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ABSTRACT: Ionic liquids (ILs) have wide and promising applications in fields such as chemical engineering, energy, and the
environment. However, the melting points (MPs) of ILs are one of the most crucial properties affecting their applications. The MPs
of ILs are affected by various factors, and tuning these in a laboratory is time-consuming and costly. Therefore, an accurate and
efficient method is required to predict the desired MPs in the design of novel targeted ILs. In this study, three descriptor-based
machine learning (DBML) models and eight graph neural network (GNN) models were proposed to predict the MPs of ILs.
Fingerprints and molecular graphs were used to represent molecules for the DBML and GNNs, respectively. The GNN models
demonstrated performance superior to that of the DBML models. Among all of the examined models, the graph convolutional model
exhibited the best performance with high accuracy (root-mean-squared error = 37.06, mean absolute error = 28.79, and correlation
coefficient = 0.76). Benefiting from molecular graph representation, we built a GNN-based interpretable model to reveal the
atomistic contribution to the MPs of ILs using a data-driven procedure. According to our interpretable model, amino groups, S+, N+,
and P+ would increase the MPs of ILs, while the negatively charged halogen atoms, S−, and N− would decrease the MPs of ILs. The
results of this study provide new insight into the rapid screening and synthesis of targeted ILs with appropriate MPs.

1. INTRODUCTION
Ionic liquids (ILs) are nonvolatile salts with melting points
(MPs) below 100 °C, low vapor pressures, and strong thermal
conductivity. ILs are widely used in greenhouse gas capture,
catalysis, energy, separation, electrochemistry, pharmaceuticals,
etc.1−5 The MP of an IL is a crucial factor when using ILs for
its application;6 ILs with MPs < 100 °C are required by IL-
based pharmaceuticals to avoid problems associated with
polymorphism, agrochemicals, and the sorption of a
precipitated artificial solid deposit.7 Designing task-specific
ILs with desired MPs is challenging because a wide range of
factors, including hydrogen bonding, van der Waals inter-
action, and charge distribution, can affect the MPs.4 Because
trillion types of ILs can be synthesized in a lab, finding the
appropriate ILs via experimental screening is costly and time-
consuming.8,9 Quantitative structure−property relationship
(QSPR) studies10−12 have been used to accurately forecast
the MPs of ILs. The goal of QSPR techniques is to create
mathematical representations of numerical properties based on

the structural details of chemical substances.13 However, owing
to the intricacy of molecular interactions, conventional QSPR
techniques, density functional theory, and molecular dynamics
might be computationally difficult for large-scale ILs.14,15

Machine learning (ML) techniques show promise for
accurately and effectively predicting the properties of chemical
compounds.9,16−20 In different fields, ML methods8,21 are as
accurate as traditional simulation techniques such as MD but
require less computing power.14,22 Molecular descriptor−based
ML (DBML) models have been used to forecast the MPs of
ILs.23,24 Molecular descriptors are the numerical values that
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feature the molecular structures of the ILs. One of the earlier
descriptors used group contribution,25,26 which split molecules
into fragments; the MP of an IL is calculated by summing the
contribution of each fragment. However, this descriptor is
largely dependent on human experience and could result in
substructure information loss.27,28 Another molecular descrip-
tor, extended-connectivity fingerprint (ECFP),29 creates a
feature vector by iteratively compiling the neighboring data of
each atom. Because ECFPs have access to molecular structural
information, they can be more expressive in estimating the
MPs of ILs. Some ML studies have been conducted to estimate
the MPs of the ILs. To estimate the MPs of 2212 ILs,
Venkatraman et al.30,31 explored several ML techniques based
on 113 molecular descriptors, which were calculated from
computationally cheap semiempirical simulations. Their
models could reasonably forecast MP trends by applying a
tree-based ensemble technique. Makarov et al.27,28 used eight
ML approaches to predict the glass transition temperature,
MP, and decomposition temperature of ILs over five sets of
descriptors. Their transformer convolutional neural network
(CNN) model exhibited a good correlation coefficient (R2) of
0.67 and a root-mean-squared error (RMSE) of 44 °C when
predicting the MPs. DBML models are capable of producing
accurate estimations of MPs. However, they lack information
regarding the molecular graph structure and are unable to
completely explain the ML model results. Additionally, current
ML research on the MPs of ILs often focuses on prediction
performance evaluation; the model interpretability of the MPs
of ILs has not been thoroughly examined.
Recently, the graph neural network (GNN) has been

demonstrated as an effective tool for predicting the molecular
properties of chemical compounds at the molecular level.32,33

GNNs directly use the structure of molecules as input for
modeling.34 Considering a molecule as a graph, GNNs use an
adjacent matrix to record the bond edge and connectivity
properties and a node feature matrix to represent the atom and
associated attributes.14 GNNs have been used in molecular-
level fields35−38 such as drug discovery, quantum chemistry,
and structural biology. In addition to achieving comparable
high-prediction performance, GNNs explain the results of
models at the atom and bond levels via graphical
representation. Numerous recent approaches have been
developed in the current field of research to interpret GNN
predictions.39−41 To more accurately predict and comprehend
the MPs of ILs at the molecular level, GNNs with model

interpretability need to be further extended on the modeling of
MPs of ILs.14

In this study, the DBML and GNN models are introduced to
predict the MPs of ILs. Fingerprints (FPs) are incorporated as
molecular descriptors for several DBML models. Eight distinct
GNN algorithms are included to estimate the MPs of ILs in
GNN models. We initially assessed the performance of various
models in predicting MPs using a diverse data set of 3080 ILs.
Models that worked with molecules were interpreted by
computing atomic contributions using the graph representa-
tion of GNNs. We examined the positive and negative impacts
of atoms on the MPs of ILs to obtain significant insight into
the atomistic level of an IL molecule. Additionally, we ranked
the atomic contributions to the MPs of ILs across the entire
data set. We believe that this is one of the first studies to apply
GNNs and the interpretability model at the atomistic level for
predicting the MPs of ILs.

2. MODELS
2.1. DBML Models. This work used ECFPs29 as the input

characteristics for modeling. ECFPs calculate a representation
of a molecule in the form of a bag of words by decomposing it
into local neighbors and hashing it into a bit vector. FPs with a
bit vector of 2048 and a radius of 4 were produced using
RDKit42 for each molecule.
The MPs of ILs were predicted using three different ML

techniques: support vector machine (SVM),43 random forest
(RF),44,45 and multilayer perceptron (MLP)46 techniques. The
input variables for these ML algorithms were molecular
descriptors and ECFPs.29 The squared epsilon insensitive of
SVM43 was specified as the loss function, and the maximum
number of iterations was set to 1000. The number of trees of
RF44,45 was 1000 and the squared error was used to measure
the quality of a split. The LBFGS solver of MLP46 was selected
for weight optimization, and relu was chosen as the activation
function in the hidden layer with a size of 100. These ML
models were built using the Python code based on Deep-
Chem42 and SciKit-Learn.47,48

2.2. GNN Models. The GNN operates on a graph with
nodes and edges49,50 rather than descriptors. Each molecule
represented a graph in this work, with each atom and bond
acting as a node and edge, respectively. The construction of
molecular graphs is shown in Figure 1. RDKit is used to
transform the notation of the canonical simplified molecular-
input line-entry system (SMILES) of each molecule into a

Figure 1. Illustration of constructing graphs from molecules with imidazolium hydrogen sulfate as an ionic liquid.
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molecular graph. Nodes and edges in the graph represent
atoms and their interatomic interactions, respectively. A feature
vector containing specific atom data is allocated to each node.
One input for modeling is an N-by-C node feature matrix,
where N and C denote the number of nodes and dimension of
node features, respectively. The node feature vector includes
details of the formal charge of atoms, degree of atom
hybridization, aromaticity, and other properties. The edge
feature vectors, containing details of the bond type, etc., are
involved on the occasion. Furthermore, the bond connectivity
of the molecular graph is represented by an N-by-N adjacent
matrix.
GNN is a deep learning technique that requires the node

feature matrix and adjacent matrix as inputs for processing data
to be represented as graphs. Although DBML approaches
might describe the structure information on molecules by
adhering to certain criteria, they have difficulty encoding the
topological and geometric information. GNNs, benefiting from
molecular graph representation, can encode the graphical
structure of molecules.
The MPs of ILs in this study were modeled by using eight

common powerful GNN techniques: graph convolution
network (GCN),51 graph attention network (GAT),52

Attentive FP,53 path-augmented graph transformer network
(PAGTN),54 message passing neural network (MPNN),55

directed acyclic graph (DAG),56 weave,50 and graph convolu-
tional (GC)49 techniques. DeepChem42 was used to develop
all GNN models.
The GCN model51 updates the representation of nodes in

graphs using a GCN variation. It calculates the representation
of each graph by adding the weighted sum of its node
representations, where weights are determined by computing a
gating function on the node representation. The initial atom
feature vectors have in this study the mentioned parameters:
length = 30, the channel width of GC layers = (64,64), hidden
representation size in the output MLP predictor = 128, and
batch size = 128.
The GAT model52 enhances the expressiveness of GNNs via

the attention mechanism. Graph attention allocates a learnable
weight for every edge while performing feature aggregation on

nodes. In this study, each GAT layer has eight attention heads;
the hidden representation size in the output MLP predictor is
128, 30 atom features, a batch size of 128, and the channel
width per attention head for GAT layers is (8,8).
In the AttentiveFP model,53 the initialization of node

representations, entailing a round of message passing, mixes
node features and edge information. It uses a gated recurrent
unit to combine all node representations for each graph to
determine the representation of each graph. Graph representa-
tions have a size of 200, the number of GNN layers is 2, the
initial atom and bond feature vectors are 30 and 11,
respectively, and the batch size is 128 in this study.
A GAT variation in the PAGTN model54 is used to modify

node representations in graphs by using a linear additive kind
of attention. Concatenating the node and edge information on
each bond yields attention weights. In this work, the input
edge feature size is 42, the input and output node feature sizes
are 94 and 256, respectively, two layers in the GNN, the
dropout probability is 0.1, and the batch size is 128.
The node representations are updated in the MPNN

model55 by combining the most recent node representations
with edge information, requiring numerous iterations of
message passing. It computes the representation of each
network by aggregating the representations of all of its nodes
using a Set2Set layer. A graph data object with both node and
edge characteristics must be produced by the feature generator
when it is used with the MPNN model. In this study, the final
node representation vectors and the hidden edge representa-
tion vectors are 64 and 128, respectively; there are six Set2Set
steps and three Set2Set layers. Initial atom and bond feature
vectors are 30 and 11, respectively, and the batch size is 128.
Molecules are regarded as directed graphs in the DAG

model.56 Although most chemical bonds lack inherent
directions, a DAG on a molecule can be generated arbitrarily
by identifying a central atom and specifying the directions of all
bonds in certain orientations toward the atom. The batch size
is 128 and each atom has 75 features in this study.
The weave model50 uses the concept of adaptive learning to

extract significant representations. The features of atoms are
updated in weave models by incorporating data from all of the

Figure 2. Calculation scheme for the atomic contribution.
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other atoms and their associated pairing in the molecule. The
main distinction lies in the size of the convolutions. Each dense
layer in the network has a dimension of (2000, 100), the
dropout for each fully connected layer is 0.25, the number of
atom features is 75, and the batch size is 128 in this study.
Each molecule has 128 output features.
The circular fingerprint decomposition concepts are

expanded in the GC model.49 The data vector of each graph
node is the starting point. Convolutional and pooling layers
mix and recombine information from connected nodes into
descriptors to create a new data vector for each linked node.
Contrary to the GCN model, this approach uses distinct labile
weights for nodes with varying degrees. The learnable weight
in the GCN model is shared by all of the nodes. Each atom has
75 features, the batch size is 128, and the model is adjusted for
batch normalization in this study. The widths of channels of
GC and atom-level dense layers after GraphPool are (64, 64)
and 64, respectively.
2.3. Interpretability Model. GNN models can interpret

our models and aid us in understanding the output by using
molecular graphs. We examined the contribution of each atom
of the IL molecule to the MP of the IL. The scheme is depicted
in Figure 2. We removed one heavy atom at a time for each IL
molecule. The remaining fragment was featured and predicted
using the same trained model. Finally, the contribution of each
atom to the MP is calculated by eq 1.

=C P Pi iatom, mol frag, (1)

The contribution of each atom (Catom, i) is determined via
the prediction discrepancy of the MP between the entire
molecule (Pmol) and left-over fragment after the removal of an
atom (Pfrag, i), where i represents the index of each atom in the
corresponding IL molecule. The influence of each atom on
prediction and the contribution of atoms to the MPs of ILs
were studied by examining changes in the prediction of the
model.
We developed a weight function to measure the contribution

of each atom relative to the entire data set. We calculated the
weight (Wi) of each heavy atom (i) inside an IL molecule (j)
using eq 2 for the entire data set.

= =W
P P

N

( )
i

j
N

i1 mol frag,

mol

mol

(2)

where Nmol denotes the total number of molecules of ILs that
contain the specific atom i across the entire data set. The
molecule would be counted for the corresponding times if i
appears multiple times in one molecule. Positive and negative
weights are calculated separately so that atoms having positive
or negative contributions to the MPs of ILs can be determined
by ranking the weights of all atoms in the entire data set.

3. DATA SETS AND METRICS
3.1. Data Sets. The data set used in this study includes MP

values for 3080 different ILs, representing a wide range of IL
families containing imidazolium, ammonium, pyrrolidinium,
sulfonium, and other cations and tetrafluoroborate (BF4),
chloride (Cl), (trifluoromethylsulfonyl) amide (Tf2N), and
other anions. The data are based on studies by Makarov et
al.27,28 and Venkatraman et al.30,31 reporting experimental MPs
(between −96 and 319 °C) from published works. A canonical
SMILES code is used to represent each IL in the data set.
Figure 3 displays the MP distributions based on their quantity.

The data sets are divided into training, validation, and test sets
following the 80:10:10 ratio.

3.2. Data Set Splitting. Random splitting is the most
popular approach for dividing the data set into training and test
sets. However, random splitting is not always the most effective
technique for assessing models. Five distinct data set splitting
techniques were used to evaluate the models in this study:
random, random stratified,42 scaffold,57 fingerprint,42 and
molecular weight42 splitting techniques. Training, validation,
and test subsets are created randomly by dividing the samples
in the random splitting method. The random stratified
splitting42 approach sorts data points in an ascending order
of the label value and divides this sorted list into training,
validation, and test sets with each set including the whole set of
available labels. Scaffold splitting57 divides the samples
according to their two-dimensional structural frameworks
and segregates structurally distinct molecules into several
subsets. The fingerprint splitting42 approach divides data sets
into training, validation, and test sets based on the Tanimoto
similarities of their ECFP4 fingerprints. This method aims to
separate the data to make the molecules in each data set as
dissimilar to each other as possible. Molecular weight
splitting42 uses the molecular weight determined using the
SMILES string to divide internal compounds into training,
validation, and test sets.
The Supporting Information (Table S1) displays the results

of model evaluation using various data-splitting techniques. As
the random stratified splitting42 method produces a fairly
accurate division with the best performance, we used the
model with this data set splitting method for further
interpretation analysis.
3.3. Metrics. RMSE, mean absolute error (MAE), and R2

are presented to assess the accuracy of the models using eqs
3−5.

=
=n

ei piRMSE
1

( )
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Figure 3. Distribution of the MPs of ILs in the data set.
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where n is the number of data points, ei is the laboratory MP
values of ILs, pi is the predicted MP values of ILs using models,
and e ̅ is the average laboratory MP value of ILs.
3.4. Modeling Procedure. Figure 4 depicts the modeling

process in this study. ECFPs and graph representations are
used to depict IL molecules. Different ML models use ECFPs
to perform the MP prediction. GNNs use graph representation
to model the MPs of ILs; each model is trained for 500 epochs.
Additionally, an explanation methodology is devised to analyze
the significance of the atomic contribution to the MPs of ILs.

4. RESULT AND DISCUSSION
4.1. MP Prediction of ILs. The predicted MPs of ILs using

different models are listed in Table 1. GNN models based on
graph representation outperform ML models based on
molecular fingerprints. GNN models can handle feature
representation and extraction of graphs. They obtain excess
molecular information and are superior to descriptor-based
methods. The GC model having the lowest RMSE and MAE
values of 37.06 and 28.79, respectively, and the highest R2

value of 0.76 on the test set performs best among all of the
models in this study. The GCN model is superior to RMSE
and R2 values of 45.96 and 0.61, respectively, because of the
sharing of weights by all nodes and the simple update process
of representations. Alternately, the GC model uses individual

learnable weights for nodes of different degrees. As the GC
model had the best performance, we utilized this model for
further study.
Figure 5 shows the loss curve of the GC model. In this study,

the MSE works as the loss score. The model converges after
500 epochs of training, indicating that the training is sufficient
to form a well-trained model.

Figure 4. Overall scheme of modeling procedures in this work.

Table 1. Performances of Different Models on the MP Prediction of ILs

no. model

training test

RMSE MAE R2 RMSE MAE R2

1 SVM 37.56 25.05 0.74 44.36 33.12 0.68
2 RF 15.09 11.27 0.96 42.17 30.93 0.71
3 MLP 3.31 0.54 1.00 47.95 36.43 0.63
4 GCN 18.70 13.88 0.94 45.96 34.27 0.61
5 GAT 24.69 18.62 0.89 40.70 30.64 0.70
6 AttentiveFP 16.56 11.75 0.95 42.69 31.43 0.67
7 PAGTN 10.93 8.46 0.98 42.48 32.77 0.69
8 MPNN 14.74 10.52 0.96 43.17 31.60 0.61
9 DAG 6.21 4.25 0.99 45.93 35.54 0.65
10 weave 19.57 14.85 0.93 40.39 30.56 0.69
11 GC 14.00 10.07 0.96 37.06 28.79 0.76

Figure 5. Training loss curve of the GC model. (B, C).
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The parity plots of the predicted MPs of ILs vs experimental
values using the GC model on test sets are illustrated in Figure
6. The visual comparison shows that the predicted values are
consistent with the experimental data, indicating the high
accuracy and reliability of the GC model.

4.2. Comparison of Model Performances in Predict-
ing MPs. The performance of different models is compared
with the reported models, as shown in Table 2 with N

representing the size of the whole data set. Table 2 shows that
the GC model with the biggest size of the data set has a low
RMSE, MAE, and high R2 value, indicating that the
performance of our model is the best among all the examined
models.
4.3. Interpretation of the Model in Predicting MPs.

The influence of IL molecular structure on MPs was studied by
calculating the contribution of each atom in an IL using eq 1.
The results of one IL (imidazolium hydrogen) are displayed in
Table 3. Catom refers to the contribution of atoms to the MP of
the IL. A positive Catom value indicates a positive impact,

indicating that the atom would increase the MP of the
corresponding IL. Alternately, a negative Catom value indicates a
negative impact, indicating that the atom would decrease the
MP of the corresponding IL. The high absolute value of
Catomincreases the impact. The NH+ and NH of the
imidazolium hydrogen sulfate−based IL have the highest
Catom values of 64.98 and 42.54, respectively. Hence, they have
a positive impact on the MP, and their presence would
significantly increase the MP of the IL. O− and S have a
negative impact with the lowest Catom values of −55.51 and
−53.82, respectively. Hence, O− and S would effectively lower
the MP of the corresponding IL.
The atomic contributions of each IL can be visualized using

contribution maps.58 The contribution maps of 3080 ILs
(Figures S1−S3080) and the index number of each IL (Table
S2) are provided in the Supporting Information. Atoms are
colored based on their contributions to MPs in these maps.
The influence of each atom on the MPs is represented by their
colors. Green and red indicate positive and negative
contributions, respectively, in our study. A darker shade of
the color indicates more contribution than that of the other
atoms.
We can intuitively observe the influence of each atom on the

MPs of ILs from the 3080 nm visual maps. Cations are green
for most ILs in this study, indicating that cations increase the
MPs of ILs; anions are red, indicating that anions decrease the
MPs of ILs. The map of IL-1815 is presented in Figure 7a. The
cations and anions of some ILs have atoms that affect the MP
favorably and unfavorably. Figure 7b shows that the presence
of the anions O− and S lowers the MP of IL 272, while F in
anions increases the MP. A green IL indicates that it has excess
atoms contributing positively, and its MP would be high. A red
IL indicates that the IL has more atoms contributing
negatively, and its MP would be low. The map of IL-1218 is
presented in Figure 7c. All of the atoms in this IL show a
positive impact. Hence, this IL has a high MP of 319 °C.
Figure 7d shows the map of IL-384 where all atoms have a
negative impact. Hence, this IL has a low MP of −81 °C,
which is consistent with experimental results.6,13

4.4. Insight into the MP Based on Atom Weights.
There are 46 unique heavy atoms or groups in the entire data
set. The profiles of the top 15 atoms or groups with the highest
frequency of occurrence are illustrated in Figure 8a. Alkyl
series such as CH2 occur most frequently. F, C, O, N, and S
also frequently appeared in our study. The contribution values
of the atoms are normally distributed. Figure 8b shows that
most contribution values of atoms are between −100 and 100.
The weight of the contribution of each atom to the MPs of

ILs on the entire data set is calculated using eq 2. Table 4 lists
the top 10 atomic weights for both positive and negative
contributions. NH2

+, NH3
+, and S+ have the highest positive

weights, with values of 85.45, 70.22, and 67.22, respectively.
ILs have high MPs when their chemical structure contains
these positive impact atoms or groups. S−, N−, and Br have the
biggest negative contributions, with weights of −86.61,
−78.76, and −76.11, respectively. The presence of these
atoms or groups in the molecular structure of an IL lowers its

Figure 6. Parity plot of the predicted MPs with experimental data
using the GC model on the test sets.

Table 2. Performance Comparison of Different Models to
Literature Valuesa

no. model N RMSE MAE R2

1 ANN22 799 33.33 0.54
2 QSPR24 808 26.85 0.72
3 RF30,31 2212 45.00 33.00 0.66
4 KRR23 2212 38.54 29.78 0.76
5 CNF27,28 3073 52.60 39.40 0.57
6 transformer CNF27,28 3073 46.60 35.00 0.64
7 transformer CNN27,28 3073 45.00 33.70 0.66
8 GC [this work] 3080 37.06 28.79 0.76

aANN, artificial neural network; RF, random forest; KRR, kernel
ridge regression; CNF, convolutional neural fingerprint; and CNN,
convolutional neural networks.

Table 3. Atomic Contribution Values to the MP of Imidazolium Hydrogen Sulfate

atom O NH S O O− OH CH CH CH NH+

Catom 8.22 42.54 −53.82 8.22 −55.51 −3.99 −1.19 36.28 −15.43 64.98
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MP. Both positive (Table S3) and negative (Table S4) weights
of all atoms involved in this work are provided in the
Supporting Information.
The visualization results of atom or group contribution

weights are displayed in Figure 9. Figure 9a shows the ranking
of the atomic weights with positive contributions. Amino
groups such as NH2

+, and NH3
+ have the top rankings. Thus,

amino groups increase the MPs of ILs because they can form
hydrogen bonds and polarization functions. This increases
molecular interactions and increases the MPs of ILs. S+, N+,
and P+ are also favorable for increasing the MPs of ILs when
these atoms are positively charged. Figure 9b shows the
ranking of the negative contributions. S−, and N− are the top
two atoms that can lower the MPs of ILs. S and N atoms have
a strong impact on MPs. Their presence as positively charged
cations plays an essential role in increasing the MPs of ILs.

Alternately, their presence as negatively charged anions is the
main driving force for reducing the MPs of the ILs. Halogen
atoms such as Br are favorable for decreasing the MPs of ILs,
which are attributed to the weak intermolecular forces of
halogen atoms. The important discovery in this study is that
the atoms or groups identified as favorable for increasing or
decreasing the MPs of ILs are determined in a data-driven
manner. This provides new insight into the melting of ILs from
a molecular structure perspective via GNNs, which can aid in
the synthesis of task-specific functional ILs. However, our
model still has potential predictive limitations as it is based on
only 3080 ILs among trillions of available ILs. The general-
ization ability of the model needs to be further improved.
Although the model considers the molecular structure of ILs, it
does not consider the interaction between molecules, which

Figure 7. Atomic contribution maps of ILs: (a) IL-1815, (b) IL-272, (c) IL-1218, and (d) IL-384.
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also affects MPs. Thus, GNNs in the future should consider
molecular interactions.

5. CONCLUSIONS
Three DBML models (SVM, RF, and MLP) and eight GNN
models (GCN, GAT, AttentiveFP, PAGTN, MPNN, DAG,
Weave, and GC) were used in this study to predict the MPs of
ILs. ECFPs represented molecules as input features in the
DBML models, while GNN models operated directly on the

molecular graph. Furthermore, a GNN-based interpretability
model was established to evaluate the contribution of each
atom to the MP of the ILs. GNN models outperformed the
DBML models. Among all the methods in this work, the GC
model showed the best performance with the lowest RMSE
and MAE values of 37.06 and 28.79, respectively, and the
highest R2 value of 0.76. Thus, the capability of GNNs to
forecast the MPs of the ILs was established. The atomic
contribution was calculated based on the graph representation
of GNNs by the interpretability model. Atoms or groups
positively contributing to an IL would increase the MP, while
atoms or groups negatively contributing to an IL would lower
the MP. A high absolute value of the contribution increased
the impact. The weight of each atom on the MPs of ILs was
calculated and ranked based on the entire data set. Amino
groups (NH2

+ and NH3
+) occupied the top positive rankings

and would significantly increase the MP of the amino-
containing IL. The MPs of ILs were lowered by introducing
halogen atoms (Br). S, N, and P atoms strongly impacted the
MPs of the ILs. The positively charged atoms increased the
MPs of ILs, while the negatively charged atoms decreased the
MPs of ILs. Thus, ILs could be rapidly screened at room
temperature with the aid of our accurate, interpretable GNN

Figure 8. Profile of atom frequency and contribution values over the entire data set. (a) Distribution of top 15 atoms or groups with the highest
frequency of occurrence. (b) Contribution value distribution.

Table 4. Top 10 Atomic Weights for Both Positive and
Negative Contributions

positive impact
atom

positive
weight

negative impact
atom

negative
weight

NH2
+ 85.45 S− −86.61

NH3
+ 70.22 N− −78.76

S+ 67.62 Br −76.11
N+ 66.88 P −73.00
P+ 65.95 C− −69.71
NH+ 58.69 NH− −68.98
NH4

+ 52.78 S −53.36
NH2 52.27 CH− −45.54
C 51.77 Al− −40.68
P 50.43 F− −40.32

Figure 9. Distribution of top 15 atomic contribution weights: (a) positive contribution and (b) negative contribution.
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models. The findings provide new insights into developing
novel task-specific functional ILs.
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(22) Valderrama, J. O.; Fauńdez, C. A.; Vicencio, V. J. Artificial
Neural Networks and the Melting Temperature of Ionic Liquids. Ind.
Eng. Chem. Res. 2014, 53 (25), 10504−10511.
(23) Low, K.; Kobayashi, R.; Izgorodina, E. I. The Effect of
Descriptor Choice in Machine Learning Models for Ionic Liquid
Melting Point Prediction. J. Chem. Phys. 2020, 153 (10), No. 104101.
(24) Farahani, N.; Gharagheizi, F.; Mirkhani, S. A.; Tumba, K. Ionic
Liquids: Prediction of Melting Point by Molecular-Based Model.
Thermochim. Acta 2012, 549, 17−34.
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