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Abstract: One of the most frequently applied polymers in regenerative medicine is polystyrene (PS),
which is commonly used as a flat surface and requires surface modifications for cell culture study.
Here, hierarchical composite meshes were fabricated via electrospinning PS with nylon 6 (PA6) to
obtain enhanced cell proliferation, development, and integration with nondegradable polymer fibers.
The biomimetic approach of designed meshes was verified with a scanning electron microscope (SEM)
and MTS assay up to 7 days of cell culture. In particular, adding PA6 nanofibers changes the fibroblast
attachment to meshes and their development, which can be observed by cell flattening, filopodia
formation, and spreading. The proposed single-step manufacturing of meshes controlled the surface
properties and roughness of produced composites, allowing governing cell behavior. Within this
study, we show the alternative engineering of nondegradable meshes without post-treatment steps,
which can be used in various applications in regenerative medicine.
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1. Introduction

The vastly growing field of regenerative medicine is continuously looking for new materials and
novel ways to improve currently used materials for cell culture studies. Many studies showed the
importance of cells–materials interactions and how to modify the surface to enhance cell adhesion
and proliferation, which are responsible for tissue growth [1–3]. In regenerative medicine, one of the
most frequently used polymers is polystyrene (PS), which is hydrophobic and thus, often, its surface
needs modification by entering hydroxyl groups to achieve hydrophilic behavior [4]. This modified PS
is a so-called tissue culture polystyrene (TCPS) that enables easy cell attachment and proliferation.
Therefore, it is widely used in cell culture experiments in the form of a flat surface [5,6]. Films, which
are 2D structures, are mostly applied for in vitro tests, whereas for tissue engineering, 3D porous
constructs are more preferable for cell development. A variety of methods can be applied for 3D
meshes manufacturing [7]. Those produced via electrospinning have a structure with high porosity
and a high surface area to volume ratio [8,9]. The porosity can be controlled via fiber size governed by
electrospinning parameters, as well as the application of various collectors [10]. This technique allows
the fabrication of both random and aligned fibers for different applications with a wide range of sizes
from nano to micrometers, which influence different cell behavior on manufactured material [7,11–13].
Aligned fibers fabricated via electrospinning were applied to build the ligament tissue based on the
hierarchical structure [14]. A combination of nano with micro electrospun fibers in the scaffold was
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found to be a promising material for bone tissue regeneration [15]. A two-nozzle electrospinning
set-up [16] can be used to obtain composite structures [17] made of nano and microfibers [18].

Polyamides are commercially used as surgical struts [19], in many cardiovascular applications [20],
and also for the production of artificial tendons, ligaments, joints [21] and inguinal meshes [22]. PS with
nylon 6 (PA6) is known for its high mechanical strength, biocompatibility, flexibility, and similarity to the
peptides concerning amide bonds. Electrospun PA6 fibers were blended with other polymer fibers [23,24],
which resulted in increased cell proliferation [25,26] applied in the wound and burn treatment [27].
Additionally, the wetting behavior of PA6 fibers can be controlled via electrospinning itself [28,29], and
the wetting properties of a material are crucial factors in biomedical applications. Both the chemistry in
the meaning of hydrophobicity or hydrophilicity and roughness influence surface wettability [30,31].

PS is mostly used for in vitro studies [4,5,32], but without any surface modification, for example,
sliver negative ion implementation [33], protein absorption [34], or plasma treatment [35,36], does
not enhance cell development. PS fibers have been already combined with PA6 fibers [37] in
the fog collector’s meshes, comparing fiber diameter, roughness, contact angle, and the showing
mechanical properties of PS, PA6, and PS-PA6 mats of maximum stress 0.03, 1.24 and 0.07 MPa,
respectively [38]. Similar designs of nondegradable polymers have the potential to be used in vascular
tissue engineering [39] or hernia meshes [40,41]. Moreover, electrospinning was often used to produce
highly porous materials with controlled morphology and mechanical properties for vascular grafts [42].

Therefore, the goal of this study was to electrospin hierarchical constructs containing PS in
the form of microfibers with the addition of hydrophilic PA6 nanofibers to produce 3D structures.
To fabricate our meshes, we applied a two-nozzle system to electrospun both polymers at the same time,
aiming towards the biomimetic extracellular matrix (ECM) in terms of wetting and roughness [43].
Importantly, we showed that the chemical or oxidation modifications of hydrophobic PS modification
can be replaced by adding hydrophilic PA6 nanofibers into meshes. The engineered hierarchical and
fibers-based composite meshes can be applied in regenerative medicine to control cell behavior and to
firmly integrate with living tissue.

2. Materials and Methods

2.1. Solutions Preparation

Prior to the solution’s preparation, polymers were dried in an oven (SLN32STD,
POL-EKO-APARATURA sp.j., Wodzisław Śląski, Poland) for 3 h at T = 30 ◦C. PS (Sigma Aldrich,
Gillingham, UK, Mw = 350,000 g·mol−1) was dissolved in dimethylformamide (DMF, 99.8%, POCH,
Gliwice, Poland) at a concentration of 25 wt%, PA6 (BASF, Ludwigshafen, Germany, Mw = 24,000 g·mol−1)
was dissolved in formic acid (85%, POCH, Gliwice, Poland), and acetic acids (99.5%, POCH, Gliwice,
Poland) mixed in a volume ratio of 1:1 at 12 wt%. Both solutions were stirred at 500 rpm for 4 h at 20 ◦C
(IKA RCT basic, Staufen, Germany). The concentration of the polymer solution was adjusted according
to the molecular weight of the polymer to obtain suitable viscosity, allowing it to produce beadles’ fibers.

2.2. Electrospinning and Meshes Characterization

Fibers were electrospun using a set-up with the climate-controlled chamber (IME Technologies,
Waalre, The Netherlands) at T = 25 ◦C and H = 40%, then deposited on the slowly rotating (10 rpm)
collector covered with an Al foil; see the schematic in Figure 1. Three different fiber mats were
produced: PS, PA6, and PS-PA6. For the first two mats, only one nozzle was used. High voltage
with positive voltage polarity in the range of 13–20 kV was applied to the needle kept at a distance
of 15–22 cm from the collector, with all the other parameters listed in Table 1. The quality of the
electrospun fibers was analyzed with the scanning electron microscope (SEM, Merlin Gemini II, Zeiss,
Oberkochen, Germany) after the samples were sputtered with gold (Q150RS, Quorum Technologies,
Laughton, UK). The diameters of the fibers were measured using ImageJ (v1.51s, USA), and the average
fiber diameter was calculated from 100 measurements in the SEM images. Additionally, the contact
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angles were measured on the electrospun mats using deionized water. Pictures of water droplets
were taken with a Canon EOS 700D camera (Tokyo, Japan) with an EF-S 60 mm f/2.8 Macro USM
zoom lens 3 s after placing the 3-µL droplets on the mats. The contact angles were measured using
MB-Ruler (version 5.3, Germany) based on the sessile drop method and the mean value was calculated
as the average of 10 droplets. The roughness of the electrospun samples was analyzed in our previous
reports [38], where a laser microscope (Olympus OLS4000, Tokyo, Japan) was used. Prior to the
roughness analysis, the electrospun samples were deposited on glass slides and covered with the
5-nm gold layer. Ten measurements per sample type were performed, with the investigated area of
646 × 646 µm2 for PS and PS-PA6 composites, and 130 × 130 µm2 for PA6.
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Figure 1. The electrospinning set-up consisting of two nozzles to produce polystyrene (PS) and PS
with nylon 6 (PA6) fibers at the same time to obtain the composite meshes.

Table 1. Electrospinning parameters of PS, PA6, and with two nozzles spinning at the same time to
produce PS-PA6 composite meshes.

Polymer Voltage Applied
to the Needle (kV)

Voltage Applied to the
Collector (kV)

Distance Between Needle
and Collector (cm)

Flow Rate
(mL·h−1)

PS 13 0 15 1.5
PA6 18 −2 15 0.2

PS-PA6 20 0 22/17 1.8/0.1

2.3. Cell Culture Studies

NIH 3T3 murine fibroblast cells (Sigma Aldrich, Gillingham, UK) were used for proliferation and
adhesion assay on the meshes sterilized with UV light. Cells were seeded on PS, PA6, and PS-PA6
composite fibers, and on the bottom of a 24-well plate (TCPS) as a reference, with a concentration
of 2 × 104 cells per sample. Samples with cells were incubated at H = 90%, T = 37 ◦C, and CO2 set
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to 5% up to 7 days. Cell proliferation and adhesion assays were performed using MTS (CellTiter
96®® AQueous One Solution Cell Proliferation Assay, MTS, Promega, Madison, WI, USA). The cell
morphology was examined with SEM. NIH 3T3 cells were cultured in Dulbecco’s Modified Eagle
Medium (DMEM with 4.5 g/L D-Glucose, Gibco, Paisley, UK), supplemented with 10% of Fetal Bovine
Serum (FBS, Sigma Aldrich, St. Louis, MO, USA), 1% of L-Glutamine solution (Sigma Aldrich, St. Louis,
MO, USA), 2% of antibiotics (Penicillin-Streptomycin, Sigma Aldrich, St. Louis, MO, USA), and 1%
of amino acids (Mem non-essential Amino Acid solution 100x, Sigma Aldrich, St. Louis, MO, USA).
The medium was changed three times a week.

2.3.1. Adhesion Test

Adhesion assay was performed 1.5, 2, and 4 h after cell seeding. Samples were washed with PBS
prior to MTS reagent, added to rinse unattached cells. Next, 80 µL MTS reagent and 400 µL of fresh cell
culture medium were added to each sample and reference. It was incubated for 4 h at 37 ◦C, H = 90%
and a CO2 concentration of 5%. After that time, 100 µL of the reaction solution from every sample was
transferred to a 96-well plate in triplicates. The absorbance at a wavelength of 490 nm was measured
using a Microplate Reader (LT-4000, Labtech, Aylesbury, UK).

2.3.2. MTS Proliferation Assay

Proliferation was assessed after 1, 3, and 7 days of fibroblast culture. After each time point, the
culture medium was removed, and meshes were transferred to the new 24-well plate. Then, 80 µL of
MTS reagent and 400 µL of cell culture medium were added, and assay was proceeded as described
above. For proliferation assessment with SEM, after the defined time of 1, 3, and 7 days, cell culture
samples were transferred to the new 24-well plate and rinsed 3 times with PBS. Next, they were
fixed with a 2.5% formaldehyde solution for 2 h at 4 ◦C. The solution was removed and the samples
were again rinsed with PBS solution, then dehydrated using a series of ethanol solutions with the
concentrations: 50%, 70%, 96%, and 99.9%. The meshes were left to dry under the hood. Before the
SEM observation, the samples were coated with a 5 nm layer of Au.

2.3.3. Statistical Analyses

The statistical analyses were performed using OriginPro (v2019 SR2, OriginLab, USA). Analysis
of variance (ANOVA) with a Tukey test was performed with significance at p < 0.02. For fiber diameter
and contact angle measurement, errors are based on standard deviation calculation.

3. Results and Discussion

3.1. Fibers Characterization

Prior to the cell culture study, the quality and morphology of the produced electrospun fibers
were verified with SEM; see Figure 2. The average fiber diameter for PS was 4.62 ± 0.3 µm (Figure 2C)
and 0.101 ± 0.018 µm for PA6 (Figure 2D). The size of PS fibers was similar in the fibrous composite.
However, the average fiber diameter of PA6 fibers was increased to 0.145 ± 0.030 µm, due to the slight
adjustment of the electrospinning parameters; see Table 1 and Figure 2G,H, as previously described [44].
The water contact angle measurement confirmed PA6 hydrophilicity (45.9 ± 4.9◦) and PS (139.7 ± 4.7◦)
hydrophobicity and also showed the hydrophobic character of produced composite (132.8 ± 3.5◦); see
Figure 2. According to the previous study, the larger the average fiber diameter, the higher the surface
roughness (Ra), which reached 15.535 ± 2.197 µm for PS, 0.205 ± 0.222 µm for PA6, and 8.848 ± 0.960 µm
for PS-PA6 [38]. Additionally, Ra strongly influences the wetting behavior of electrospun membranes [31].
Here, the hydrophobic character was obtained for PS-PA6 composite mesh mainly due to the roughness
effect [44], and the water droplets still kept the contact points with PS fibers. The presence of PS and
PA6 fibers was already confirmed by the X-ray photoelectron microscopy analysis (XPS) reported in our
studies previously [38], where also the roughness and water contact angle were investigated according
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to PA6 content. Based on the reported data in [38], the increased PA6 fraction of nanofibers that usually
forms a compact layer of membrane lowers the surface roughness once combined with PS microfibers.
The increase in PA6 nanofibers fraction, controlled with a longer electrospinning time, decreased the
roughness and water contact angle only slightly. Importantly, the PA6 meshes are characterized by
relatively small pore sizes of 1.7 µm, and a very high porosity of 96% in meshes [45]. In addition to the
morphology, the mechanical properties of manufactured PS-PA6 hierarchical composite meshes were
also investigated in various configurations, showing higher tensile stress for PA6 (1.24 MPa) than for PS
(0.3 MPa) fibers. The incorporation of PA6 fibers into PS meshes significantly improved the mechanical
properties of composite meshes reaching 0.6 MPa [38].
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(F) PS-PA6 composite with the higher magnification showing a few PA6 nanofibers on the individual
PS microfiber. The fiber diameter distribution showed in histograms for (C) -PS; (D) -PA6, (G) -PS in
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3.2. Cell Culture Study

The SEM micrographs of fibroblast on electrospun fibers and composites shown in Figure 3
indicate a clear difference in cell behavior on the three types of tested meshes. After one day of
incubation, cells started to attach to the fibers, but still kept spherical shapes (Figure 3A,D,G). The cells
on the PS mats did not flatten even after 7 days of culturing (Figure 3C), in contrast to PA6 nanofibers
and PS-PA6 composite meshes, where cells clearly started already spreading on the fibers after the third
day. The cells’ attachment and spreading prove their integration with the mesh [15,46]. Importantly, by
incorporating PA6 nanofibers to PS fibers, we decreased the surface roughness of meshes significantly,
as the PA6 fibers were 100 nm in diameter [44]. Fibroblasts prefer a lower surface roughness [43,47] for
spreading and migration [48]. Additionally, the hydrophilic character of PA6 fibers leads to evident cell
spreading and attachment, causing further enhanced cell development [30,31]. The SEM observations,
shown in Figure 3 prove that PS-PA6 composite meshes were enhancing cell flattening and proliferation.
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Figure 3. SEM micrographs showing fibroblasts growth on electrospun fiber after the 1st, 3rd,
and 7th day in cell culture on (A–C) PS meshes, (D–F) PA6 meshes and (G–I) PS-PA6 composite
meshes, respectively.

The surface properties of meshes are essential for cell attachment. In the first few hours, the
process of cell anchoring already begins, leading to further cell development and proliferation [49–51].
The adhesion test performed during the first 4 h of cell culture indicates no significant difference in
cell attachment between all fibrous meshes and TCPS, see Figure 4A. Interestingly, cell geometry and
attachment to PS, PA6, and PS-PA6 composite varied. In Figure 5, we show the SEM images focused on
cell filopodia anchoring to fibers. Additionally, the shape of the created filopodia and the cell flattening
were different between the three types of samples. The cells kept the round shape on PS fibers (Figure 5A)
and PA6 nanofibers, but PS-PA6 composites were flattened (Figure 5B,C). Moreover, the changes in
filopodia’s morphology defined totally different cells spreading, which is crucial for tissue regeneration
and biomaterials integration with the living system. The further proliferation assay in Figure 4B shows
no differences between materials after 1 day of cell culture. However, after the third day, the absorbance
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values started to increase for PA6, especially for the PS-PA6 composite, which continued up to the
seventh day. The MTS test for PS meshes was close to constant over one-week of cell culture, indicating
that the cell proliferation was only kept at a minimal level. Importantly, after 7 days, the number of
cells on PS-PA6 composite meshes was greater than on any other tested samples and TCPS (Figure 4B).
Even though the statistical analysis showed differences between materials after the same period, SEM
images of cells also have to be taken into consideration to conclude which material has the most suitable
properties for cell proliferation. It was previously shown that decreasing the surface roughness and
hydrophobicity enhances cell proliferation [52]. In our study, the incorporation of PA6 nano-sized fibers
into PS fibers decreased the roughness by half Ra, and only slightly decreased the water contact angle
values; see Figure 2. However, cell proliferation was visibly higher, as presented in Figure 4B. Indeed,
the decreased Ra and hydrophilic character of PA6 fibers enhanced cell proliferation. As Ansleme et al.
described, the short-term adhesion and proliferation were more influenced by surface chemistry, while
surface roughness affects long-term behavior [31]. We noticed a better adhesion for more hydrophilic
materials, such as PA6 meshes or TCPS. The PS-PA6 composite meshes were characterized by a water
contact angle above 130◦, thus showing that hydrophobic behavior does not have a straightening effect.
Noticeably, by adding PA6 to meshes, we also changed the surface chemistry by including the oxygen
groups that were eventually detected by XPS [38]. This type of surface with increased oxygen content
is preferable for cell adhesion [31]. Indeed, after one week of cell culture, the Ra decreased by half
for PS-PA6 composite meshes in comparison to PS showed the highest value of absorbance for cell
proliferation. Interestingly, the size of PS fibers in order of magnitude was higher than for PA6, with
increased cell penetration into meshes and growth inside them, whereas in just PA6 meshes, the small
distances between nanofibers were limiting cells to the top surface of the samples. The increase of
PA6 fraction decrees the spacing between fibers as the smaller fiber diameter in electrospun random
meshes cause the smaller distance between fibers [53]. The fiber diameters also control the roughness of
meshes [44]. Therefore, the content of PA6 nanofibers was selected not to limit the cell’s integration with
electrospun meshes. We showed previously on PMMA nanofibers, microfibers, ribbons, and films how
the cell morphology is changing according to the surface topography. A diameter of fiber exceeding
3.5 µm is required to provide enough spacing for cell migration into the 3D meshes and enhance the
filopodia attachments to fibers underneath [53]. The increased fraction of nanofibers facilitates more
cell spreading on the top of the surface in comparison to the microfibers; therefore, in our PS-PA6
hierarchical scaffolds, the layering electrospinning providing a higher number of PA6 fibers were not
investigated in vitro in this study.
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Figure 4. Cell culture study on electrospun PS, PA6 and PS-PA6 composite meshes showing (A) the
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bars are based on standard deviation.
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mechanical properties [37] and roughness of meshes [38], thus designing the environment for 
desired cell types [30,39]. The proposed combination of polymers and its structure is leading to 
multiple application strategies of nondegradable meshes supporting tissue in regenerative medicine. 

In summary, we introduced a novel way to produce PS-PA6 composite meshes in a single-step 
manufacturing method to enhance cell proliferation and development. These nondegradable 
polymer composite meshes are able to create a favorable environment for cells reminding ECM with 
a perspective use in regenerative medicine and for in vitro studies of disease models as 3D 
constructs. 
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Figure 5. SEM micrographs focused on cell–fiber attachment after the 3rd day of cell culture on (A) PS
microfibers; (B) PA6 nanofibers and (C) hierarchical PS-PA6 composite meshes.

4. Conclusions

Within this study, we were able to fabricate a hierarchically structured composite consisting
of PS microfibers and PA6 nanofibers using a two-nozzle electrospinning set-up in the single-step
manufacturing method. We showed that controlling the surface morphology, chemistry, and roughness
of composite meshes guided fibroblasts behavior and development. The filopodia formation and
their further proliferation were affected by the size of fibers. The micronized PS fibers allowed
deeper penetration of cells, allowing enhanced material integration with the living systems. Moreover,
nanosized PA6 fibers with hydrophilic wetting behavior by itself promoted cell development and
spreading, despite the fact that the obtained composites were, in general, hydrophobic. Manipulating
the rate of PA6 nanofibers in the PS network of fibers allows us to tailor mechanical properties [37] and
roughness of meshes [38], thus designing the environment for desired cell types [30,39]. The proposed
combination of polymers and its structure is leading to multiple application strategies of nondegradable
meshes supporting tissue in regenerative medicine.

In summary, we introduced a novel way to produce PS-PA6 composite meshes in a single-step
manufacturing method to enhance cell proliferation and development. These nondegradable polymer
composite meshes are able to create a favorable environment for cells reminding ECM with a perspective
use in regenerative medicine and for in vitro studies of disease models as 3D constructs.
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Electrospun PMMA Nanofibers, Microfibers, Ribbons, and Films: A Microscopy Study. Bioengineering 2019,
6, 41. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1021/am300235r
http://dx.doi.org/10.1111/joa.12257
http://dx.doi.org/10.1089/107632702320934191
http://dx.doi.org/10.1039/c1sm05943b
http://dx.doi.org/10.1088/1748-6041/4/4/045002
http://dx.doi.org/10.1016/j.colsurfb.2013.08.031
http://dx.doi.org/10.1089/ten.2006.0205
http://www.ncbi.nlm.nih.gov/pubmed/17518604
http://dx.doi.org/10.1002/jbm.b.30484
http://www.ncbi.nlm.nih.gov/pubmed/16362963
http://dx.doi.org/10.3390/bioengineering6020041
http://www.ncbi.nlm.nih.gov/pubmed/31075876
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Solutions Preparation 
	Electrospinning and Meshes Characterization 
	Cell Culture Studies 
	Adhesion Test 
	MTS Proliferation Assay 
	Statistical Analyses 


	Results and Discussion 
	Fibers Characterization 
	Cell Culture Study 

	Conclusions 
	References

