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Each year in the United States, thousands of cases of sudden and unexpected deaths of infants, children, and young adults
are assigned an undetermined cause of death after postmortem investigation and autopsy. Heritable genetic variants have
been suggested as the cause of up to a third of sudden death (SD) cases. Elucidation of the genetic variants involved in SD
cases is important to not only help establish cause and manner of death of these individuals, but to also aid in determining
whether familial genetic testing should be considered. Previously, these types of postmortem screenings have not been a
feasible option for most county medical examiners’ and coroners’ offices. We sequenced full exons of é4 genes associated
with SD in the largest known cohort (351) of infant and young SD decedents using massively parallel sequencing at <$600
per sample. Genetic variants were assessed through literature review and clinical evaluation by a multidisciplinary consor-
tium of experts. Thirteen individuals (3.7%), eight infants (2.8% of those <I yr of age) and five children/young adults
(7.0% of those >1 yr of age), were found to have a reportable genetic variant contributing to SD. These percentages rep-
resent an estimate lower than those previously reported. Overall yields and results likely vary between studies due to dif-
ferences in evaluation techniques and reporting. Additionally, we recommend ongoing assessment of data, including
nonreported novel variants, as technology and literature continually advance. This study demonstrates a strategy to imple-

ment molecular autopsies in medicolegal investigations of young SD decedents.

[Supplemental material is available for this article.]

Each year in the United States, thousands of infants, children,
and young adults die suddenly and unexpectedly with no identifi-
able cause of death. After extensive medicolegal investigation,
including autopsy, death certificates variably list cause of death
as undetermined, Sudden Infant Death Syndrome (SIDS) (<1 yr
old), or Sudden Unexplained Death (SUD) (from 1 to <40 yr old)
(Liberthson 1996; Matthews and MacDorman 2013). The biologi-
cal mechanisms leading to sudden death (SD) of the young are of-
ten unclear. Several exogenous and intrinsic risk factors have been
suggested in the pathophysiology of SIDS and SUD (Shephard and
Semsarian 2009; Trachtenberg et al. 2012); however, research sug-
gests specific genetic variations underlie the susceptibility of at
least some of these individuals to SD (Van Norstrand and Acker-
man 2010).

For young people, sudden unexpected death is most often
suspected to be of cardiac origin, or sudden cardiac death (SCD).
SCD can be described as a natural death caused by sudden arrhyth-
mia often occurring without previous warning or symptoms
(Shephard and Semsarian 2009). In many of these cases, structural
abnormalities of the heart, cardiomyopathies, are evident at au-
topsy. Cardiomyopathies, such as hypertrophic cardiomyopathy
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and dilated cardiomyopathy, have been associated with variants
in genes that encode cardiac structural proteins. In cases of SD in
which no structural cardiovascular or other anatomical abnormal-
ities are observed or are equivocal at autopsy, a fatal arrhythmo-
genic disorder may be suspected because of clinical, historical, or
circumstantial information; however, due to a negative autopsy
exam, the cause of death is left as undetermined (Shephard and
Semsarian 2009).

Arrhythmogenic disorders such as Long QT Syndrome
(LQTS), Short QT Syndrome (SQTS), Brugada Syndrome, and
Catecholoaminergic Polymorphic Ventricular Tachycardia are
characterized by electrical disturbances in heart function, unac-
companied by anatomic evidence. These disorders, also known
as channelopathies, are linked to putative pathogenic variants in
the genes that encode for cardiac ion channels or ion channel-as-
sociated proteins (Tester and Ackerman 2009). Up to 15% of SIDS
and 35% of SUD cases have been estimated to be due to genetic
variants in cardiac channel-associated genes (Ackerman 2005;
Ackerman et al. 2011; Tester et al. 2012).
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Postmortem genetic screening in sudden death

In many case reports and clinical evaluations in which genet-
ic variants or inherited cardiac disease have been associated with a
sudden death, some victims are speculated to have de novo path-
ological variants with SD as the sentinel event (Klaver et al.
2011; Tester et al. 2012; Giudici et al. 2014). However, a variety
of reports indicate that many of the known genetic variants under-
lying SCD due to either cardiomyopathy or channelopathy are au-
tosomal dominant and have a 50% chance of inheritance (Shim et
al. 2005; Shephard and Semsarian 2009). Therefore, elucidation of
the genetic variants involved in SD cases is important to not only
help establish cause and manner of death of these individuals, but
to also aid in determining whether familial genetic testing should
be considered. Postmortem genetic screening has been recom-
mended as a new best practice standard in some autopsy-negative
cases. However, postmortem genetic screening has not been cost-
effective due to low yields (Skinner et al. 2008; Basso et al. 2010;
Ackerman etal. 2011). An international heart rhythm expert panel
further recommended mutation-specific genetic testing and clini-
cal screenings for family members of some sudden death dece-
dents (Ackerman et al. 2011). Due to technological and financial
challenges, postmortem genetic screening tools are not currently
a feasible option in most medical examiners’ and coroners’ offices
as a standard autopsy procedure.

Commercial genotyping tests are available to identify several
genetic variants putatively linked to SD. Labor-intensive Sanger se-
quencing methods for the identification of disease-specific genetic
variants can cost $5400 or more per case to sequence fewer than 20
genes (Bai et al. 2009). Faster and more comprehensive whole-ge-
nome or exon-specific analyses using next-generation sequencing
(NGS) techniques are 20-fold less expensive than Sanger sequenc-
ing methods; however, they are not yet economically feasible for
routine use by public service agencies (Loporcaro et al. 2014; https
://[www.genome.gov/27541954/dna-sequencing-costs-data/).

The purpose of this study was to implement a cost-effective
molecular autopsy at the Harris County Institute of Forensic Sci-
ences (Houston, Texas), the county medical examiner’s office for
Harris County, Texas, to investigate sudden unexplained deaths
of infants and young people. A cohort of 351 young individuals
who died of sudden and mostly unexplained causes was tested
for determination of cause of death. Using a custom gene target
exon capture array, 64 genes associated with SD were assessed by
NGS technology (Table 1; Supplemental Table S1). A crucially im-
portant and unique aspect of this approach was the development
of amultidisciplinary and multi-institutional panel of experts with
expertise in clinical and basic science cardiology, genetics, and
pathology to review each case for putatively significant genetic
variants. The panel assessed each variant in light of the existing lit-

Table 1. Targeted genes

erature for biochemical and functional mutational analysis,
known allele frequency, and case history to determine the possible
contribution of each sequence variant in SD. Genetic counselors
were also enlisted to review the variants thus identified and to be
available for dissemination of results to surviving family members
in an ethical and accurate manner.

To our knowledge, this study is the largest cohort to date
screened by NGS targeted to genes known to underlie SD and per-
formed as part of medicolegal investigations of sudden unex-
plained death cases. The use of a multidisciplinary consortium to
assess likelihood of relevance for each variant can serve as a model
for other death investigators considering adopting molecular test-
ing. At ~$600 per case, this low-cost SD molecular autopsy has
the potential to aid in determination of cause and manner of death
in many unexplained cases in Harris County, Texas, each year.
Moreover, this approach can also be adopted by other medical ex-
aminer offices as a tool to initiate molecular autopsy programs as
NGS becomes more widely available and the field continually
evolves.

Results

Cohort demographics

Harris County, Texas, is the third most populous county in the
United States (United States Census Bureau) (http://quickfacts.
census.gov/qfd/states/48/48201.html). As of the 2010 national
census, the primary racial/ethnic groups within the county in-
clude Hispanic or Latino (41.6%), non-Hispanic or Latino White
(31.9%), non-Hispanic Black or African American (19.5%), and
Asian (6.8%). In comparison, the demographic characteristics of
the Harris County Institute of Forensic Sciences SIDS/SUD cohort
selected for this study are described in Table 2. The majority of de-
cedents in the cohort were under 1 yr of age (80.7 %). Within this
group, the average age was 2.8 mo old (+2.2 mo) (Fig. 1) with 1.5-
and 1.8-fold more black infants than Hispanic and White infants,
respectively (Table 2). SUD decedents ranged in age from 1 to 37 yr
with an average age of 17.6 yr old (¥12.1 yr) (Fig. 1). Ethnicity of
the older age group was similar for the three primary racial/ethnic
groups of Harris County, Texas. The incidence of SD in males was
1.5 times greater than females in both age groups.

Genetic variants

Of the 429 individuals initially selected for testing (Table 2), 351
(280 infants; 71 >1 yr of age) had DNA of sufficient quality and
quantity for sequencing. After primary quality data analysis, a total
of 9318 exonic nonsynonymous or insertion/deletion (indel)

Cardiac channelopathy-/

Noncardiac-associated

arrhythmia-associated genes Cardiomyopathy-associated genes genes

AKAP9 KCNET RYR2 ACTCI LDB3 RAF1 ACADM KCNQ2
ALG10B KCNE2 SCNT0A ANKRD1 LMNA TCAP IL10 KCNQ3
ANK2 KCNE3 SCN1B Dsc2 MYBPC3 TGFB3 ILTA PYGM
CACNAITC KCNH2 SCN3B DSG2 MYH7 TMEM42 IL1B SCN2A
CACNB2 KCNj2 SCN4B DspP MYH7B TNNCT L6 SL37A4
CASQ2 KCNQ1 SCN3A FXN myL2 TNNI3 KCNAT SLC6A4
CAV3 NOSTAP SNTA1 GLA MYL3 TNNT2 TNF
GPDI1L JPH2 PKP2 TPM1

JUP PLN VCL

LAMP2 PRKAG2
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Table 2. Cohort demographics

Age group 0-12 mo (n=346) 1-40 yr (n=83)

Characteristic Number of cases, (% of n) Characteristic Number of cases, (% of n)
Sex Male 208 (60.1%) Male 52 (62.7%)

Female 138 (39.9%) Female 31 (37.3%)
Ethnicity (race/Hispanic origin)? Black 155 (45.9%) Black 27 (30.3%)

Hispanic 101 (29.7%) Hispanic 27 (30.3%)

White 86 (25.3%) White 22 (24.7%)

Asian 4(1.2%) Asian 2 (2.2%)

Other 0 Other 5 (5.6%)

@Race is of non-Hispanic origin unless otherwise indicated.

variants from the GRCh37 human reference genome were
observed in 348 individuals prior to any filtering. Tolerated com-
mon polymorphisms or variants with no reference data or litera-
ture were filtered out (Fig. 2). Of the remaining 1088 total
variants, the same genetic variants occurred in multiple cases
(Supplemental Table S2). In total, 77 unique single-nucleotide var-
iants (SNVs) were observed in 29 genes. These variants, plus one
indel, were further assessed for clinical review. Thirteen decedents
were found to have reportable (defined as likely contributing to the
cause of death) pathogenic genetic variants (Tables 3, 4). One indi-
vidual had two genetic variants likely leading to SD. These cases
represent 3.7% of the total cohort that was successfully sequenced.
Within the specific age groups, 2.8% of the infants (<1 yr of age)
and 7.0% of the children/young adults were found to have patho-
genic variants associated with cause of death. The reportable vari-
ants were all single-base changes. Additionally, of the 64 genes in
the 351 individuals tested, a total of nine genes were found to have
pathogenic variants in the 13 reported decedents. Genetic variants
in SCN3B and MYL2 were observed twice in these individuals, and
variants in SCN5A were observed four times.

Discussion

The sudden and unexpected death of an infant or young family
member has devastating effects on the family and community
(Jind et al. 2010). These effects are compounded by the lack of a de-
finitive cause of death. Medical examiners have the legal responsi-
bility to identify the cause of death. Underlying genetic variants
may be suspected; however, advance-

ments in genetic sequencing have only A

of genes tested (Wong and Behr 2014). These types of assessments
have also been cost prohibitive for use in medicolegal investiga-
tions. The work presented here highlights a transition between re-
search and specific clinical cases to implementation of the
molecular autopsy as a cost-effective standard of care in postmor-
tem examinations. By targeting selected exons, cost was kept be-
low $600 per sample (Supplemental Table S3). These costs are
substantially lower than other available options and are economi-
cally feasible for autopsies.

An unexpected finding of this study is the low percentage of
individuals found to have a pathogenic variant compared to previ-
ous reports (Ackerman 2005; Ackerman et al. 2011; Tester et al.
2012). Of the total sequenced cohort, <4.0% of unexpected deaths
were associated with a pathogenic genetic variant, whereas pub-
lished reports have estimated up to 15% of SIDS and 35% of SUD
deaths were related to specific genetic variants. Overall yield likely
varies between studies due to differences in multiple evaluation
techniques, such as (1) cohort composition, (2) genetic screening
method, or (3) interpretation of genetic testing results.

For this study, a large cohort was selected based on autopsy
findings. Cohort demographics were consistent with those ob-
served previously, such as increased incidences of SD reported
for males, higher SIDS rates for non-Hispanic black infants com-
pared to Hispanic and non-Hispanic white infants, and the major-
ity of unexpected infant deaths occurred in the youngest of the
group (93.5% under 6 mo of age) (Shen et al. 1995; Matthews
and MacDorman 2013; Wang et al. 2014). A larger cohort allows
for an accurate estimate of the rate of SD of the young in a

recently opened the door to accessible ge- 1007 207
netic screenings for victims of SIDS/SUD. ° 80 °
No less important is the ability to reduce g 5 g s
the risk of potential criminal investiga- Eg 601 oo
tions of those families affected by SDs ;5‘3 404 ;E ]
of infants or young people. 'g v ':E: by 5]
Molecular autopsies in cases of SD = 20 =
are not a new idea (Tester and Ackerman ol ol
2006). Genetic screenings performed as 01 2 3 456 7 8 91011 12 0 5 10 15 20 25 30 35 40

part of the epidemiological assessment
in SD cases have been recommended
by panels of experts for nearly a decade
(Skinner et al. 2008; Basso et al. 2010;
Ackerman et al. 2011). However, previ-
ous studies have been primarily restricted
to small cohorts with a limited number

Age (Months)

Age (Years)

Figure 1. Sudden death age distribution in the Harris County Institute of Forensic Sciences SIDS/SUD
cohort (2004-2012). (A) Age distribution of SIDS victims (0-12 mo, n=346). The majority of the unex-
plained death decedents in the cohort were under the age of 1. Distribution of age was unimodal, skewed
right, with the highest frequency of death occurring at 2 mo old (95% ClI: 2.6-3.0 mo; bin range = 1 mo).
(B) Age distribution of SUD victims (1-40 yr, n=83). The distribution of age was random for unexplained
death decedents, with the highest frequency of occurrence in young children between 1 and 2 yr of age
(95% CI: 15.0-20.3 yr; bin range =1 yr). Note the fivefold y-axis scale difference between A and B.
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351 Individuals sequenced
(~375,000 nucleotide bases / case)

'

9,318 variants
Exonic non-synonymous and indel variants detected

3 3

1,088 variants
(=78 unique variants in 29 genes)

Minor allele frequency
assessment

8,230 variants
Benign or tolerated variants
Common polymorphisms
VUS variants

Biochemical phenotype
evaluation

Sanger sequence
confirmation

UORDA| JUBLIDA

Inheritance pattern
evaluation

Literature and variant
database review

I Clinical case review I

14 Reportable pathogenic genetic variants in
13 individuals

Figure 2. Workflow of genetic variant screening. All quality annotated
SNVs and indel variants were filtered in order to classify variants as patho-
genic in SD.

heterogeneous population that is attributable to pathogenic muta-
tions. Therefore, differences between these findings and previous
reports concerning the prevalence of genetic variants contributing
to SD is not likely due to intrinsic differences in the cohort evalu-
ated in this study. However, the evaluation of candidate SD cases
for genetic screening may differ between medical examiner offices,
which would alter the initial size and makeup of cohorts. A more
restrictive cohort selection, such as phenotype- or familial histo-
ry-guided testing may increase the overall likelihood of a positive
genetic test result. On the other hand, a less restrictive inclusion
criterion with an equally critical genetic evaluation, as utilized in
this study, could increase the number of decedents evaluated
and decrease the overall percentage of a positive finding. These nu-
ances need to be weighed carefully in discerning the best course of
action in development of molecular autopsies for use in death in-
vestigations, as they may affect the cost and/or overall yield.

In regard to the genetic screening method, we tested a panel
of 64 genes associated with multiple diseases linked to SD both
from cardiac and noncardiac causes. Others have reported se-

quence results for disease-specific genetic panels with smaller co-
horts or full exome analysis of specific individuals (Ackerman
et al. 2004; Tester et al. 2005, 2012; Papadakis et al. 2013; Brion
et al. 2014). In this study, we incorporated many genes previously
included in separate disease-specific assays into one comprehen-
sive genetic screening panel. A drawback to targeting specific genes
is that we are limited in the breadth of exome coverage. By not
examining the full exome or genome, we likely miss potentially
deleterious genetic variants in nontargeted coding or regulatory
intronic regions. Additionally, capture probes included target ex-
ons and 35-50 bases of flanking UTRs. These UTRs can exhibit a
decrease in selective pressure causing a potential decrease in cover-
age and variant discovery. These limitations can be further compli-
cated in forensic cases in which there are instances of nonpristine
samples. However, this study yielded a moderate to high coverage,
and by using a gene targeting approach, we are able to generate a
more cost-effective molecular autopsy with relatively high cover-
age without the burden of massive data sets.

Variations in total yields of pathogenic genetic variants may
also be attributed to differences in variant classification. The deci-
sion to include or exclude a variant as reportable as contributing
to cause of death was based on strength of literature reports, func-
tional studies, and population frequency data at the time of review.
How this data is weighed and the overarching goal of a study may
differ among laboratories, resulting in variability of the total yield
of genetic variants. This total yield may increase using a different
variant classification system depending on investigative criteria.
Because the goal of this study was to describe a feasible manner
in which to identify pathogenic variants as part of death investiga-
tion, a drawback to this approach is the limitation on the discovery
of novel variants. The identification of novel variants in postmor-
tem genetic screening of large heterogeneous cohorts has been de-
scribed elsewhere (Wang et al. 2014), and although necessary in
the sudden death field, it was beyond the scope of this study.
However, it is also important to note that evaluation of putative
pathogenic genetic variants reflects a snapshot of current literature
and data. Variability in the assignment of pathogenicity has been
observed in multiple laboratories and is a limitation of genetic
screening studies (Van Driest et al. 2016). As technology, literature,
and screening methods evolve, data should be regularly reassessed
as novel variants, “variants of unknown significance” (VUS), or
variants with conflicting data may become reportable, depending
on investigative criteria.

In this report, putative lethal variants were reviewed by certi-
fied molecular geneticists using ACMG standards to determine
clinical significance on a case-by-case basis. A VUS, in which there

Table 3. Infant (0-12 mo) cohort with genetic variants contributing to sudden death
Nucleotide Amino acid Listed cause of deathP/additional
Case Age Sex Ethnicity® Gene(s) change(s) change(s) clinical comments
1 1 mo M Black SCN3B G328A viiol Undetermined/cosleeping
2 2mo F Black ANK2 C5461T R182TW (R1788W) Undetermined/cosleeping
3 3 mo M White SCN5A G1844A G615E SIDS
4 3 mo M White MyYL2 C141A N47K SIDS/history of apneic episodes
5 5 mo M Hispanic White SCNSA G80A R27H SIDS
6 5 mo M Hispanic White RYR2 C3320T T1107M SIDS
7 5 mo F Black SCNSA C5549T S1904L SIDS/history of heart murmur
8 6 mo M Hispanic White GPDTL C839T A280V Undetermined/unsafe sleeping environment;

history of acute respiratory failure

Ethnicity refers to observed race and Hispanic origin. Race is of non-Hispanic origin unless otherwise indicated.
PCause of death as listed in original Harris County Institute of Forensic Sciences autopsy report.
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Table 4. Children/young adult (1-40 yr) cohort with genetic variants contributing to sudden death

Nucleotide Amino acid Listed cause of death®/additional
Case Age Sex Ethnicity? Gene(s) change(s) change(s) clinical comments
9 15yr M White DSP G88A V30OM Hypertrophic cardiomyopathy
10 24yr F White SCN3B C423G 1141M Long QT syndrome/history of prolonged QT interval
11 27 yr M Hispanic White MYL2 G64A E22K Undetermined
12 32yr F White SCN5A; SCN1B  G1844A; G457A G615E; D153N  Undetermined/pregnant
13 37yr M White MYBPC3 G13C G5R Cardiac arrhythmia associated with left borderline

ventricular hypertrophy

Ethnicity refers to observed race and Hispanic origin. Race is of non-Hispanic origin unless otherwise indicated.
PCause of death as listed in original Harris County Institute of Forensic Sciences autopsy report.

is insufficient evidence to support deleteriousness, was not report-
ed as likely pathogenic or pathogenic. Most of the genetic variants
that are known to be involved in SD have incomplete penetrance
or variable expressivity (Ackerman et al. 2011). As a result of a con-
servative screening approach, it is likely that novel or VUS genetic
variants that were possibly contributing to SD were not identified
as pathogenic due to a lack of data at the time of review. Overall,
these challenges emphasize the need for a critical evaluation of ge-
netic defects by expert medical geneticists in order to help estab-
lish proper evidentiary thresholds for reporting as contributing
factors to cause of death.

Multiple factors are considered when determining the poten-
tial pathogenicity of a genetic variant. Cosegregation within a fam-
ily can provide evidence of a heritable genetic defect, whereas
incomplete penetrance in unaffected relatives of a proband war-
rants critical evaluation to identify a true pathogenic variant. De
novo variants may also provide strong evidence of a genetic contri-
bution to cause of death, depending on the rarity in the general
population. Previous reports have suggested more severe disease
expression and earlier onset in de novo carriers (Giudici et al.
2014). However, with an extremely rare variant, a lack of further
in vitro/in vivo functional evidence and clinical reports may lead
to a categorization of a putative pathogenic variant as a VUS
(Dorschner et al. 2013; Tang et al. 2014). Final determinations of
cause of death associated with specific genetic variants were con-
cluded by an expert panel based on genetic screening results,
autopsy findings, sentinel events, and personal and family medi-
cal histories. The cases with a specified cause of death of cardiomy-
opathy were confirmed, and the associated genetic defect was
identified. However, other decedents with negative or ambiguous
autopsies also had variants in heritable cardiomyopathy-associat-
ed genes as not all cardiomyopathies are unequivocal at autopsy,
thus emphasizing the necessity of diagnostic postmortem genetic
screening.

The wider implementation of molecular autopsy tools, such
as the one presented here, can aid in bringing clarity to these am-
biguous molecular pathways and help to identify pathogenic var-
iants. This highlights the need for medical examiners to not only
maintain archives of blood samples of SIDS/SUD victims, but also
detailed case history records and databases of sequencing results
for continuous reassessment as new molecular, biochemical, and
functional evidence is discovered and gene candidates are further
defined. Agencies need to be cognizant of the ethical implications
of molecular genetic testing and reporting. In some cases, dis-
closure of sensitive genetic results may lead to the discovery of
unwanted information, increased insurance burdens, stressful un-
necessary medical testing, or altered family planning (Ross et al.
2013; Clarke 2014). Therefore, molecular autopsy programs are

best served by the inclusion of experts in biomedical ethics and ge-
netic counselors on review boards. For this study, a consortium of
clinical and genetic experts from the Harris County Institute of
Forensic Sciences and Baylor College of Medicine collaborated
with the Baylor College of Medicine Center for Medical Ethics
and Health Policy and genetic counselors to establish guidelines
on the disclosure of genetic information (McGuire et al. 2016).
The results of these molecular autopsies are envisioned to become
part of the normal medicolegal death investigation and will, in
some instances, result in amendments of autopsy reports and
death certificates.

These results demonstrated a strategy for application of
molecular autopsies for public medical examiners’ and coroners’
offices. However, with the unexpected low yield of reportable
pathogenic variants, it is conceivable that detection of pathogenic
variants may still not be cost-effective in all medicolegal investiga-
tions with an undetermined cause of death. This study is limited
by its retrospective nature, with an additional goal of determining
the yield of reportable pathogenic variants using methods present-
ed here. As expected in a large retrospective cohort, some costs
would be amortized. However, as costs continue to fall with ad-
vancements in massively parallel sequencing and data mining
software, the role of genetic variants in SD will be elucidated fur-
ther, thus possibly increasing the overall benefit of postmortem ge-
netic screening in medicolegal investigations.

In conclusion, the present study represents the largest hetero-
geneous cohort of SD cases evaluated by a targeted sequencing
panel for genes associated with SIDS and SUD. In addition to being
diagnostic in nature, these screenings allow for affected families to
make appropriate choices regarding medical testing, treatment,
and lifestyle. As the dynamic field of molecular diagnostics ad-
vances, molecular autopsy tools have begun to be within reach
as a new standard of care for autopsy negative cases.

Methods

Cohort

Autopsy reports of young adults (<40 yr), children, and infants (<1
yr) from 2004-2012 at the Harris County Institute of Forensic
Sciences were reviewed, and cases classified as “undetermined,”
“SIDS,” or “undetermined (cosleeping)” were culled for further
analysis. Any case with indicators of non-natural etiology, includ-
ing cases with any suspicion of death by an inflicted mechanism
(e.g., suspicion of intentional suffocation), was excluded. An ini-
tial heterogeneous cohort of 429 decedents was defined by medical
examiners for postmortem genetic screening. Also included in
the cohort were a few cases that had nonspecific anatomic car-
diac changes, suggesting a manifestation of an underlying genetic
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defect (i.e., borderline cardiomyopathy), one case with a listed
cause of death as hypertrophic cardiomyopathy, and an additional
case with previous medical history suggesting LQTS. These cases
were included in order to obtain genetic confirmation and/or spe-
cific diagnosis of a disorder in which anatomic findings were
equivocal. In addition to the genetic screenings, the demographic
composition of the selected cohort was compared to age-matched
populations in Harris County, Texas, to identify possible at-risk
groups.

DNA extraction

Total DNA was extracted from archived blood spots dried on
Whatman bloodstain cards from the selected cohort using a
QIAsymphony DSP DNA Midi Kit (Qiagen) according to the
manufacturer’s protocol. Briefly, bloodstain card cuttings (~3
cm?) were incubated in 1 mL Buffer ATL (Qiagen) containing 1
mg/mL Proteinase K (Qiagen) at 56°C with shaking at 900 RPM
for 8 h. Genomic DNA was isolated from the lysates on a
QIAsymphony SP instrument and eluted at 100 pL per sample.

Capture array design and validation

Multiple genes associated with SD due to arrhythmogenic
channelopathies and other non-channelopathy disorders were
chosen based on literature review and database entries. The 64 se-
lected genes included 22 associated with known cardiac channelo-
pathies, 29 associated with cardiomyopathies, and 13 genes linked
to SD without a reported association with a cardiac condition
(Table 1). A library of capture array probes (NimbleGen SeqCap
EZ Choice Library; Roche) was designed across 94% of the targeted
nucleotides (337 kb). The applicable genome coordinates from
the human genome build hgl9 were obtained from the UCSC
Genome Browser (http:/genome.ucsc.edu/) and submitted for
capture probe design by Roche NimbleGen. The probes were
used to create a custom human exonic capture array that was as-
sessed and validated by the Baylor College of Medicine Human
Genome Sequencing Center using 24 Coriell HapMap samples.
The resulting capture reagent was found to yield 91.2% of targeted
bases covered at 20x or better. After validation, the capture array
was utilized to enrich the targeted gene regions of the cohort
DNA samples in preparation for high-throughput parallel next-
generation sequencing.

Sample entry, library preparation, targeted capture, and
sequencing

Prior to target capture, DNA samples were tested for quality and
quantity by a combination of agarose gel electrophoresis and
PicoGreen fluorescence on an Agilent Bioanalyzer 2100. Samples
passing minimum standards were used to construct Illumina
paired-end precapture libraries according to the manufacturer’s
protocol (Illumina  Multiplexing_SamplePrep_Guide_1005361_D)
with modifications as described in the BCM-HGSC protocol
(https://www.hgsc.bcm.edu/content/protocols-sequencing-library-
construction). BCM-HGSC exome capture methods, adapted from
the manufacturer’s protocol (NimbleGen SeqCap EZ Exome Library
SR User’s Guide Version 2.2), were further modified for targeted cap-
ture to allow for increased multiplexing in capture and sequencing.
Briefly, 1 ng sample DNA was sheared into fragments of approxi-
mately 300-400 base pairs with the Covaris E210 system. End-re-
pair, A-tailing, ligation of 9-bp barcode adaptors (24 barcodes in
total), precapture ligation-mediated PCR (LM-PCR), as well as the
SPRI bead purification (Agencourt AMPure XP beads) was automat-
ed on Biomek FXp robotic workstations (Adey et al. 2010). Uniquely
barcoded precapture libraries were pooled in equimolar amounts

(24 samples/pool, totaling 1 ug/pool) for cocapture. These library
pools were then hybridized in solution to the custom NimbleGen
capture design in the presence of human COT1 DNA to suppress re-
petitive genomic sequences. After post-capture LM-PCR amplifica-
tion and a final SPRI bead purification, pooled samples were
loaded on an Illumina MiSeq instrument for cluster formation.
Library templates underwent bridge amplification to form clonal
clusters, followed by hybridization with the sequencing primer.
Sequencing runs were also performed on the Illumina MiSeq
platform in paired-end mode, in which sequencing-by-synthesis re-
actions were extended for 101 cycles from each end, with an addi-
tional 10 cycles for the index read. Sequencing runs yielded an
average of ~79.4 Mb per sample and an average of 85.3% of the tar-
geted bases covered to a depth of 20x or greater.

Primary data analysis

Initial sequence analysis was performed using the HGSC
Mercury analysis pipeline (Reid et al. 2014). Briefly, the .bcl files
produced on-instrument were first transferred into the HGSC
analysis infrastructure by the HiSeq Real-time Analysis module
and Mercury was then subjected to CASAVA, the primary analy-
sis software, in order to demultiplex pooled samples and gen-
erate sequence reads and base-call confidence values (qualities).
Reads were then mapped to the GRCh37 Human reference ge-
nome (http://www.ncbi.nlm.nih.gov/projects/genome/assembly/
grc/human/) using the Burrows—Wheeler aligner (Li and Durbin
2009). The resulting BAM (binary alignment/map) file underwent
quality recalibration using GATK for BAM sorting, duplicate read
marking, and realignment to improve indel discovery (Li et al.
2009; DePristo et al. 2011; Van der Auwera et al. 2013). Finally,
BAM files were used by the ATLAS 2 suite to call SNVs and indel
variants and to produce VCF files with variant annotation provid-
ed by the Cassandra pipeline (Challis et al. 2012).

Variant filtration

Demultiplexed and annotated variants were initially sorted by se-
quence quality. Variant sequences not meeting a computational
“Pass” threshold for quality sequence coverage were excluded.
Quality annotated variants were compiled in Excel spreadsheets
and culled for possible mutations of significance based on variant
type with initial inclusion criteria of nonsynonymous SNVs and
indel variants in exon coding regions (Fig. 2). Candidate variants
were further assessed by an initial comparison to literature and
databases searches via Single Nucleotide Polymorphism Database
(dbSNP) (Sherry et al. 2001), Online Mendelian Inheritance in
Man database (OMIM) (http://www.ncbi.nlm.nih.gov/omim),
and The Inherited Arrhythmias Database (http:/www.fsm.it/
cardmoc/). All benign, tolerated, common polymorphisms, VUS,
and variants with no literature or identified in single individuals
were removed from further analysis.

Variants were further assessed by the Medical Genetics
Laboratories at Baylor College of Medicine (BCM-MGL), a Clinical
Laboratory Improvement Amendments (CLIA)-accredited labora-
tory, by American College of Medical Genetic and Genomics
(ACMG)—certified molecular geneticists (Richards et al. 2008).
Briefly, minor allele frequencies for specific ethnic groups were
assessed, and the phenotypic overlap between the particular puta-
tive pathogenic variant and the associated disease were compared
to the phenotype of the decedent by comparison to the Single Nu-
cleotide Polymorphism Database (dbSNP), the Exome Variant
Server (http://evs.gs.washington.edu/EVS/), ClinVar, the 1000 Ge-
nomes Project Browser, Baylor College of Medicine Medical Genet-
ics Laboratory database, and the Human Gene Mutation Database
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(McVean et al. 2012; Stenson et al. 2014). In silico tools including
Polymorphism Phenotyping v2 (PolyPhen-2), Sorts Intolerant
From Tolerant Substitutions tool (SIFT), and Protein Variation Ef-
fect Analyzer (PROVEAN) algorithmic tools to predict deleterious
effects of mutation-induced structural changes on protein func-
tion were also considered during variant evaluation (Ng and Henik-
off 2001; Adzhubei et al. 2010; Choi et al. 2012). Variants with
phenotypes not consistent with autopsy findings were then elim-
inated in unequivocal cases. Samples were confirmed by Sanger se-
quencing, and the inheritance pattern was evaluated. For example,
in cases of autosomal recessive disorders, two pathogenic changes
needed to be detected in a particular gene. Extensive evaluations
of published literature and comparisons to previously reported
genotype/phenotype relationships for each sequence-confirmed
putative pathogenic variant were carried out to determine the func-
tional significance of the genetic mutation (Landrum et al. 2014).
All literature available at the time of review was considered, and
variants with minimal conflicting reports did not necessarily ex-
clude the variant from further analysis. For all cases, including
those with conflicting interpretations, the strength of the literature
from those previous reports was considered.

Clinical genetic variant confirmation

A consortium of medical examiners, physicians, and researchers,
including specialists in health policy and ethics, reviewed cases
sent for CLIA laboratory evaluation in preparation for reporting ge-
netic findings that contribute to cause of death to next-of-kin and
supplement the respective autopsy reports. The genetic analysis,
medical history, family history, and all gross anatomical and
molecular equivocal and nonequivocal autopsy findings were re-
viewed. The multidisciplinary board made final diagnostic deci-
sions of the clinical significance of each genetic variant as to
cause of death. Variants were classified as (1) pathogenic (most
likely related to cause and manner of death); (2) likely pathogenic
(significant but not conclusively related to cause of death); or (3)
incidental or VUS (unrelated or uncertain clinical significance).
Classification was based on the variant evaluation by BCM-MGL,
autopsy findings, available personal and family medical history,
and terminal circumstances on a case-by-case basis. Pathogenic ge-
netic defects were sequence variants previously reported and rec-
ognized as contributing to SD (Richards et al. 2008; Landrum
et al. 2014). Incidental or VUS genetic variants were either benign
or lacked sufficient evidence to assign pathogenicity at the time of
review.

Only variants determined to be pathogenic or likely patho-
genic were identified as reportable to families. Next-of-kin to de-
cedents will receive a letter indicating either the genetic change
was “likely related to cause of death” (pathogenic) or the genetic
change “may or may not be related to cause death” (likely patho-
genic). Families will be given a choice to receive further informa-
tion. If families choose to receive the genetic results, the medical
examiner will disseminate the results in the presence of a genetic
counselor.

Data access

All nonsynonymous variants are listed in Supplemental Table
S2. Confirmed pathogenic genetic variant data from this
study have been submitted to the NCBI ClinVar database (http
://www.clinvar.com/) under accession numbers SCV000263109—
SCV000263122. Sequencing data from this study have been sub-
mitted to the NCBI BioProject database (http://www.ncbi.nlm.
nih.gov/bioproject/) under accession number PRINA320727.
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