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Image-based surgical instrument tracking in robot-assisted surgery is an active and challenging research area. Having a real-time knowledge of
surgical instrument location is an essential part of a computer-assisted intervention system. Tracking can be used as visual feedback for servo
control of a surgical robot or transformed as haptic feedback for surgeon–robot interaction. In this Letter, the authors apply a multi-domain
convolutional neural network for fast 2D surgical instrument tracking considering the application for multiple surgical tools and use a focal
loss to decrease the effect of easy negative examples. They further introduce a new dataset based on m2cai16-tool and their cadaver
experiments due to the lack of established public surgical tool tracking dataset despite significant progress in this field. Their method is
evaluated on the introduced dataset and outperforms the state-of-the-art real-time trackers.
1. Introduction: Minimally invasive surgery has attracted broad
attention in the surgical practice, which can easily access the
small surgical site inside the human body and is less painful to
the patients. However, manipulation of the surgical instruments
in the restricted operating space has brought new problems,
such as limited field of view of the endoscope, reduction of
surgeon’s dexterity and lacking perception of force feedback.
In recent years, robot-assisted intervention has been introduced
into the study and clinic, which has provided great help to
operation. Surgeons can teleoperate a robot to control articulated
instruments with master manipulators, and high precision and
dexterity can be obtained at the same time. Nevertheless, the
operation in the complex and volatile surgical environment still
poses a great challenge, so more tracking information should be
collected to reduce uncertainty. The real-time pose of a surgical
tool can be used to constrain the dynamic motion and provide
haptic feedback for human–robot interaction. Besides, it can
further help to realise the autonomous navigation of surgical
instruments with servo control.
Marker-based optical tracking system and magnetic tracking

system are two mainly available commercial tracking systems for
surgical navigation. The magnetic tracking system uses magnetic
transmitters to create a magnetic field to detect the pose of the
sensors, which can avoid the occlusion problem [1]. However, it
easily suffers from electromagnetic interference and its effective
working space is limited. Marker-based optical tracking systems
can be divided into two parts: infrared-based tracking and image-
based tracking. The infrared-based tracking uses an infrared camera
to localise reflective spheres attached to surgical tools with high pre-
cision, but the price is relatively high [2]. The image-based tracking
utilises an ordinary camera and designed markers to acquire the
location of instruments, which should take biocompatibility into
consideration [3]. Recently, visual simultaneous localisation and
mapping has been used for localisation of the endoscope without
the aid of other equipment [4], and the registration between preopera-
tive and intraoperative information has effectively improved the
accuracy and the success rate of the surgery.
In order to realise the localisation completely relied on an image-

based method without modification to the surgical setup, the surgi-
cal tool tracking or detection on 2D images is an essential step.
Recently, a novel 6D object pose estimation algorithm was pro-
posed [5]. It can exploit a denoising autoencoder to obtain 3D
orientation estimation just utilising rendered 3D model views
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without the existence of pose-annotated training data. Then 3D
translation estimation is involved in the framework considering
the pinhole camera model, so knowing the camera intrinsic para-
meters and target locations with 2D bounding boxes is necessary
here. Kurmann et al. [6] used a convolutional neural network
(CNN) architecture to simultaneously recognise multiple instru-
ments and estimate the positions of 20 joints in 2D images. Laina
et al. [7] proposed a method that combines the surgical instrument
segmentation and localisation together into a one deep learning
architecture to realise the surgical instrument tracking, which
indeed can provide more abundant medical information, but its
robustness still needs to be enhanced in some challenging situations
such as illumination variation, deformation and occlusion. Jin et al.
[8] leveraged the region-based CNN to detect surgical tools and
assess the operative skill based on their introduced new dataset
named m2cai16-tool-location. All the methods are using object
detection algorithms for surgical tool tracking, and there is no
such large surgical dataset with annotation on sequential frames
either. Therefore, we propose to use a deep neural network to
track the surgical tool on our own dataset. It should be robust to
various challenging in vivo scenes, such as deformation, motion
blur, scale variation, occlusion, in-plane rotation etc.

In summary, our main contributions in this Letter are as follows:

(i) A new surgical tool tracking (STT) dataset is introduced with
the bounding box as the ground-truth annotation in sequential
frames. It will be made public available after accepted.

(ii) Multi-domain CNN is applied to surgical tool tracking and we
optimise a multi-task loss by reducing the effect of easy nega-
tive examples into consideration. Our tracking method is
demonstrated to have an improved performance against
state-of-the-art real-time trackers on the STT dataset.
2. Dataset: Tracking the surgical tool during the operation poses a
great challenge because of variable surgical scenes and poses of
surgical tools. Besides, these surgical tools are easily missing in
the frame due to the limited field of view of endoscope and
occlusion that occurs frequently with tissue deformation.

However, the surgical tool detection or tracking datasets for
public use are limited, which is preventing the faster improvement
of computer-assisted intervention system. JIGSAWS [9] and
m2cai16-tool [10] are open to public use without tool location
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Table 1 Properties of our dataset

Data sources Surgical tool types No. of
videos

No. of
frames

m2cai-tool-tracking bipolar 4
clipper 2
grasper 3
hook 4

irrigator 4
scissor 4

robot-assisted-tracking grasper/electrocoagulator/
sensor/monopolar eletrotomes

7

total 28 12,347
test set 17 10,244
total 45 22,591

Fig. 2 Our robot-assisted surgery framework which exploits multi-domain
CNN to track surgical tools with endoscopic images as input and surgical
tool location as output. The output information with bounding boxes will
be further utilised in the processing unit to provide 6D pose estimation,
which will provide more benefits for surgical tool navigation

Fig. 1 Our dataset is made based on cadaver experiment videos for trans-
oral surgery and selected laparoscopic surgery videos in the m2cai16-tool
dataset. The corresponding examples of surgical tools are shown here
annotation. Recently, m2cai16-tool-location is introduced, which is
an extension of m2cai16-tool with spatial bounds of tools. This
dataset is mainly for tool identification and localisation, while not
for typically surgical tool tracking problem. Besides, Sarikaya
et al. [11] provided a surgical tool detection dataset called
ATLAS Dione for public use. However, ATLAS Dione is mainly
built on a phantom setting, which is still quite different from the
real surgical scenes, and the type of daVinci surgical tool in the
dataset is single, which is not universally suitable. We, therefore,
collect and build a new dataset called STT dataset with sequential
frame annotations using bounding boxes, which is a core contribu-
tion of our work.

Our dataset has two sources, as shown in Fig. 1, one is
m2cai16-tool (m2cai-tool-tracking sub-dataset) which is for laparo-
scopic surgery and the other is our cadaver experiment for robot-
assisted transoral surgery (robot-assisted-tracking sub-dataset).
Forty-five videos are collected with 22,591 frames annotated with
the bounding box, indicating the locations of targeted surgical
instruments including (i) grasper, electrocoagulator, force/pose
sensor and monopolar eletrotomes in our cadaver experiment
videos and (ii) grasper, bipolar, hook, clipper, irrigator and scissors
in the m2cai16-tool dataset. Particularly, each video is collected
in different surgical scenes and conditions and the test dataset
containing 17 videos is also selected considering the balance of
surgical tool categories. Our dataset generation process is strictly
according to online tracking benchmark (OTB) [12] standard,
which is a mainstream object tracking benchmark in computer
vision community and could be transferred to surgical tool tracking
field. We made the bounding-box annotations under the guidance
of surgeons who also joined our cadaver experiments. Besides,
we made the annotations frame by frame manually and put
our best effort to make them as accurate as possible. Considering
different challenges, we carefully classify it into eight different
categories, such as illumination variation, background clutter,
deformation, occlusion, in-plane rotation, scale variation,
out-of-plane rotation and motion blur. Each frame provided in
our dataset is in JPEG format with size 1920 × 1080 pixels and
the corresponding annotations are provided in the OTB format.
See Table 1 for more details of our dataset.

3. Approach:Due to the application for multiple surgical tools, our
approach for surgical tool tracking is based on a tracker named
RT-MDNet, which means a real-time multi-domain convolutional
neural network [13]. The architecture of this network is made up
of several shared layers and multiple branches of domain-specific
layers. The network can be trained specifically for each domain
(each instrument type) and the generic target representation can
be obtained in the shared layers, as shown in Fig. 2. To make the
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training process more effective, we exploit a focal loss to
decrease the effect of easy negative examples.

3.1. Network architecture: The RT-MDNet is an improved version
of the MDNet. It can take the sequential images obtained from
the endoscope mounted on the surgical robot as inputs and the
outputs are the 2D bounding boxes indicating surgical tool loca-
tions, which can be used for automatic visual servo control and
surgeon–robot interaction. The whole architecture of the network
is made up of three convolutional layers (conv1–conv3), an
improved Region of Interest Alignment (RoIAlign) layer and
three fully connected layers (fc4–fc6). Firstly, the convolutional
feature maps of the input images are extracted by the fully convo-
lutional layers. Then, all the feature maps will be put into a
RoIAlign layer to obtain targeted surgical tool representations.
RoIAlign [14] was designed by exploiting bilinear interpolation
to enhance the quantisation of the feature map, but it may also
fail when the size of RoI is too large. In order to avoid obtaining
the coarse extracted features and improve the representation
quality of the RoIs, an improved adaptive RoIAlign layer is
designed by exploiting a denser feature map from fully convolu-
tions and enlarged receptive field of every activation. After
that, fc4 and fc5 will accept the refined RoI representation as an
input to classify between the surgical tool and background. The
domain-specific layer fc6 with D branches (each branch corres-
ponding to each surgical tool in a specific condition) tries to
perform the multi-domain learning during the training stage and
will be fine tuned with the initial frame during the testing.
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3.2. Loss function: The real-time MDNet accelerates the procedure
of accurate feature extraction with the help of the improved
RoIAlign technique and dilated convolutions. The discriminative
feature learning has been enhanced to distinguish multi-domain
foreground objects compared to the original MDNet [15] which
only considers the distinction between the foreground and
background. The output score is denoted by f d which is a
concatenation of all the activation from the last fully connected
layers (fc61 − fc6D):

f d = [f1(xd ; R), f2(xd ; R), ..., fD(xd ; R)] [ R2×D, (1)

where xd and R denote the input image in domain d and the
corresponding bounding box, respectively, and f is the mapping
from the input image to 2D binary classification score.
The network is trained by optimising the loss function composed

of standard cross-entropy (CE) loss for binary classification and
instance embedding loss for distinguishing multi-domain target
instances. The softmax function sinst(·) and the loss function Linst
for instance embedding are formulated as

[sinst(f
d)]ij = exp (f dij )

/∑D
k=1

exp (f dik ), (2)

Linst = − 1

N

∑N
i=1

∑D
d=1

[yi]+d · log ([sisnt(f
d)]+d), (3)

where yi [ 0{ , 1}2×D is defined as the class label in a one-hot
encoding format and the sign +means only positive examples are
used.
However, due to the class imbalance between limited positive

examples and quite a few negative examples, which may hold a
dominant position in CE loss, the gradient update can be in an in-
appropriate direction leading to an unsatisfactory training model.
Given a class imbalance, we take focal loss [16] into consideration
and add a modulating factor (1− [scls(f

d̂(k))]cd̂(k)) to the CE loss
function as shown below:

[scls(f
d)]ij = exp (f dij )

/∑2
k=1

exp (f dkj ), (4)

Lcls = − 1

N

∑N
i=1

∑2
c=1

[yi]cd̂(k)(1− [scls(f
d̂(k))]cd̂(k)) log ([scls(f

d̂(k))]cd̂(k))

(5)

where scls(·) and Lcls are defined as the binary classification softmax
function and the modified loss function, respectively, and the
network update is based on a mini-batch collected from the
domain d̂(k) = (k mod D) in the kth iteration.
Then the network is trained by optimising a multi-task function

for each frame:

L = Lcls + aLinst, (6)

where a indicates the hyperparameter to balance the importance of
two components in the loss function. The advantage of our
designed loss function will be shown in Section 4, and evaluation
on the STT dataset will be provided as well.

3.3. Online tracking: Our online tracking method is almost
according to the pipeline of MDNet. At testing stage, the multiple
branches fc61–fc6D will be replaced with a single initialised
layer fc6 and the fully connected layers fc4–fc6 will be fine tuned
to customise the new test sequence by using the initial frame with
annotated bounding box as a ground truth.
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The network will be updated with the long-term, short-term
update methods in the rest of frames in order to improve the robust-
ness and adaptiveness [15]. Long-term updates are used regularly
by collecting positive examples, while short-term updates are con-
ducted when tracking fails, which means the estimated scores are
below a threshold. Considering the redundance and irrelevance
of the negative examples over the long period, we only consider
the negative examples during the short term. Actually, to obtain
the target state based on an input image, a group of samples
x1, x2, ..., xN is selected around the previous target position by
utilising a Gaussian distribution. The optimal target state x∗ can
be obtained by

x∗ = argmax
xi

f +(xi), (7)

where f +(xi) denotes the positive score of the ith sample.
Besides, we also exploit the bounding-box regression technique

[17] to obtain tight bounding box, which usually means better local-
isation accuracy. Consider its time-consuming problem for an
online update, a linear regression model is trained only in the first
frame and it will be used to adjust the estimated bounding boxes
obtained from (6) in the following frames if they satisfy
f +(xi) . 0.5 in our application.

4. Experiments and evaluation
4.1. Implementation: The implementation details of our method
are similar to RT-MDNet. The first three convolutional layers
(conv1–conv3) are initialized with the weights transferred from
VGG-M [18] network which is pretrained on ImageNet [19],
while the following fc4–fc6 are randomly initialised.

The training process and hyperparameter in our case are given as
follows:

Offline pretraining: For each iteration, we collect examples for each
minibatch from a single domain. We define the positive and nega-
tive bounding boxes based on Intersection over Union (IoU). If IoU
of an example is larger than 0.7, it is treated as a positive one, while
the IoU of negative example is usually lower than 0.5 in our case.
Besides, the hyperparameter α in (5) is set to 0.2.
Online training: For the first frame, we need to fine tune the offline
pertained. Here, we collect 500 positive and 5000 negative exam-
ples. For the rest frames, 50 positive examples with >0.7 IoU and
200 negative examples with <0.3 IoU are collected. Besides, we
conduct the long-term update for every 10 frames.
Optimisation (stochastic gradient descent): For learning rate,
0.0001 is set for offline training with 800 epochs, while 0.0003 is
for fine tuning. Weight decay is set to 0.0005 and momentum is
set to 0.9.

4.2. Evaluation: We perform ablation studies about loss function on
the STT dataset and further compare our method with the other five
real-time trackers: SiamFC [20], DSST [21], BACF [22], ECO-HC
[23] and RT-MDNet on the STT dataset and its two sub-datasets.
All these compared real-time trackers are all the state-of-the-art
trackers published in the last 3 years.

The standard one-pass evaluation (OPE) approach presented in a
tracking benchmark [16] is followed, which includes the precision
plot (centre location error) and the success plot (bounding-box
overlap ratio) metrics. The precision plot is generated by measuring
the frame rates of successfully tracked targets within different centre
location error thresholds. The threshold used for ranking is set to 50
pixels which is different from other ordinary datasets such as OTB
(20 pixels) [16] because the resolution of our dataset (1920 × 1080)
is twice larger than the others. The success plot metric considers the
bounding-box overlap ratio between the ground truth and the
161
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predicted result. The ranking order in the success plot is determined
by a criterion called area under curve score [16].

Figs. 3a and b show that our method has an improvement over
RT-MDNet, which means our loss function effectively decreases
the bad impact from a large amount of easy negative examples
and makes the network mainly focus on hard examples. Besides,
our tracker surpasses all the other real-time trackers on STT
dataset as well, as shown in Figs. 3c–h. In Fig. 4, we can further
see that our tracker has good performances in various challenging
scenarios: illumination variation, background clutter, deformation,
occlusion, in-plane rotation, scale variation, out-of-plane rotation
and motion blur, which also indicates that our tracker has good
robustness. The quantitative comparison including frame-
per-second (FPS) is presented in Table 2. Our method runs with
14 FPS on average which decreases heavily compared with
running on other ordinary datasets [10] due to the much larger reso-
lution of our input images. Specifically, multiple convolutional
layers and fully connected layers in the network are applied
to extracting feature maps, whose computational cost increases
along with the input image resolution going up. Besides, the
improved RoIAlign technique which is used to alleviate the
ineffectiveness of target localisation due to coarse feature map
also increases the computational complexity because it enlarges
Fig. 3 Precision and success plots using OPE
a, b Ablation study: our method compares with RT-MDNet and the
corresponding version without instance embedding loss on our STT dataset
c–h Show quantitative results of six real-time trackers on
m2cai-tool-tracking sub-dataset, robot-assisted-tracking sub-dataset and
STT dataset
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the receptive field and requires computing a denser convolutional
feature map. The other trackers are similarly affected by a similar
reason to a certain extent.

Notably, efficient convolution operator hand-crafted feature
version of ECO ((ECO)-HC) which is real-time variant of ECO
also performs well on our dataset and its tracking speed performance
is particularly outstanding. Although ECO-HC runs twice faster,
our tracker still has almost 2% higher success rate and precision.
The speed of our method is almost the same with ECO-HC
when tested on OTB, but decreases a lot when the input resolution
increases twice larger in our dataset due to multi-convolutions
with high-resolution images and improved RoIAlign technique to
improve the representation quality of RoIs. Furthermore, our
method outperforms the other algorithms (SiamFC, DSST, BACF
and RT-MDNet) much more considering precision and success plots.

Besides, the qualitative evaluation of the six trackers is shown
with remarkable selected example frames which indicate that our
method outperforms the state-of-the-art on the STT dataset in
Fig. 5. The first four rows of the images show testing performances
on m2cai-tool-tracking sub-dataset while the last two rows are from
Fig. 4 Success plots of six real-time trackers over eight tracking challenges
a Illumination variation
b Background clutter
c Deformation
d Occlusion
e In-plane rotation
f Scale variation
g Out-of-plane rotation
h Motion blur
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Table 2 Quantitative comparisons of six real-time trackers on STT dataset

Trackers SiamFC DSST BACF ECO-HC RT-MDNet Ours

succ (%) 25.1 46.6 56.4 59.1 53.8 61.5
prec (%) 48.6 45.9 65.1 65.9 61.0 67.5
FPS 19.4 11.5 9.9 32.6 13.9 14.0

Fig. 5 Qualitative evaluation of six real-time trackers with example frames
shows that our method outperforms the state-of-the-art on STT dataset
our cadaver experiments. Each row includes three sample images
from a test sequence. From each case, our tracker can effectively
detect the location of the target surgical tools with higher accuracy
and tighter bounding boxes, while the other trackers have larger
tracking errors with more invalid information, even total failure in
some cases.
Although our algorithm has good performance over eight track-

ing challenges, it cannot work well when the surgical tool is totally
out of sight, and tracking will be lost sometimes. Such relocalisation
problem is much more challenging and complex, which is beyond
the scope of this Letter.
5. Conclusion: In this Letter, we applied the multi-domain CNN
to surgical instrument tracking. We design a novel multi-task
loss by taking the reducing effect of easy negative samples and
discriminating instances across domains into consideration
together. Besides, we introduced a surgical tool tracking dataset
called STT with bounding box as the ground-truth annotation.
Our experiments demonstrate that our tracking method has a
better performance against other state-of-the-art real-time trackers
on our dataset. Especially, our tracker has almost 2% higher
success rate and precision than ECO-HC which has the highest
tracking speed, and has relatively better performance in most
challenging cases. However, the speed of our method decreases
a lot when the input resolution increases twice larger in our
dataset compared with OTB due to multi-convolutions with
Healthcare Technology Letters, 2019, Vol. 6, Iss. 6, pp. 159–164
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high-resolution images and improved RoIAlign technique
to enhance the representation quality of RoIs. In the future, we
will try to solve this problem by modifying the network
architecture to reduce computational cost. Furthermore, 3D
translation information will be estimated based on endoscope
calibration and 2D tracking with bounding boxes, and 3D
orientation estimation will also be obtained by utilising the
technique provided by Sundermeyer et al. [5]. Then, 6D pose
estimation will be implemented to enhance surgical navigation.
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