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Abstract

Background: One in eleven people is affected by chronic kidney disease, a condition characterized by kidney
fibrosis and progressive loss of kidney function. Epidemiological studies indicate that adverse intrauterine and
postnatal environments have a long-lasting role in chronic kidney disease development. Epigenetic information
represents a plausible carrier for mediating this programming effect. Here we demonstrate that genome-wide
cytosine methylation patterns of healthy and chronic kidney disease tubule samples obtained from patients show
significant differences.

Results: We identify differentially methylated regions and validate these in a large replication dataset. The
differentially methylated regions are rarely observed on promoters, but mostly overlap with putative enhancer
regions, and they are enriched in consensus binding sequences for important renal transcription factors. This
indicates their importance in gene expression regulation. A core set of genes that are known to be related to
kidney fibrosis, including genes encoding collagens, show cytosine methylation changes correlating with
downstream transcript levels.

Conclusions: Our report raises the possibility that epigenetic dysregulation plays a role in chronic kidney disease
development via influencing core pro-fibrotic pathways and can aid the development of novel biomarkers and
future therapeutics.
Introduction
Clinical retrospective data indicate that altered nutrient
availability during development could have a long lasting
effect on the development of adult diseases, a phenomenon
called 'programming'. Hypertension and chronic kidney
disease (CKD) show one of the highest sensitivities to
intrauterine programming [1]. Epigenetic changes caused
by altered intrauterine nutrient availability have been pro-
posed as the mechanistic link for hypertension and CKD
development [2]. Epigenetic modifications are inherited
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during cell division, thus solidifying 'the memory or pro-
gramming' effects of the environment [3]. The epigenome,
which includes the covalent modifications of DNA and its
associated proteins and defines DNA accessibility to the
transcriptional machinery, is the key determinant of out-
come after transcription factor binding. At the root of the
epigenetic modifications is the direct chemical modifica-
tion of cytosines by methylation [4]. In different cancer
types, hypermethylation of tumor suppressor gene pro-
moters has been observed [5]. Increased promoter methy-
lation can interfere with transcription factor binding,
causing loss of tumor suppressor expression, thereby
contributing to the malignant transformation [6,7]. Agents
that reduce cytosine methylation (for example, azacytidine)
are now in clinical use and are associated with improve-
ments in clinical outcome, especially for patients with
myelodysplastic syndrome [8]. In addition, mutations of
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different chromatin-modifying enzymes have been de-
scribed in various cancer types, contributing to alterations
in the cancer epigenome [9].

Background
Not much is known about the epigenome of chronic
human diseases other than cancer. Most previous studies
have been performed on cultured cells, animal models, or
surrogate cell types (mostly circulating mononuclear cells)
[10]. As the epigenome is cell type-specific, little mechan-
istic information can be drawn from cultured cells and
surrogate cell types [11]. To understand whether or not
epigenetic changes occur and thereby potentially con-
tribute to CKD development in patients, we performed
genome-wide cytosine methylation profiling of tubule
epithelial cells obtained from CKD and control kidneys.
We found that core fibrosis-related genes show cytosine
methylation changes in their gene regulatory regions. In
vitro studies indicate that cytosine methylation differences
play a role in regulating transcript expression. Examining
the CKD epigenome can be an important first step in
Table 1 Demographic, clinical and histological characteristics

Characteristics Diseased

n 12

Age (years) mean ± SD 68.0 ± 10.81

Ethnicity

Asian, Pacific Islander 0

White, non-Hispanic 4

Black, non-Hispanic 4

Hispanic 1

Other and unknown 3

Height (cm) mean ± SD 165 ± 8.69

Weight (kg) mean ± SD 78.0 ± 22.02

BMI (kg/m2) mean ± SD 27.85 ± 6.41

Diabetes 6

Hypertension 11

Proteinuria (dipstick) 3.0 ± 1.83

Serum BUN (mg/dL) mean ± SD 35.0 ± 14.7

Serum creatinine (mg/dL) mean ± SD 3.0 ± 1.61

eGFR (ml/minute/1.73 m2) mean ± SD 29.0 ± 13.68

Histology

Glomerulosclerosis (%) 31.0 ± 31.35

Mesangial matrix expansion 1 ± 0.91

Tubular atrophy (%) 34.0 ± 24.94

Interstitial fibrosis (%) 34.0 ± 25.15

Vascular sclerosis

Intima 2.0 ± 0.78

Arterioles 2.0 ± 0.78

eGFR, estimated glomerular filtration rate; SD, standard deviation.
understanding the role of epigenetics outside the cancer
field [12].

Results
CKD kidneys show distinct cytosine methylation profiles
Human kidney samples were collected from healthy
living transplant and surgical nephrectomies and cate-
gorized based on their clinical and pathological character-
istics (Table 1; Additional file 1). In the initial dataset we
combined hypertensive and diabetic CKD as cases, since
the clinical, histological and gene expression profiles of
these samples were highly similar (Additional file 2). In
the replication dataset, only diabetic CKD (DKD) samples
were used. In both datasets, the criteria for controls were
an estimated glomerular filtration rate (eGFR) greater than
60 cc/minute/1.73 m2, absence of significant proteinuria,
and less than 10% fibrosis on histology. Samples with sig-
nificant hematuria or other signs of glomerulonephritis
(HIV, hepatitis or lupus) were excluded from the analysis.
In summary, 26 samples were used for the initial discovery
phase and the phenotype analysis was significant for racial
of the samples

Healthy P-value

14

61.14 ± 11.2 0.11

1

2

4

3

4

166.5 ± 8.63 0.6

88.32 ±15.93 0.2

31.25 ± 5.58 0.18

5

12

0.36 ± 0.81 1.80E-04

17.71 ±5.85 4.60E-04

1.08 ± 0.18 2.00E-03

70.94 ± 8.35 1.06E-09

3.31 ±5.52 4.00E-03

0.17 ± 0.39 0.03

9.82 ± 15.76 6.00E-03

5.68 ± 5.07 4.00E-04

0.9 ± 1.1 1.50E-03

0.29 ± 0.62 4.00E-04
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diversity and included subjects with and without diabetes
both as cases and controls (Table 1; Additional file 1).
To avoid cell-type heterogeneity, we microdissected

each renal cortical sample and used the tubular epithelial
cell portion for the initial analysis [13]. Our and other
labs previously published that this fraction represents
mainly the proximal tubule portion of the human kidney
[13]. Genome-wide cytosine methylation analysis was
performed on each sample using methylation-sensitive
and -insensitive isoschizomer enzymes (HpaII and MspI)
followed by (HpaII) fragment enrichment by ligation-
mediated PCR (HELP) [14]. Samples were hybridized
on Nimblegen whole genome-covering microarrays
(1.3 million loci). Focusing on loci that showed more
than 50% difference in their methylation ratio and a
Figure 1 Statistically significant cytosine methylation differences in c
methylation differences. The x-axis represents the relative cytosine methyla
represents the negative log2 of the P-value of that locus. The mean P-value
plotted on the graph. The green and red lines represent the statistical crite
(B) Hierarchical cluster analysis of the differentially methylated regions. Eac
indicates hypermethylation in CKD, while red represents hypomethylation
glomerular filtration rate, diabetes status (DM, diabetes mellitus), sex, and a
1,535 DMRs mapped to unique genes using DAVID gene ontology annotat
P-value <0.01, we identified 4,751 differentially methyl-
ated regions (DMRs) between control and diseased tubule
samples (Figure 1A; complete list provided in Additional
file 3). The volcano plot analysis (fold change of methyla-
tion plotted against the negative log2 of the P-value) indi-
cated that 70% of the DMRs showed lower methylation
level in CKD (Figure 1A). We found that cytosine methy-
lation differences suffice for proper clustering and super-
vised classification of control and CKD kidney samples
(Figure 1B). The computational annotation identified a
total of 1,535 unique genes in the vicinity of the DMRs.
Gene ontology annotation showed that genes around

the DMRs are enriched for cell adhesion and develop-
ment related functions including: collagen, fibronectin,
transforming growth factor beta (TGFβ) and Smad proteins
hronic kidney disease. (A) Volcano plot analysis of cytosine
tion difference of control (CTL) versus CKD samples, the y-axis
and mean difference of 1.3 million loci present on the chips are
ria used for further analysis (P-value and fold change, respectively).
h column represents changes from one individual kidney sample; blue
in CKD. The chart below shows the clinical parameters of the samples:
ge (aged >65 years or <65 years). (C) Gene Ontology analysis of the
ion groups (biological process level 1 annotation).
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(Figure 1C), many of these genes are known to play a
critical role in CKD development. In summary, micro-
dissected kidney tubule cells showed distinct differences in
their cytosine methylation patterns in CKD.

Validation and external replication of the results
Internal validation of the results was performed using site-
specific primer-based amplification of bisulfite-converted
genomic DNA and MassArray Epityper (Sequenom)
quantification of modified cytosines [15]. This method is
based on mass spectrometry that allows us to determine
absolute methylation levels. We correlated these (mass
array based) absolute methylation levels with the HpaII/
MspI relative ratios (Additional file 4).
Figure 2 External and internal validation of the observed changes. (A
method and an external dataset containing 87 human kidney samples ana
regulation of 1,061 transcripts (98%) from the 1,092 mapped genes using t
methylation and expression, 404 (97%) were confirmed. (B) An example of a
dataset. This DMR is localized in the intronic region of COLIVA1. (C) Methylatio
in control and CKD samples. (E) MassArray confirmation of methylation status
samples, red is mean ± standard deviation of CKD samples). (F) Methylation s
The data represent the mean differences in absolute methylation levels of ind
COLIVA1 expression in control (CTL), diabetic (DM), DKD and CKD kidneys.
External validation was performed on 87 microdissected
human kidney tubule epithelial samples, 21 samples from
patients with DKD and 66 controls (including hyperten-
sion (n = 22), diabetes mellitus (n = 22) or none (n = 22))
(SYH and KS, unpublished observation). Genome-wide
methylation profiling of the validation set was performed
using Illumina Infinium 450K methylation-sensitive bead
arrays. This method uses site-specific probes for bisulfite-
converted DNA, which is fundamentally different from
the restriction enzyme-based analysis used in the HELP
analysis. From the 1,535 unique genes found around
DMRs in the initial dataset, we examined 1,092, as these
genes were present also on the Illumina Infinium (and
Affymetrix expression) arrays (Figure 2A).
) Correlation of the DMRs identified in 26 samples using the HELP
lyzed using Illumina Infinium 450K arrays. We found concordant
his validation dataset. Of transcripts that showed both differential
DMR identified by the HELP assay and confirmed in the validation
n status and (D) gene expression of COLIVA1 in the original HELP dataset
of the COLIVA1 locus (blue is mean ± standard deviation of control
tatus of the COLIVA1 locus in the validation dataset (Infinium 450K arrays).
ividual cytosines at the COLIVA1 locus. (G) Immunohistochemistry of
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Significant methylation differences were detected for
1,061 genes (corresponding to 98% of the genes in the
original dataset; Figure 2A). The complete list of DMRs
in the original and the replication dataset can be found
in Additional file 5.
Locus-specific validation was performed for six different

genes, including COLIVA1. COLIV4A1/A2 are critical
basement membrane proteins synthesized by epithelial
cells. Increased expression is known to be responsible for
increasing the thickness of the basement membrane and it
is considered to be an early change in progressive kidney
fibrosis [16]. The COLIVA1 and COLIVA2 transcripts
are transcribed from a single promoter (Figure 2B).
This locus showed significantly lower cytosine methylation
of CKD samples (Figure 2C). We examined the absolute
methylation level of COLIV4A1/2 by MassArray Epityper
analysis (Figure 2D) in control and CKD samples and
confirmed the methylation differences between healthy
and diseased tubule epithelial cells. Next we examined
COLIVA1/2 methylation in the validation dataset (Infinium
arrays from 66 control and 21 DKD samples). Using this
dataset we also confirmed the predominant (2 to 12%)
hypomethylation of this locus (Figure 2E). The methylation
differences correlated with increased COLIVA1 transcript
(Figure 2F) and protein levels (Figure 2G). Using the
MassArray Epityper we also validated the methylation sta-
tus of additional loci (Figure S3A,B in Additional file 6). In
summary, the methylation differences appear to be highly
consistent between the original and validation experiments
using multiple different methods.

Differentially methylated loci are enriched in kidney-
specific gene regulatory regions
Cytosine methylation of promoters is critically important
as it can interfere with transcription factor binding and
thereby modulate transcription [7]. The number of
DMRs localized to RefSeq annotated promoters and 5′
UTRs was significantly (about 50%) lower than the
expected ratio (Figure 3A). On the other hand, more
than half of the DMRs were in gene body-related re-
gions. Only a few DMRs localized to exons (approxi-
mately 200); the majority of the differences we observed
are in the intronic regions (Figure 3A). We also exam-
ined the RefSeq annotated genomic distribution of the
hypo- or hypermethylated regions (Additional file 7).
The percentage of hypermethylated regions was similar
in the different RefSeq-based annotation groups. We
found that more loci showed increased methylation at
the 3′ UTR (Additional file 7). In summary, the genomic
regions that showed differences in their cytosine methy-
lation pattern in CKD were not promoters, but intronic
and transcription termination regions and 3′ UTRs.
To further understand the functional significance of

the DMRs, we generated genome-wide chromatin
annotation maps using cultured human proximal tubular
epithelial cells (HKC8). First, we performed chromatin im-
munoprecipitation followed by next-generation sequencing
(ChIP-seq) for a panel of important histone modifications:
H3K4me1, H3K4me2, H3K4me3, H3K27ac, H3K27me3,
and H3K36me3. Next, we generated gene regulatory
annotation maps from the panel of ChIP-seq data using
the hidden Markov model-based ChromHMM chroma-
tin segmentation program [17,18]. Consistent with the
RefSeq-based annotation, there are very few DMRs local-
ized to ChromHMM-annotated kidney promoter regions
(Figure 3B). The analysis indicated that 30% of the DMRs
localized to enhancer regions, which was the most signifi-
cant enrichment. Similar results were obtained when we
generated adult kidney cortex ChromHMM maps (from
published ChIP-seq data; Figure 3B) [19]. Next, we com-
pared CKD-specific DMRs with chromatin annotation
maps of other, different cell types using the publicly avail-
able ENCODE database (Figure 3C). We found that CKD-
specific DMRs localized mostly to repressed chromatin
regions, while transcription and enhancer regions showed
the second highest enrichment. The result indicates that
DMR in CKD are enriched in kidney-specific gene regula-
tory regions, mainly (intronic) enhancers.
Gene regulatory regions are usually characterized by

DNase I hypersensitivity (DHS) [20] as DNA is usually
histone-free in gene regulatory regions so transcription
factors can bind to these regions. Therefore, we over-
lapped the DMRs with human fetal kidney and human
proximal tubule epithelial cell DHS-seq data (Gene Ex-
pression Omnibus (GEO) accession GSM530655). The
statistical analysis confirmed that DMRs are enriched in
DHS sites in both the fetal kidney epithelial dataset and
the cultured tubule epithelial cell dataset (data not
shown). Furthermore, we examined whether DMRs that
overlap with DHS sites show similarities, by identifying
the top 10 consensus sequences using the MEME software
[21]. To search for transcription factor binding motifs
amongst the top 10 sequences, we map the sequences to
the JASPAR, UniProbe and Transfac databases [22]. The
analysis highlighted that the DMRs contain consensus-
binding sequences for transcription factors that play im-
portant roles in proximal tubule development, including
SIX2, HNF, and TCFAP. The list of computationally iden-
tified transcription factor consensus motifs is shown in
Figure 4A. Figure 4B illustrates our complex computa-
tional analysis. Here a DMR is located in the intronic
region of the EZR (ezrin) gene. The DMR overlapped with
adult kidney and renal tubular epithelial cell-specific
H3K4me1 histone modification, but not with H3K4me3
enrichment. H3K4me1 is a specific histone tail modifica-
tion for enhancer regions, while H3K4me3 is a marker of
promoters. The ChromHMM-based gene regulatory re-
gion annotation confirmed that this region is an enhancer



Figure 3 Chronic kidney disease differentially methylated regions are localized to kidney-specific enhancer regions. (A) RefSeq
annotation of the DMRs. Relative enrichment ratio of the DMRs compared with the representation of the different elements on the methylation
microarray. TSS, transcription start site; TTS, transcription termination site. (B) DMRs overlap with regulatory element (chromatin state) annotation
maps of renal tubule epithelial cells (HKC8) and adult kidney cortex, indicating that most differentially methylated cytosines are localized to
enhancer (yellow and orange) regions in kidney epithelial cells. The color code annotation of the chromatin state map is provided bottom right.
(C) Chromatin annotation of the DMRs in five different ENCODE cell lines (H1, human embryonic stem cells; HepG2, hepatocytes; HUVEC,
endothelial cells; K562, erythroid cells; NHLF, human lung fibroblasts).
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in renal epithelial cells (yellow region in the genome).
These results indicate that by multiple different approaches
this DMR is located in a gene regulatory region, an enhan-
cer (Figure 4B). In addition, this region contained a con-
sensus binding sequence for SIX2, further confirming that
this is a gene regulatory region. In summary, our results
indicate that CKD-specific DMRs are located in non-
promoter gene regulatory regions, mainly enhancers, and
contain consensus-binding motifs for renal-specific tran-
scription factors.

Differential methylated regions are functionally relevant
and correlate with transcript levels
Next, we studied the functional significance of DMRs.
First, we examined whether they correlate with down-
stream transcript levels. Gene expression changes were
analyzed using RNA samples extracted from the same
microdissected tubule samples used in the methylation
assay. Individual RNA samples were hybridized to
Affymetrix U133 arrays and the data ware normalized
and analyzed using established pipelines [13]. From the
1,092 transcripts that were in close proximity to the
DMR regions (Figure 5A), we found 415 (approximately
40%) genes showing significantly differential expression
in the CKD samples (Figure 5A). As most DMRs were in
non-promoter regions, most transcript changes corre-
lated with intronic DMRs (Additional file 8). Gene
ontology and network analyses highlighted differences in
cell adhesion (collagens and laminins) and development-
related pathways (Figure 5B,C). Specifically, we observed
significant enrichment for differential expression and
methylation in the TGFβ pathway, especially in TGFBR3,



Figure 4 Chronic kidney disease differentially methylated regions are enriched for kidney-specific transcription factor binding sites.
(A) The DMR and DHS sites contain consensus sequences. The transcription factor binding site motifs and their statistical enrichment from the
de novo searched consensus sequences in DMR and DHS sites. (B) A specific example of an intronic DMR (within the EZR gene). The genomic location
of the DMR is at the top, followed by the RefSeq representation of EZR; fetal kidney (FK)-specific DHS tracks (in blue); HKC8 cell-specific H3K4me1 and
H3K4me3 tracks; HKC8 cell specific ChromHMM annotation of the locus (yellow, enhancer; red, promoter; green, transcription-associated region; the
full color coding key is shown bottom right) - the sequences contain consensus-binding sites for the key kidney transcription factor SIX2/3, with the
SIX2/3 binding motif illustrated as a sequence logo plot below; and adult kidney (AK)-specific H3K4me1 (blue) and H3K4me3 (green) tracks [19].
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SMAD3, SMAD6 and other targets (Figure 5D). These
genes are known to be critical in CKD development [23,24].
In summary, cytosine methylation changes showed correl-
ation with gene expression differences and identified
concordant changes in the TGFβ pathway, a well-known
regulator of kidney fibrosis development.

Differentially methylated region methylation drives gene
expression in vitro
To further dissect the relationship between cytosine
methylation and transcript level changes, we analyzed
gene expression and cytosine methylation patterns of tu-
bule epithelial cells at both baseline and 9 days after treat-
ment with a DNA methyltransferase inhibitor, decitabine
(5-aza-2-dexoycytidine). We used AffymetrixST1.0 arrays
to compare gene expression changes and the Infinium
450K arrays to examine cytosine methylation changes in
control (n = 3) and decitabine-treated cells (n = 4).
We tested whether we can identify a correlation be-

tween DMR and gene expression changes observed in
CKD (in vivo) and gene expression and methylation
changes in vitro after decitabine treatment. Decitabine is a
cytosine analogue; therefore, we can safely assume that
after decitabine treatment the cytosine methylation
changes were the primary cause for transcript level
changes. A limitation of the experiment is that decitabine
induces demethylation of genomic loci that could be
different from the CKD DMR. Large numbers of loci
showed concordant differential methylation and gene ex-
pression changes in CKD (in vivo) and following (0.5 μM)
decitabine treatment (in vitro), indicating that cytosine
methylation changes in CKD might be the functional
drivers for transcript level changes (Additional file 9).



Figure 5 Differentially methylated regions correlate with transcript changes. (A) The 4,751 DMRs mapped to 1,092 unique genes that were
present in the Affymetrix arrays. There were 415 transcripts that showed differences both in their methylation status and their expression in CKD
samples. The RefSeq-based locations of the DMRs are also shown. While most differentially methylated regions localize to gene body regions,
they also show correlation with the expression of many of those genes. Not only are the 415 transcripts differentially expressed, they also show
differences in their cytosine methylation profiles as well. (B) DAVID-based gene ontology annotation of the 415 transcripts. (C) Network chart of
the genes that are both differentially expressed and methylated). (D) Methylation and gene expression level of key molecules (RUNX3, RARB,
SMAD6) identified by the network analysis in control (CTL) and CKD samples.
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Genes related to cell adhesion (for example, collagen
molecules) showed differential methylation following
decitabine treatment as well (Figure 6A,B). In addition,
just as we observed before, we found that genes related to
development and cell adhesion were also differentially
expressed following decitabine treatment (Figure 6B,C).
SMAD3 appears to be one of the most important me-

diators of the pro-fibrotic effect in the TGFβ and angio-
tensin II pathways [23]. The SMAD3 locus contained
DMRs in both the initial and validation datasets (data
not shown). SMAD3 expression levels were lower in
both the original and confirmation datasets. Decitabine
changed the methylation of this locus and subsequently
it also changed SMAD3 transcript levels (data not
shown). To illustrate our findings, while RUNX1 clearly
plays an important role in leukemia development, it is
expressed in both mouse and human in the developing
and adult kidneys [25]. RUNX1 was also shown to be
differentially expressed in CKD tubules [13]. Both the ori-
ginal and replication dataset showed differential methyla-
tion of this locus (Figure 7A,C) and RUNX1 transcript
levels were increased in both datasets (Figure 7B,D).
RUNX1 DMRs clustered in ChromHMM annotated en-
hancer regions (Figure 7G) as it localized to H3K4me1
and DHS regions. In vitro treatment with decitabine
changed the cytosine methylation of this locus, and the
changes overlapped with the enhancer DMRs (Figure 7E).
Subsequent to the DMR change of this locus, we also
observed an increase in RUNX1 transcript levels both
in vivo and in vitro (Figure 7F). As decitabine did not
change the methylation of the RUNX1 promoter and af-
fected only the methylation levels of the enhancer site, the
result potentially indicates a causal relationship between
enhancer-related DMRs and gene expression changes.



Figure 6 Regulation of transcripts by a DNA methyltransferase inhibitor in in vitro cultured human tubular epithelial cells. Gene
ontology terms of transcripts showing differential expression in the decitabine-treated cells. (A) Illustration of regions that showed differential
methylation of cultured HKC8 cells treated with 0.5 μM decitabine (5'DAC). CTL, control. (B) The interconnected network analysis highlighted the
differential expression of cell adhesion and developmental pathways. These genes are also differentially expressed and methylated in the original
CKD dataset. GO, gene ontology.
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The concordant changes in cytosine methylation and
gene expression in CKD and in vitro (following DNA
methyltransferase inhibitors) indicate that DMRs are
potential drivers of critical CKD gene expression.

Discussion and conclusion
While epigenetic dysregulation has been suggested as a
mechanism for the development of many diseases, little
is known about the epigenome of normal and diseased
human cells and organs. Here we describe cytosine
methylation differences in tubule cells obtained from pa-
tients with CKD. We found that CKD DMRs have many
special features. First, most loci showed consistent cyto-
sine methylation differences in different forms of CKD.
These changes were smaller compared with what has
described in the cancer literature previously. While the
absolute differences were modest, the identified loci
showed highly consistent changes even across different
datasets and platforms. Unexpectedly, we found that
most methylation differences localized outside of pro-
moter areas, with promoter regions markedly spared
from cytosine methylation differences. Our results indi-
cate that the differentially methylated regions were lo-
cated mainly at candidate enhancers. We found that the
DMRs contain consensus-binding motifs for key renal
transcription factors (HNF, TCFAP, SIX2). Furthermore,
cytosine methylation levels correlated with baseline gene
expression changes. These epigenetically distinct but
morphologically similar cells also showed differences in
their cytokine response. We illustrated our findings in a
model hypothesizing that enhancer DMRs might modify
transcription factor binding and thereby downstream
transcript levels.
Based on our results, we propose that cytosine methy-

lation changes are causally linked to transcript levels and
phenotype development. As hypertensive and diabetic
tubule samples showed similarities (both in cytosine
methylation and gene expression changes), the observed
changes are likely to be part of a common mechanism of
progression. This may be expected, as phenotypically the
tubulointerstitial fibrosis of DKD and hypertensive CKD is
similar. In addition, we found that DMRs were enriched
for genes related to development, many of them no longer
expressed in the adult kidney. The DMR regions also
contained binding sites for key kidney developmental fac-
tors (such as SIX2, HNF, and TCFAP). One possible inter-
pretation of our findings is that the epigenetic differences
are established during development. This is the time when
the cell type-specific epigenome is established and when
these genes and transcription factors play functional roles.
Therefore they can possibly provide the mechanistic link
between fetal programming and CKD development - the
Brenner-Barker hypothesis put forward many decades ago
[26,27], proposing that nutrient availability during devel-
opment has a long lasting programming role in hyperten-
sion and CKD development. In addition, reactivation of
the developmental pathways is also needed during organ
injury repair [28]. We can also speculate that the altered
developmental wiring of these pathways could continue to
play a role later on as alterations observed after repair.



Figure 7 Gene body cytosine methylation changes drive gene expression differences. RUNX1 methylation and gene expression were
examined only (A,B) In the original discovery dataset, the gene body region of RUNX1 was hypomethylated (A) and the corresponding transcript
level was increased (B) in the CKD (discovery) dataset. CTL, control. (C,D) The differential methylation (C) and expression (D) of RUNX1 in the DKD
replication dataset. (E,F) Transcript levels are increased (F) in vitro in cultured tubules after decreasing the methylation level of the locus following
0.5 μM decitabine (DAC) treatment (E). (G) Genomic representation of the RUNX1 locus showing DMRs in the DKD dataset and in the CKD
dataset. Different tracks are shown for the RUNX1 locus, including RefSeq gene, DMRs in the DKD dataset, DMRs in the CKD cells, and histone
ChIP-seq data for H3K4me1 and H3K4me3 for adult kidney cortex and DHS sites from fetal kidneys. In addition, ENCODE-based transcription
factor binding sites are also shown.
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Indeed, control and CKD kidney epithelial cells showed
not only cytosine methylation differences but also differ-
ent responses to cytokine treatment.
A limitation of our results remains that our samples

were collected in a single center. Furthermore, base pair
resolution results will likely help to refine the more pre-
cise location of DMRs and the methylation differences
in the future. Furthermore, while microdissection is an
excellent separation method to generate a homogenous
tubular epithelial cell population from the kidney, the
potential risk for increased cell type heterogeneity in
CKD remains. As isolated and cultured cells continued
to show many of the epigenetic and transcriptional dif-
ferences, it is more likely that the observed differences
are not related to cell type heterogeneity.
In summary, while it has long been speculated that
epigenetic dysregulation might occur in non-cancerous
diseases, including CKD, here we provide experimental
evidence for cytosine methylation changes in human
kidney tissue samples, opening the possibility that they
play a role in CKD development.

Materials and methods
Ethics statement
The clinical study used the cross-sectional design. Kidney
samples were obtained from routine surgical nephrecto-
mies. Samples were de-identified and the corresponding
clinical information was collected by an individual who
was not involved in the research protocol. The study was
approved by the Institutional Review Boards of the Albert
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Einstein College of Medicine Montefiore Medical Center
(IRB#2002-202) and the University of Pennsylvania. Histo-
logical analysis was performed by an expert pathologist
(IRB#815796).

Tissue handling and microdissection
Tissue was placed into RNALater and manually micro-
dissected at 4°C for glomerular and tubular compartments
as described earlier. Dissected tissue was homogenized
and RNA was prepared using RNAeasy mini columns
(Qiagen, Valencia, CA, USA) according to the manufac-
turer’s instructions. RNA quality and quantity was deter-
mined using Lab-on-Chip Total RNA PicoKit (Agilent
BioAnalyzer, Santa Clara, CA,USA). Only samples without
evidence of degradation were used. Genomic DNA was
extracted by phenol chloroform protocol for HELP ana-
lysis and the DNAeasy kit was used for the Infinium
platform.

DNA methylation analysis by HELP
The HELP assay was carried out as previously published
[29]. Intact DNA of high molecular weight was corrobo-
rated by electrophoresis on 1% agarose gels in all cases.
One microgram of genomic DNA was digested over-
night with either HpaII or MspI (NEB, Ipswich, MA,
USA). The digested DNA was used to set up an over-
night ligation of the HpaII adapter using T4 DNA ligase.
The adapter-ligated DNA was used to carry out the PCR
amplification of the HpaII- and MspI-digested DNA as
previously described [14]. Both amplified fractions were
submitted to Roche-NimbleGen, Inc. (Madison, WI,
USA) for labeling and hybridization onto a human hg18
high-density custom-designed oligonucleotide array (50-
mers) containing 2.6 million loci. HpaII amplifiable frag-
ments are defined as genomic sequences contained
between two flanking HpaII sites found within 200 to
2,000 bp of each other. All microarray hybridizations
were subjected to extensive quality control using the
following strategies. First, uniformity of hybridization
was evaluated using a modified version of a previously
published algorithm [30] adapted for the NimbleGen
platform, and any hybridization with strong regional
artifacts was discarded and repeated. The raw data can
be accessed under GSE49557.

HELP data processing and analysis
Signal intensities at each HpaII amplifiable fragment
were calculated as a robust (25% trimmed) mean of their
component probe-level signal intensities. Any fragments
found within the level of background MspI signal inten-
sity, measured as 2.5 mean absolute differences (MAD)
above the median of random probe signals, were catego-
rized as 'failed'. These 'failed' loci therefore represent the
population of fragments that did not amplify by PCR,
whatever the biological (for example, genomic deletions
and other sequence errors) or experimental cause. On the
other hand, 'methylated' loci were so designated when the
level of HpaII signal intensity was similarly indistinguish-
able from background. PCR-amplifying fragments (those
not flagged as either 'methylated' or 'failed') were normal-
ized using an intra-array quantile approach wherein
HpaII/MspI ratios are aligned across density-dependent
sliding windows of fragment size-sorted data. The log2
(HpaII/MspI) was used as a representative for methylation
and analyzed as a continuous variable. For most loci, each
fragment was categorized as either methylated, if the
centered log HpaII/MspI ratio was less than zero, or
hypomethylated if the log ratio was greater than zero.
Statistical analysis of HELP data was performed using

the statistical software R version 2.13.1 [30]. A two-sample
t-test was used for each gene or locus to summarize
methylation differences between the two clinical groups
(cases and controls). Genes were ranked on the basis of
the magnitude of this test statistic and a set of differen-
tially methylated loci with P-value <0.01 and a fold
change >0.5 was identified.

Quantitative DNA methylation analysis by MassArray
epityping
Validation of HELP microarray findings was carried out
by matrix-assisted laser desorption/ionisation-time of
flight (MALDI-TOF) mass spectrometry using EpiTyper
by MassArray (Sequenom, San Diego, CA, USA) on
bisulfite-converted DNA as previously described [31].
MassArray primers were designed to cover the flanking
HpaII sites for a given HpaII-amplifiable fragments
(HAF), as well as any other HpaII sites found up to 2,000
bp upstream of the downstream site and up to 2,000 bp
downstream of the upstream site, in order to cover all
possible alternative sites of digestion. HAF is defined by
those fragments where two HpaII sites are located 200–
2000 bp apart with at least some unique sequence
between them and selected those located at gene pro-
moters and imprinted regions.

Gene expression analysis using Affymetrix arrays
Transcript levels were analyzed using Affymetrix U133A
and 1.0ST arrays. Probes were prepared using an
Affymetrix 3′ IVT kit. After hybridization and scanning,
raw data files were imported into Genespring GX soft-
ware (Agilent Technologies). Raw expression levels were
normalized using the RMA16 summarization algorithm.
Genespring GX software was then used for statistical
analysis; the data were above the 20th percentile when
filtered by expression. We used a Benjamini-Hochberg
multiple testing correction with a P-value <0.05. Both
heatmap of methylation data and gene expression data
were generated using an unsupervised hierarchical
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clustering method calculated by squared Euclidean
distances. Methylation data used in clustering have a
P-value <0.00015 and a fold change ≥0.5. The raw data
can be accessed through accession GSE48944.

Gene ontology and transcription factor binding sites
The Database for Annotation, Visualization and Integrated
Discovery (DAVID) bioinformatics package was used for
gene ontology and pathway analysis. In addition, Ingenuity
Pathway Analysis (IPA, Redwood City, CA, USA) was
used to generate networks.
Sequences of DMRs (n = 4,751) were lifted over from

hg18 to hg19 using UCSC Genome Browser Utilities. The
regions were then intersected with fetal kidney or human
kidney epithelial-specific DHS peaks (data from GEO
GSM530655); a total of 364 overlapping regions were
used. Motif weight matrices overrepresented in the over-
lapped sequences were identified using MEME version
4.8.0 [21] on the 364 regions with parameter -oc -nmotifs
10 -minw 8 -maxw 50.
Adult kidney ChIP-seq data were downloaded from

the Roadmap database (GEO accessions GSM670025 for
adult kidney and GSM621638 for adult kidney input).
The overlap was set to be a minimum of 1 bp in length.

Motif searching
We compared de novo motifs to motifs available as part
of various databases, including Transfac, version 2011.1,
Jaspar Core, and UniPROBE using TOMTOM software
[22], version 4.8.1. TOMTOM parameters were set to
their default values during motif comparisons. When
partitioning the de novo motifs, assigning each to a sin-
gle category, the order of match assignment preference
was to Transfac, Jaspar Core, UniPROBE, and then to
the novel motif category.

Cell lines
HKC8 cells were kindly provided by Lorainne Racusen
(Johns Hopkins University) and were cultured in DMEM/
F12 medium supplemented with 2.5% fetal bovine serum,
antibiotics and insulin, transferrin and selenium. Cells
were incubated with 0.5 μM decitabine on days 2, 4, 6,
and 8 and harvested on day 9. RNA was isolated using a
Qiagen RNeasy kit labeled using an Ovation transcript la-
beling kit and hybridized onto Affymetrix Human ST1.0
arrays.

Chromatin immunoprecipitation sequencing
HKC8 cells were harvested and crosslinked with 1%
formaldehyde when they reached 80% confluency on
culture plates. Chromatin was sheared using a Bioruptor
and immunoprecipitated using H3K4me1 (Abcam ab8895,
Cambridge, MA, USA), H3K4me2 (Abcam ab11946),
H3K4me3 (Abcam ab8580), H3K36me3 (Abcam ab9050),
H3K27ac (Abcam ab4729) and H3K27me3 (Millipore
07–499, Billerica, MA, USA) marks. ChIP was performed
as described in the manual of MAGnify™ Chromatin
Immunoprecipitation System (Invitrogen, Grand Island,
NY, USA). Quantitative real-time PCR was performed to
ensure the quality of the ChIP product. The ChIP product
was assessed for size, purity, and quantity using an Agilent
2100 Bioanalyzer (Agilent Technologies). Library prepar-
ation and sequencing were performed at the Einstein
Epigenome Center. Sequence reads (100 bp) were gen-
erated from llumina HiSeq 2000 [32]. Reads were
aligned to the reference genomes (NCBI build 37, hg19)
using Bowtie (v 0.12.7). Repetitively mapped and duplicate
reads were excluded. The data can be accessed using
accession GSE49637.

ChIP-seq data analysis
We used the MACS version 1.4.1 (model-based analysis of
ChIP-Seq) peak-finding algorithm to identify regions of
ChIP-Seq enrichment over background [33]. A false discov-
ery rate threshold of enrichment of 0.01 was used for all
data sets. The resulting genomic coordinates in bed format
were further used in ChromHMM v1.06 for chromatin an-
notation. The following parameters were used: -Xmx1600M
-jar ChromHMM.jar BinarizeBed hg19 -Xmx2000M -jar
ChromHMM.jar LearnModel 10 hg19.

DNase I hypersensitive site analysis
Human kidney DHS sequencing data (GEO GSM530655)
was analyzed with MACS (v.1.4.1). The resulting peaks
were overlapped with the differentially methylated regions.
The control random genomic loci were generated using
Regulatory Sequence Analysis Tools. Based on the data
property of differentially methylated regions, we used the
same number of fragments (4,751) and the same average
fragment size (443 bp) as parameters for the random loci.

Illumina infinium 450K BeadChip arrays
Genomic DNA (200 ng) was purified using the DNeasy
Blood and Tissue Kit (Qiagen) following the manufacturer’s
protocol. Purified DNA quality and concentration were
assessed with a NanoDrop ND-1000 (Thermo Scientific,
Waltham, MA, USA) and by Quant-iT™ PicoGreen®
dsDNA Assay Kit (Life Technologies) prior to bisulfite
conversion. Purified genomic DNA was bisulfite converted
using the EZ DNA Methylation Kit (Zymo Research,
Orange, CA, USA) following the manufacturer’s protocol.
Bisulfite DNA quality and concentration were assessed,
following the Illumina 450K array protocol, bisulfite
converted sample was whole-genome amplified, enzymati-
cally digested, and hybridized to the array, and then single
nucleotide extension was performed.
Chips were scanned using an Illumina HiScan on a

two-color channel to detect Cy3-labeled probes on the
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green channel and Cy5-labeled probes on the red channel.
Illumina GenomeStudio Software 2011.1 Methylation
Module 1.8 was used to read the array output and conduct
background normalization. The level of DNAm for
428,216 probes in our sample dataset was intersected with
the expanded annotation for further analyses. All samples
were run together to eliminate the batch effect according
to the pipelines established by Illumina Genome Studio.
The full dataset can be accessed in GEO under GSE50874.
Additional files

Additional file 1: Table S1. Demographic, clinical and histological
characteristics of the samples.

Additional file 2: Figure S1. Principal component analysis of the
transcript levels in the original dataset show no significant differences
based on diabetes status of the samples. Dark red circles indicate CKD
gene expression data points, light red circles indicate DKD data points,
light blue diabetic control data points and dark blue control data points.

Additional file 3: Table S2. List of differentially methylated regions in
CKD. List of differentially methylated loci, P-values, genomic location
(hg18), and their methylation levels in individual samples, with the
nearest annotated transcript to each DMR listed.

Additional file 4: Figure S2. MassArray-based confirmation of cytosine
methylation levels. Absolute methylation values are plotted on the y-axis
while relative methylation values from the HELP dataset are shown on
the x-axis. Each plot represents methylation values from one human
kidney tissue (HK). We ran each sample with nine different primer sets
that represent low, intermediate and highly methylated regions.

Additional file 5: Table S3. External validation of HELP DMRs using the
Illumina Infinium 450K platform of 87 DKD samples. The CKD (HELP)
DMRs were assigned to the nearest RefSeq genes and the methylation
differences for these RefSeq genes were extracted from the Infinium
450K arrays. The probes showing differential methylation are listed here.
Multiple probes presented for the HELP DMRs were also differentially
methylated in the Infinium 450K arrays. The number of gene-based,
unique overlapping DMRs was 1,061.

Additional file 6: Figure S3. MassArray-based confirmation and
external validation of the differentially methylated loci. (A,D) Average
HpaII/MspI methylation ratio of DMRs on the HELP array in control (blue)
and CKD kidneys (red). The original data can be found in Additional file 3.
(B,E) MassArray Epityper-based absolute methylation level of the locus
for control (blue) and CKD kidneys (red). Note that one HELP probe
represents multiple CpG sites. (C,F) Methylation difference between DKD
and control for this region in the external validation dataset. This dataset
was generated using the Illumina Infinium 450K arrays from 66 control
and 21 DKD microdissected kidney samples. The original data can be
found in Additional file 7). (A-C) Changes in the Dermatopontin gene
(DPT); (D-F) changes in the Down syndrome cell adhesion molecule
(DSCAM) locus.

Additional file 7: Figure S4. RefSeq annotation of the DMRs. The
number of probes on the Roche-NimbleGen customized array, DMRs,
hypo- or hypermethylated DMRs in each Refseq-based annotation
groups. Relative enrichment ratio of the DMR compared with the
representation of the different elements on the methylation
microarray.

Additional file 8: Table S4. Correlations of DMR and transcript levels.
DMRs from the HELP assay and its corresponding transcripts (Affymetrix
arrays) are listed. There were multiple DMRs for some of the transcripts
and they are all listed. Chromosomal location, methylation level, gene
expression differences, and P-values are included in the table.

Additional file 9: Table S5. CKD DMRs observed in decitabine-treated
cells. CKD DMR loci showing statistically significant differences in HKC8
cells treated with 0.5 μM decitabine. The CKD DMRs were analyzed using
HELP assays, while the decitabine-treated cells were analyzed using
Infinium arrays.
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TGFβ: transforming growth factor beta; UTR: untranslated region.
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