivariate analyses of prognostic impactors of PFS and OS.

|                                         | PFS                 |        |                       |        | OS                  |        |                       |        |
|-----------------------------------------|---------------------|--------|-----------------------|--------|---------------------|--------|-----------------------|--------|
|                                         | Univariate analysis |        | Multivariate analysis |        | Univariate analysis |        | Multivariate analysis |        |
|                                         | HR (95% CI)         | P      | HR (95% CI)           | P      | HR (95% CI)         | P      | HR (95% CI)           | P      |
| Diagnostic age<br>≥65 vs. <65 years     | 3.39 (1.38-8.31)    | 0.008  | 3.15 (1.26-7.86)      | 0.014  | 2.36 (0.79-7.02)    | 0.045  | 1.89 (0.45-7.90)      | 0.383  |
| ISS stage<br>II vs. I                   | 0.99 (0.33-2.98)    | 0.992  | —                     | —      | 0.71 (0.20-2.60)    | 0.609  | —                     | —      |
| III vs. I                               | 0.90 (0.29-2.78)    | 0.855  | —                     | —      | 0.73 (0.19-2.75)    | 0.641  | —                     | —      |
| Elevated LDH<br>Yes vs. No              | 1.15 (0.44-3.01)    | 0.773  | —                     | —      | 2.61 (0.70-9.67)    | 0.153  | —                     | —      |
| Risk stratification<br>HR vs. SR        | 1.36 (0.69-2.72)    | 0.376  | —                     | —      | 0.69 (0.29-1.64)    | 0.403  | —                     | —      |
| Upfront ASCT<br>Yes vs. No              | 0.60 (0.28-1.29)    | 0.191  | —                     | —      | 0.43 (0.17-1.07)    | 0.070  | 0.65 (0.19-2.18)      | 0.483  |
| Best MS-MRD status<br>MS neg vs. MS pos | 0.24 (0.11-0.50)    | <0.001 | 0.25 (0.12-0.52)      | <0.001 | 0.16 (0.07-0.40)    | <0.001 | 0.16 (0.06-0.40)      | <0.001 |

Abbreviations: HR, high risk; ISS, International Staging System; LDH, lactate dehydrogenase; neg, negative; pos, positive; SR, standard risk.

conventional M-protein diagnostics and bone marrow MRD evaluation. The performance of EasyM over the clinical course of therapy was compared with that of IFE using consecutively collected peripheral serum samples and with MFC/NGF using time-matched bone marrow samples. Our findings indicated that EasyM had superior sensitivity for the detection of M-protein in comparison with serum IFE, particularly for the identification of patients in deep remission. Empirical adjustment to balance EasyM sensitivity with specificity, using an NGF detection sensitivity of  $10^{-5}$ , led to the determination of an optimal cutoff of <1.86% of that at first diagnosis. Finally, the multivariate analysis revealed that only the best MS-MRD status was an independent predictor of both PFS and OS, underscoring the prognostic utility of EasyM for MRD monitoring.

Across comparisons with conventional M-protein detection methods, EasyM consistently demonstrated the advantage of ultra-sensitivity, which is of high importance for detecting low levels of M-protein secreted by residual plasma cells in multiple myeloma, where patients frequently relapse despite achieving CR. The response criteria in multiple myeloma have been recently amended and MRD is now considered the most crucial prognostic indicator of a subsequent outcomes (5, 25, 49). This underscores the urgent need for sensitive MRD evaluation methods capable of longitudinally monitoring tumor burden with higher frequency than bone marrow-based methods, whether directly or indirectly, to indicate disease trajectory and allow clinicians to identify disease recurrence earlier and make timely modifications to treatment regimens.

Over 68% of patients with multiple myeloma report bone pain and associated health-related quality of life decrements (50), which may lead to refusal of frequent bone marrow sampling. As a test requiring PB, EasyM provides the advantage of minimal invasiveness, which could promote patient compliance with the repeated testing required to form a comprehensive picture of their treatment response over time. Furthermore, EasyM takes about a comparable amount of time to identify M-protein in PB as NGF does to identify plasma cells in bone marrow (EasyM requiring 2 days for M-protein sequencing and 1 day for subsequent M-protein quantification, and NGF requires 1 day for detection and about 3 days for analysis and final report in our hospital). In addition, the MS cutoff values used in this study for EasyM were set at levels suitable for clinical applications, equivalent to a sensitivity of  $10^{-5}$ , retaining the possibility of further comparisons with NGS-MRD.

Indeed, there was some level of inconsistency between MS and the other detection methods in regard to true positives or true negatives. As EasyM has higher specificity compared with traditional IFE, EasyM monitoring can be especially helpful when oligoclonal interference occurs (35) or when patients receive monoclonal antibody therapy (51-54). In addition, when conventional M-protein tests and bone marrow MRD assessments yield inconsistent results (49, 55), the MS methodology could also provide valuable reference to help clinicians evaluate a therapy's efficacy and form clinical strategies accordingly.

Although it is currently difficult to assess treatment efficacy among patients with multiple myeloma with serum M-protein  $\leq 10$  g/L, the present results demonstrate that EasyM MS can target and quantitatively track M-protein even if the patient's initial levels are as low as 9.2 g/L. This is consistent with previous studies using MS to monitor M-protein in nonsecretory multiple myeloma (NSMM) and oligosecretory multiple myeloma (OSMM) patients, which suggest that MS may also play a key role in evaluating treatment efficacy among OSMM or NSMM patients in the future (30, 42). MS cannot currently replace bone marrow-based NGF-MRD entirely; however, an ideal approach for patients who are reluctant to undergo repeated bone punctures might be first performing an MS-based evaluation and then moving to bone marrow-based MRD evaluation after MS turns negative. This approach would reduce the pain of repeated bone punctures without sacrificing sensitivity of MRD detection, while maintaining the flow of clinical information to inform treatment strategies.

Because of delayed clearance of abnormal proteins in the blood, MRD is reached faster in bone marrow than as CR in PB (49, 56, 57). Future research with larger population sample size is warranted to further explore the optimal M-protein-based MRD-negative definitions. More accurate and reliable M-protein-based MRD cut-offs may be determined by taking the half-time of different kinds of immunoglobulin into account in addition to EasyM's measurement of M-protein, flow-based MRD detection, and evaluation of response to treatment. Novel statistical analysis methods like AI or deep learning algorithms may play a role in such comprehensive analysis. Although other blood-based detection methods including blood-NGF and cell-free DNA(cfDNA) are affected less by delayed clearance, they have their own drawbacks. For example, cfDNA cannot detect MRD when the fraction of circulating tumor DNA (ctDNA) in blood is below the

genomic equivalent limit (i.e., twice the inverse of the number of copies of each gene in a sample; refs. 47, 58). Blood-NGF has advantages in monitoring circulating tumor cells (CTC) but also had limitations in monitoring MRD as there is no clear correspondence between CTC in PB and MRD in bone marrow. Thus, neither EasyM nor blood-based NGF nor cfDNA can completely replace the assessment of bone marrow MRD currently, but each have their own advantages in assessing the tumor burden of multiple myeloma, which merit exploration and application in a reasonable clinical context.

The findings of this study should be interpreted with caution in the light of a few limitations. First, there is potential selection bias given the inclusion and exclusion criteria for this study. For example, only patients with M-protein IgG and IgA types were eligible for inclusion; thus, the results do not reflect the detection of IgD or light chain M-protein types. Second, the population of 56 patients is relatively small, and the available NGF and MS results with matching time points for comparison were also limited. Therefore, the presently obtained negative cutoff value of MS should be considered a preliminary conclusion and future studies with larger cohorts are recommended to further explore the optimal cutoff value. Future studies could include MS in prospective clinical trials for efficacy evaluations, assessment of the prognostic significance of MS at different time points through fixed interval time point monitoring, as well as the ability of MS to predict clinical relapse before it occurs. Third, because 98.2% (55/56) of patients had measurable lesions (serum MP >10g/L), we commonly performed serum/urine SPEP and IFE as efficacy evaluation tools. Thus, only 53.6% (30/56) of patients had sFLC detection to further confirm the status of sCR and disease progression, and many of the patients who had undergone sFLC testing also had missing sFLC test results at various time points. Thus, a future prospective study including longitudinal EasyM and sFLC monitoring in patients with multiple myeloma is also worth further exploration.

In conclusion, the results of this study demonstrate that MS is a minimally-invasive and highly sensitive M-protein detection method for blood-based MRD monitoring over the disease course of multiple myeloma, with substantial utility for the prognostic screening of

patients who achieve deep remission following treatment. Using an empirically determined MS negativity cutoff, the optimal balance of sensitivity and specificity with EasyM could be achieved while maintaining superior sensitivity over conventional MRD detection methods.

## Authors' Disclosures

No disclosures were reported.

## Authors' Contributions

**H. Fan:** Conceptualization, data curation, formal analysis, investigation, visualization, methodology, writing—original draft, writing—review and editing. **B. Wang:** Conceptualization, resources, data curation, formal analysis, supervision, investigation, visualization, methodology, writing—original draft, writing—review and editing. **L. Shi:** Data curation. **N. Pan:** Data curation, software, formal analysis. **W. Yan:** Data curation. **J. Xu:** Data curation, software. **L. Gong:** Data curation, software. **L. Li:** Data curation, software. **Y. Liu:** Data curation, software. **C. Du:** Data curation, software. **J. Cui:** Data curation. **G. Zhu:** Data curation, software. **S. Deng:** Data curation, software, supervision. **W. Sui:** Data curation, software. **Y. Xu:** Data curation, software, supervision. **S. Yi:** Data curation, supervision. **M. Hao:** Software, supervision. **D. Zou:** Software, supervision. **X. Chen:** Supervision. **L. Qiu:** Conceptualization, resources, supervision, funding acquisition, project administration, writing—review and editing. **G. An:** Conceptualization, resources, supervision, funding acquisition, project administration, writing—review and editing.

## Acknowledgments

This work was supported by National Natural Science Foundation of China (82270218, 81920108006, and U22A20291), and the Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences (2021-I2M-C&T-B-079, 2022-I2M-1-022, 2021-I2M-1-041), and the internal research funding of Shanghai Kuaixu Biotechnology Co., Ltd. The EasyM assay was conducted at Shanghai Kuaixu Biotechnology under the permission of Rapid Novor Inc. Medical writing support was provided by Shelley Batts, PhD.

## Note

Supplementary data for this article are available at Clinical Cancer Research Online (<http://clincancerres.aacrjournals.org/>).

Received September 19, 2023; revised November 10, 2023; accepted December 29, 2023; published first January 3, 2024.

## References

- Kumar SK, Rajkumar V, Kyle RA, van Duin M, Sonneveld P, Mateos MV, et al. Multiple myeloma. *Nat Rev Dis Primers* 2017;3:17046.
- van de Donk N, Pawlyn C, Yong KL. Multiple myeloma. *Lancet* 2021;397:410–27.
- Kaiser MF, Hall A, Walker K, Sherborne A, De Tute RM, Newnham N, et al. Daratumumab, cyclophosphamide, bortezomib, lenalidomide, and dexamethasone as induction and extended consolidation improves outcome in ultra-high-risk multiple myeloma. *J Clin Oncol* 2023;41:3945–55.
- Perrot A. How I treat frontline transplantation-eligible multiple myeloma. *Blood* 2022;139:2882–8.
- Rajkumar SV. Multiple myeloma: 2022 update on diagnosis, risk stratification, and management. *Am J Hematol* 2022;97:1086–107.
- Hauwel M, Matthes T. Minimal residual disease monitoring: the new standard for treatment evaluation of haematological malignancies? *Swiss Med Wkly* 2014;144:w13907.
- Bertamini L, D'Agostino M, Gay F. MRD assessment in multiple myeloma: progress and challenges. *Curr Hematol Malig Rep* 2021;16:162–71.
- Rodriguez-Otero P, Paiva B, San-Miguel JF. Roadmap to cure multiple myeloma. *Cancer Treat Rev* 2021;100:102284.
- Munshi NC, Avet-Loiseau H, Rawstron AC, Owen RG, Child JA, Thakurta A, et al. Association of minimal residual disease with superior survival outcomes in patients with multiple myeloma: a meta-analysis. *JAMA Oncol* 2017;3:28–35.
- Cavo M, San-Miguel J, Usmani SZ, Weisel K, Dimopoulos MA, Avet-Loiseau H, et al. Prognostic value of minimal residual disease negativity in myeloma: combined analysis of POLLUX, CASTOR, ALCYONE, and MAIA. *Blood* 2022;139:835–44.
- Munshi NC, Avet-Loiseau H, Anderson KC, Neri P, Paiva B, Samur M, et al. A large meta-analysis establishes the role of MRD negativity in long-term survival outcomes in patients with multiple myeloma. *Blood Adv* 2020;4:5988–99.
- Avet-Loiseau H, Ludwig H, Landgren O, Paiva B, Morris C, Yang H, et al. Minimal residual disease status as a surrogate endpoint for progression-free survival in newly diagnosed multiple myeloma studies: a meta-analysis. *Clin Lymphoma Myeloma Leuk* 2020;20:e30–e7.
- Li H, Li F, Zhou X, Mei J, Song P, An Z, et al. Achieving minimal residual disease-negative by multiparameter flow cytometry may ameliorate a poor prognosis in MM patients with high-risk cytogenetics: a retrospective single-center analysis. *Ann Hematol* 2019;98:1185–95.

14. Martinez-Lopez J, Wong SW, Shah N, Bahri N, Zhou K, Sheng Y, et al. Clinical value of measurable residual disease testing for assessing depth, duration, and direction of response in multiple myeloma. *Blood Adv* 2020;4: 3295–301.
15. Medina A, Puig N, Flores-Montero J, Jimenez C, Sarasquete ME, Garcia-Alvarez M, et al. Comparison of next-generation sequencing (NGS) and next-generation flow (NGF) for minimal residual disease (MRD) assessment in multiple myeloma. *Blood Cancer J* 2020;10:108.
16. Paiva B, Puig N, Cedena MT, Rosinol L, Cordon L, Vidriales MB, et al. Measurable residual disease by next-generation flow cytometry in multiple myeloma. *J Clin Oncol* 2020;38:784–92.
17. Oliva S, Bruinink DHO, Rihova L, D'Agostino M, Pantani L, Capra A, et al. Minimal residual disease assessment by multiparameter flow cytometry in transplant-eligible myeloma in the EMN02/HOVON 95 MM trial. *Blood Cancer J* 2021;11:106.
18. Flores-Montero J, Sanoja-Flores L, Paiva B, Puig N, García-Sánchez O, Böttcher S, et al. Next generation flow for highly sensitive and standardized detection of minimal residual disease in multiple myeloma. *Leukemia* 2017; 31:2094–103.
19. Martinez-Lopez J, Lahuerta JJ, Pepin F, González M, Barrio S, Ayala R, et al. Prognostic value of deep sequencing method for minimal residual disease detection in multiple myeloma. *Blood* 2014;123:3073–9.
20. Romano A, Palumbo GA, Parrinello NL, Conticello C, Martello M, Terragna C. Minimal residual disease assessment within the bone marrow of multiple myeloma: a review of caveats, clinical significance and future perspectives. *Front Oncol* 2019;9:699.
21. Kumar S, Paiva B, Anderson KC, Durie B, Landgren O, Moreau P, et al. International myeloma working group consensus criteria for response and minimal residual disease assessment in multiple myeloma. *Lancet Oncol* 2016;17:e328–e46.
22. Yang P, Xu W, Liang X, Yu S, Yi X, Liu M, et al. Dynamic monitoring of minimal residual disease in newly-diagnosed multiple myeloma. *Am J Hematol* 2022;98: E61–E4.
23. Diamond B, Korde N, Lesokhin AM, Smith EL, Shah U, Mailankody S, et al. Dynamics of minimal residual disease in patients with multiple myeloma on continuous lenalidomide maintenance: a single-arm, single-centre, phase 2 trial. *Lancet Haematol* 2021;8:e422–e32.
24. de Tute RM, Pawlyn C, Cairns DA, Davies FE, Menzies T, Rawstron A, et al. Minimal residual disease after autologous stem-cell transplant for patients with myeloma: prognostic significance and the impact of lenalidomide maintenance and molecular risk. *J Clin Oncol* 2022;40:2889–900.
25. Paiva B, Manrique I, Dimopoulos MA, Gay F, Min CK, Zweegman S, et al. MRD dynamics during maintenance for improved prognostication of 1280 patients with myeloma in the TOURMALINE-MM3 and -MM4 trials. *Blood* 2023;141: 579–91.
26. San-Miguel J, Avet-Loiseau H, Paiva B, Kumar S, Dimopoulos MA, Facon T, et al. Sustained minimal residual disease negativity in newly diagnosed multiple myeloma and the impact of daratumumab in MAIA and ALCYONE. *Blood* 2022;139:492–501.
27. Eveillard M, Rustad E, Roshal M, Zhang Y, Ciardiello A, Korde N, et al. Comparison of MALDI-TOF mass spectrometry analysis of peripheral blood and bone marrow-based flow cytometry for tracking measurable residual disease in patients with multiple myeloma. *Br J Haematol* 2020; 189:904–7.
28. Mills JR, Barnidge DR, Dispenzieri A, Murray DL. High sensitivity blood-based M-protein detection in sCR patients with multiple myeloma. *Blood Cancer J* 2017;7:e590.
29. Mai EK, Huhn S, Miah K, Poos AM, Scheid C, Weisel KC, et al. Implications and prognostic impact of mass spectrometry in patients with newly-diagnosed multiple myeloma. *Blood Cancer J* 2023;13:1.
30. Puig N, Contreras MT, Agullo C, Martinez-Lopez J, Oriol A, Blanchard MJ, et al. Mass spectrometry vs. immunofixation for treatment monitoring in multiple myeloma. *Blood Adv* 2022;6:3234–9.
31. Dispenzieri A, Krishnan A, Arendt B, Blackwell B, Wallace PK, Dasari S, et al. Mass-fix better predicts for PFS and OS than standard methods among multiple myeloma patients participating on the STAMINA trial (BMT CTN 0702 /07L). *Blood Cancer J* 2022;12:27.
32. Derman BA, Stefka AT, Jiang K, McIver A, Kubicki T, Jasielec JK, et al. Measurable residual disease assessed by mass spectrometry in peripheral blood in multiple myeloma in a phase II trial of carfilzomib, lenalidomide, dexamethasone and autologous stem cell transplantation. *Blood Cancer J* 2021;11:19.
33. Barnidge DR, Tschumper RC, Theis JD, Snyder MR, Jelinek DF, Katzmann JA, et al. Monitoring M-proteins in patients with multiple myeloma using heavy-chain variable region clonotypic peptides and LC-MS/MS. *J Proteome Res* 2014; 13:1905–10.
34. Langerhorst P, Noori S, Zajec M, De Rijke YB, Gloerich J, van Gool AJ, et al. Multiple myeloma minimal residual disease detection: Targeted mass spectrometry in blood vs next-generation sequencing in bone marrow. *Clin Chem* 2021; 67:1689–98.
35. Liyasova M, McDonald Z, Taylor P, Gorospe K, Xu X, Yao C, et al. A personalized mass spectrometry-based assay to monitor M-protein in patients with multiple myeloma (EasyM). *Clin Cancer Res* 2021;27:5028–37.
36. Remily-Wood ER, Benson K, Baz RC, Chen YA, Hussein M, Hartley-Brown MA, et al. Quantification of peptides from immunoglobulin constant and variable regions by LC-MRM MS for assessment of multiple myeloma patients. *Proteomics Clin Appl* 2014;8:783–95.
37. Santockyte R, Jin C, Pratt J, Ammar R, Desai K, Bolisetty M, et al. Sensitive multiple myeloma disease monitoring by mass spectrometry. *Blood Cancer J* 2021;11:78.
38. Murray DL, Puig N, Kristinsson S, Usmani SZ, Dispenzieri A, Bianchi G, et al. Mass spectrometry for the evaluation of monoclonal proteins in multiple myeloma and related disorders: an international myeloma working group mass spectrometry committee report. *Blood Cancer J* 2021;11:24.
39. Murray DL. Bringing mass spectrometry into the care of patients with multiple myeloma. *Int J Hematol* 2022;115:790–8.
40. Mills JR, Barnidge DR, Murray DL. Detecting monoclonal immunoglobulins in human serum using mass spectrometry. *Methods* 2015;81:56–65.
41. Thoren KL. Mass spectrometry methods for detecting monoclonal immunoglobulins in multiple myeloma minimal residual disease. *Semin Hematol* 2018;55: 41–3.
42. Giles HV, Wechalekar A, Pratt G. The potential role of mass spectrometry for the identification and monitoring of patients with plasma cell disorders: where are we now and which questions remain unanswered? *Br J Haematol* 2022;198: 641–53.
43. Chapman JR, Thoren KL. Tracking of low disease burden in multiple myeloma: using mass spectrometry assays in peripheral blood. *Best Pract Res Clin Haematol* 2020;33:101142.
44. Rajkumar SV, Dimopoulos MA, Palumbo A, Blade J, Merlini G, Mateos MV, et al. International myeloma working group updated criteria for the diagnosis of multiple myeloma. *Lancet Oncol* 2014;15:e538–48.
45. An G, Yan Y, Xu Y, Mao X, Liu J, Fan H, et al. Monitoring the cytogenetic architecture of minimal residual plasma cells indicates therapy-induced clonal selection in multiple myeloma. *Leukemia* 2020;34: 578–88.
46. D'Agostino M, Cairns DA, Lahuerta JJ, Wester R, Bertsch U, Waage A, et al. Second revision of the international staging system (R2-ISS) for overall survival in multiple myeloma: a European Myeloma Network (EMN) report within the HARMONY project. *J Clin Oncol* 2022;40: 3406–18.
47. Anderson KC, Auclair D, Adam SJ, Agarwal A, Anderson M, Avet-Loiseau H, et al. Minimal residual disease in myeloma: application for clinical care and new drug registration. *Clin Cancer Res* 2021;27:5195–212.
48. Wijnands C, Langerhorst P, Noori S, Keizer-Garritsen J, Wessels H, Gloerich J, et al. M-protein diagnostics in multiple myeloma patients using ultra-sensitive targeted mass spectrometry and an off-the-shelf calibrator. *Clin Chem Lab Med* 2023; doi:10.1515/cclm-2023-0781. [Epub ahead of print]
49. Paiva B, San-Miguel J, Avet-Loiseau H. MRD in multiple myeloma: does CR really matter? *Blood* 2022;140:2423–8.
50. Mathew A, Farooqui HH, Kumar L. Quality of life assessment & out-of-pocket expenditure in multiple myeloma: an observational study. *Indian J Med Res* 2021;154:823–32.
51. Abdallah N, Murray D, Dispenzieri A, Kapoor P, Gertz MA, Lacy MQ, et al. Tracking daratumumab clearance using mass spectrometry: implications on M protein monitoring and reusing daratumumab. *Leukemia* 2022; 36:1426–8.
52. Noori S, Verkleij CPM, Zajec M, Langerhorst P, Bosman PWC, de Rijke YB, et al. Monitoring the M-protein of multiple myeloma patients treated with a

combination of monoclonal antibodies: the laboratory solution to eliminate interference. *Clin Chem Lab Med* 2021;59:1963–71.

53. Kohlhagen MC, Mills JR, Willrich MAV, Dasari S, Dispensieri A, Murray DL. Clearing drug interferences in myeloma treatment using mass spectrometry. *Clin Biochem* 2021;92:61–6.
54. Moore LM, Cho S, Thoren KL. MALDI-TOF mass spectrometry distinguishes daratumumab from M-proteins. *Clin Chim Acta* 2019;492:91–4.
55. Sullivan PW, Salmon SE. Kinetics of tumor growth and regression in IgG multiple myeloma. *J Clin Invest* 1972;51:1697–708.
56. Paiva B, Manrique I, Rytlewski J, Campbell T, Kazanecki CC, Martin N, et al. Time-dependent prognostic value of serological and measurable residual disease assessments after idecabtagene vicleucel. *Blood Cancer Discov* 2023; 4:365–73.
57. Landgren O, Kazandjian D. MRD and plasma cell dynamics after CAR T-cell therapy in myeloma. *Blood Cancer Discov* 2023;4:346–8.
58. Abbosh C, Birkbak NJ, Swanton C. Early stage NSCLC — challenges to implementing ctDNA-based screening and MRD detection. *Nat Rev Clin Oncol* 2018;15:577–86.