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iTRAQ-based Proteomic Analysis of 
Porcine Kidney Epithelial PK15 cells 
Infected with Pseudorabies virus
Songbai Yang*, Yue Pei* & Ayong Zhao

Pseudorabies virus (PRV) is one of the most important pathogens of swine, resulting in severe economic 
losses to the pig industry. To improve our understanding of the host responses to PRV infection, we 
applied isobaric tags for relative and absolute quantification (iTRAQ) labeling coupled with liquid 
chromatography-tandem mass spectrometry to quantitatively identify the differentially expressed 
cellular proteins in PRV-infected PK15 cells. In total, relative quantitative data were identified for 4333 
proteins in PRV and mock- infected PK15 cells, among which 466 cellular proteins were differentially 
expressed, including 234 upregulated proteins and 232 downregulated proteins. Bioinformatics 
analysis disclosed that most of these differentially expressed proteins were involved in metabolic 
processes, cellular growth and proliferation, endoplasmic reticulum (ER) stress response, cell adhesion 
and cytoskeleton. Moreover, expression levels of four representative proteins, beta-catenin, STAT1, 
GRB2 and PCNA, were further confirmed by western blot analysis. This is the first attempt to analyze 
the protein profile of PRV-infected PK15 cells using iTRAQ technology, and our findings may provide 
valuable information to help understand the host response to PRV infection.

Pseudorabies virus (PRV or suid herpesvirus 1) is a member of the genus Varicellovirus, family Herpesviridae. 
PRV is the causative agent of Aujeszky’s disease, which can cause neurological and respiratory system disorders in 
young piglets and death of the fetuses and/or abortion in pregnant sows. Thus, PRV has major economic conse-
quences in pig husbandry1,2. PRV has a double-stranded DNA genome of approximately 150 kb in length and can 
infect a broad range of wild and domestic animal species, including ruminants, carnivores and rodents. Pigs are 
the only natural hosts for PRV2–4. Vaccines are widely used to reduce the economic losses caused by PRV infec-
tion5,6. However, in 2012, an unprecedented large-scale outbreak of pseudorabies in pigs in northern and eastern 
China caused huge economic losses to the swine industry6.

The pathogenesis of PRV infection and the interactions between PRV and porcine cells are not fully under-
stood at present7–9. Proteomic approaches provide effective tools for facilitating a comprehensive characteri-
zation of virus-host interactions, for example, two-dimensional gel electrophoresis (2DE) and matrix-assisted 
laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF/MS) approaches have been used to 
provide the proteomic expression profiles of host cells in response to viral infections, including classical swine 
fever virus10, severe acute respiratory syndrome11, H1N1 influenza virus12 and spleen and kidney necrosis virus13. 
Stable isotope labeling of amino acids in cell culture (SILAC) has also been used in identifying the differentially 
expressed proteins of viral infections, including dengue virus type 214, porcine reproductive and respiratory syn-
drome virus15, Enterovirus 7116 and herpes simplex virus type 117. These studies have provided extensive insight 
into understanding the host response to viral infection and have also highlighted the potential antiviral agents 
capable of targeting the various kinds of viral infection.

Isobaric tags for relative and absolute quantitation (iTRAQ) combined with LC-MS/MS analysis has 
emerged as a more powerful quantitative proteomic method because this method is more sensitive than tradi-
tional proteomic approaches, especially for quantifying low-abundance proteins in the tested samples18–20. The 
iTRAQ-based quantitative proteomic technique has been applied to studies of virus-host interactions, which 
include porcine circovirus type 221, porcine reproductive and respiratory syndrome virus22, porcine epidemic 
diarrhea virus23, bluetongue virus24 and transmissible gastroenteritis virus25. Until now, the mechanisms of 
PRV pathogenesis and the interaction between PRV and porcine cells have not been fully understood. It is well 
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known that porcine kidney epithelial cells (PK15) are most widely used for PRV isolation, propagation and basic 
research. In the present study, we used iTRAQ coupled with LC− MS/MS to identify cellular proteins that were 
differentially expressed in PK15 cells infected with PRV. The results showed that 466 proteins were significantly 
changed after PRV infection. These proteins could serve as potential biomarkers of PRV-infected cells and provide 
new insights into the regulatory mechanism of this disease.

Results
Kinetics of PRV propagation in PK15 cells. To determine the kinetics of PRV propagation in PK15 
cells and the optimal time-point for proteomic analysis, PK-15 cells were infected with PRV and then monitored 
for CPE and viral protein expression, in addition to the viral titers, which were detected at 12, 24, 36 and 48 hpi. 
As shown in Fig. 1A, no obvious CPE was visible at 12 hpi; however, the CPE became readily apparent as the 
infection progressed. Obvious CPE was observed at 24 hpi and became significant at 36 and 48 hpi, including 
cell rounding, swelling, granular degeneration of the cytoplasm, cell detachment, and severely diseased cell mor-
phology. The expression of PRV protein was monitored by IFA, and the results showed that almost all cells were 
infected at 24 hpi (Fig. 1B). The one-step growth curve for PRV in PK-15 cells was also assessed. The viral titer 
peaked at 24 hpi and then gradually declined (Fig. 1C). Generally, no excessive cytopathic effect of host cells was 
observed. The time point when viral replication remains high is often regarded as the optimal time for proteomic 
analysis23,25. Therefore, PRV- and mock-infected cells were harvested at 24 hpi for further proteomic analysis.

Protein profile obtained by iTRAQ- coupled LC-MS/MS analysis. To explore the differentially 
expressed proteins following virus infection, the total proteins of PRV-infected and mock-infected PK15 cells 
were extracted for iTRAQ coupled with LC-MS/MS analysis. By this approach, a total of 4333 proteins were 
detected and quantified (Supplementary file 1). A quantitative ratio over 1.5 (fold change > 1.5 or < 0.67) and a 
p -value <  0.05 were considered differentially expressed proteins. Using the criterion, 234 proteins were signifi-
cantly upregulated, and 232 proteins were downregulated during PRV infection (Supplementary file 2). Because 
the current pig genome is poorly annotated compared to the human genome database, there were 52 proteins that 
remained uncharacterized among the differentially expressed proteins (Supplementary file 2). Therefore, further 
research is warranted to focus on the functions of these proteins.

Functional classification of differentially expressed proteins. These 466 differentially expressed pro-
teins were classified into 23 groups based on their function by COG annotation. The top four groups containing 
more than 34 proteins were post-translational modification, protein turnover, and chaperones; energy produc-
tion and conversion; general function prediction only and translation; and ribosomal structure and biogenesis 
(Fig. 2 and Supplementary file 3). To further extend the molecular characterization of the differentially expressed 
proteins, the Gene Ontology and UniProt databases were searched, and these proteins were assigned into their 
different biological processes, molecular functions, and cellular components (Fig. 3 and Supplementary file 4). 
For biological process annotation, proteins were mainly involved in cellular process, metabolic process, biological 
regulation, regulation of biological process and response to stimulus. Among the proteins related to metabolic 
process, tricarboxylic acid cycle was most significantly enriched (p =  3.81E-10). The cellular component annota-
tion revealed that these proteins were well distributed in different cell components, and there were 257 differen-
tially expressed proteins, with the most significant p value (3.49E-15) being located in the membrane. The major 
functional categories were binding, catalytic activity, structural molecule activities and transporter activity. In 
particular, unfolded protein binding (p =  5.50E-09) was most significantly enriched (Fig. 3 and Supplementary 
file 4). The KEGG database was used to identify the pathway involvement of these differentially expressed pro-
teins with most proteins being involved in a metabolic pathway. The upregulated proteins were mainly involved 
in protein processing in the endoplasmic reticulum and citrate cycle (TCA cycle). The pathways associated with 
downregulated proteins were related to cell adhesion, ECM-receptor interaction, tight junction, and regulation of 
actin cytoskeleton (Fig. 4 and Supplementary file 5).

Validation of protein identification and quantification by western blot. To validate the differen-
tially expressed proteins identified via iTRAQ-labeled LC-MS/MS analysis, four proteins (beta-catenin, STAT1, 
GRB2 and PCNA) based on interest and ratios were selected for analysis by western blot (Fig. 5). The ratios of the 
four proteins between infected and uninfected cells were consistent with those obtained from iTRAQ approach.

Discussion
From the perspective of host cell proteins, virus and host cell interactions are highly complex processes often 
causing numerous changes in the expression of proteins involved in signaling pathways26. Currently, various 
proteomics approaches are widely used to study viral and host cellular interactions23,24,27. PRV can infect PK15 
cells with obvious CPEs; therefore, PK15 cells are an appropriate model for the study of PRV infection, with many 
studies on host - PRV interactions having been carried out on PK15 cells28–30. To date, no research has focused 
on the protein profile of PK15 cells infected with PRV. In this study, iTRAQ combined with LC-MS/MS was used 
to identify the differentially regulated proteins in PK-15 cells during PRV infection. A total of 4333 proteins 
were detected and quantified in PRV- and mock-infected PK15 cells, of which 234 were significantly upregu-
lated and 232 downregulated based on a fold change >  1.5 or <  0.67 with p value <  0.05 for the differentially 
expressed proteins. Four representative proteins were verified by western blot analysis and the ratio of infection 
and mock infection in accordance with iTRAQ results. These differentially expressed proteins were involved in 
a multitude of biological processes including metabolic pathways, protein processing in endoplasmic reticulum, 
ECM-receptor interaction, and regulation of actin cytoskeleton. These data could provide clues useful for further 
analysis of PRV pathogenesis.
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The proliferation of virus in cells requires energy and small molecule metabolites, including ATP, NADH, 
NADPH and the carbon used for the synthesis of nucleotides, lipids, amino acids and carbohydrates31. In this 
study, 83 differentially expressed proteins (17.8%) were classified into metabolic pathways. These proteins were 
mainly involved in the citrate (TCA) cycle as well as glycolysis and pyruvate metabolism. Fifteen of 17 pro-
teins in the TCA cycle, all 9 proteins in pyruvate metabolism and 8 of 13 proteins in glycolysis were upregu-
lated (Supplementary Figure). These data demonstrate that PRV utilized energy from the host cell to proliferate 
through the hijacking of host cell metabolic processes. Similarly, as a member of the herpesvirus family, HCMV 
can activate the TCA cycle and glycolysis simultaneously allowing the carbons from glucose to be delivered to 
the TCA cycle to produce fatty acids. In contrast, HSV-1 activates pyruvate carboxylase to induce pyrimidine 

Figure 1. PRV infection in PK15 cells. (A) Morphological changes in PK15 cells at 12, 24, 36, 48 h after 
PRV infection, with mock infected cells as a control. (B) Confirmation of the proliferation of PRV by 
immunofluorescence staining in infected PK15 cells at 12, 24, 36, and 48 hpi, and mock-infected cells at 24 h has 
a control. (C) One-step growth curve of PRV in PK-15 cells.
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biosynthesis32.The mechanisms of virus-host metabolic interplay warrant further study, especially in how the 
key genes involved in metabolic pathways can regulate viral infection, because these studies provide novel targets 
for antiviral drug discovery through metabolic pathway inhibitors. The key enzymes in metabolic pathways that 
were upregulated after PRV infection are involved in the gene expression regulation system; therefore, incorpo-
rating systems analysis, including transcriptomic33, proteomic8, and metabolomic data, could help to gain a better 
understanding of this specific mechanism.

Figure 2. COG function classification of the differentially expressed proteins in PRV infected PK15 cells. 

Figure 3. GO analysis of the differentially expressed proteins in PRV infected PK15 cells. Proteins were 
classified into three main categories: biological process, cellular component, and molecular function. The y-axis 
indicates the percentage of a specific category of proteins in each main category.
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The endoplasmic reticulum (ER) is critical for protein synthesis and maturation. ER reside on many molec-
ular chaperones that assist protein folding and assembly34. Numerous studies show that viral infections can alter 
endoplasmic reticulum (ER) and activate the unfolded-protein response (UPR), thereby facilitating viral repli-
cation35–38. In the current study, 21 of the differentially expressed proteins were involved in protein processing in 
the endoplasmic reticulum. Interestingly, all of the 21 proteins were upregulated (Supplementary Figure). Among 
these were the heat shock proteins hsp 90-beta (hsp90ab1), 90 kDa beta member 1(hsp90b1), 70 kDa protein 
5(hspa5) and 105 kDa (hsph1). Similarly, hsp27 was also significant altered at 4 h of PRV infction in Madin-Darby 
bovine kidney cells using SILAC mass spectrometry methods, since only a small number of host cell proteins 
changed during early stages of PRV infection, other stress-related proteins did not show significant variations7,8. 
Heat-shock proteins can facilitate protein folding, heat-shock response activation might be a virus-specific func-
tion ensuring proper protein synthesis and; therefore, ER stress proteins may also be important for virus rep-
lication37,39,40. Hsp90 is involved in the assembly and nuclear transport of viral RNA polymerase subunits and 
facilitates viral replication in HIV-1, Ebola virus, hepatitis B virus, hepatitis C virus, and Rotavirus41–46. Previous 
research has shown that hsp90 can interact with acetylated α -tubulin to promote nuclear transport of HSV-1 
capsid protein and interact with the HBV reverse transcriptase to facilitate the formation of a ribonucleoprotein 
(RNP) complex that is required early in replication47,48. Thus, hsp90 can be targeted using inhibitors to resist 
viral infections49,50. Similarly, hspa5 is an essential target for a viral infection, such as Ebola virus51. Some other 

Figure 4. KEGG pathway analysis of the differentially expressed proteins in PRV infected PK15 cells. 

Figure 5. Confirmation of differentially expressed proteins by western blot. Immunoblotting analysis of 
proteins (beta-catenin, STAT1, GRB2 and PCNA) in PRV-infected or mock-infected PK15 cells. WB ratios and 
iTRAQ ratios (infection/mock) were shown on the right side. The β -actin protein was used as a control.
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upregulated ER-stress proteins, such as calreticulin and calnexin, that are important for calcium storage and pro-
tein folding52, also play an important role in viral infections. Calreticulin is induced during HBV infection and 
can enhance HBV replication by antagonizing the IFN pathway53. Calnexin can directly bind to mature S protein 
and result in conferred infectivity of severe acute respiratory syndrome coronavirus54. Thus, these upregulated 
proteins may also play an important role in PRV replication, and further research is required to investigate the 
function of these proteins during PRV infection.

Numerous ribosomal proteins and translation elongation factors were upregulated during PRV infection 
(Supplementary file 2). We speculate that PRV would utilize the host cell protein synthesis system to produce a 
large number of viral proteins after entry into the cell. Among these proteins, 60 S acidic ribosomal protein P0 
(RPLP0) was detected and showed significant changes in the early stages of infection by PRV in Madin-Darby 
bovine kidney cells8. Several DNA helicase complexes required for the process of DNA replication including the 
minichromosome maintenance protein (MCM2, MCM4 and MCM6) were downregulated in the PRV-infected 
cells. Similarly, nuclear accumulation of MCM4 and MCM6 was reduced in HSV-1-infected human epithelial lar-
ynx carcinoma HEp-2 cells55. MCM4, MCM6, and MCM7 subunits bind tightly with MCM2, causing a reduced 
affinity to form the MCM core complex that acts as a DNA helicase in the unwinding of cellular dsDNA56,57. 
Herpesviruses including PRV contain their own helicases essential for the formation and elongation of the rep-
lication fork in viral replication1,58–60. Therefore, we speculate that PRV hijack cellular components involved in 
host cell replication and promote viral genome replication. However, another critical host replication factor pro-
liferating cell nuclear antigen (PCNA) was upregulated in PRV-infected cells. PCNA is a clamp that acts as a 
processivity factor in DNA replication and is required for HSV-1 replication and histone deposition61,62. Taken 
together, these data indicate that PRV targets multiple proteins involved in host cell replication and translation, 
and the function of these proteins in PRV infection needs to be further investigated.

Heterogeneous nuclear ribonucleoproteins (hnRNPs) are a family of RNA-binding proteins present in the cell 
nucleus that are known for their role in pre-mRNA splicing63. Alphaherpesviruses can lead to drastic changes 
in RNA metabolism through their herpesviral shutoff mechanisms including modulation of hnRNPs. The host 
shutoff protein pUL41 of HSV-1 can preferentially degrade mRNA containing AU-rich elements8,64. In addition, 
unlike the numerous cellular pre-mRNA, HSV-1 genes were largely unspliced and evolved a number of strategies 
to inhibit host cell splicing55,65. Previous studies have shown that the expression levels of hnRNPs were affected by 
HSV-1or PRV infection using SILAC and 2-DE mass spectrometry approachs8,17,55. Here, eight hnRNPs family 
members (A2B1, A3, C, K, M, R, U and UL2) were also identified and shown to be downregulated after PRV 
infection (Supplementary file 2). Some of these proteins have known roles in other viral infections. For example, 
hnRNPU is a potential HIV restriction factor66. hnRNPA2/B1 interacts with influenza A viral protein NS1 and 
inhibits viral replication67. Therefore, we hypothesized that the decreased expression of these proteins may play 
an important role in the replication of PRV.

Cytoskeleton proteins play a critical role in the maintenance of cell morphology, cell movement, and 
cell-to-cell attachment. Many viral infections cause host cell cytoskeletal disruption or disorganization68–70. In 
our study, numerous proteins involved in cytoskeleton networks and cell communication were altered after PRV 
infection. Among them, actin alpha 4 (ACTN4), acts as an actin-binding and cross-linking factor, is essential for 
a number of important cellular functions including cell adhesion and signal transduction and can interact with 
nucleoprotein to facilitate influenza A viral infection71. Other transmembrane receptors involved in cell-cell and 
cell-extracellular matrix (ECM) interactions are integrin beta 1and integrin beta 4. 12 of 13 proteins involved in 
the ECM-receptor interaction pathway were downregulated after PRV infection. After PRV infection, at 24 hpi, 
we observed significant cell pathological changes with high viral titer. Therefore, we inferred that the host cell 
cytoskeletal and ECM-receptor interaction disruption may contribute to PRV proliferation and release.

Viruses can apply various strategies to suppress the host immune system after infection. STAT1 plays a critical 
role in the JAK/STAT pathway involved in mediating the cellular interferon response72. In response to IFN-γ  
stimulation, STAT1 and STAT3 homo- and heterodimers bind to IFN-γ  activated sequence (GAS) elements73. 
Our proteomic data show that STAT1 and STAT3 are decreased with PRV infection. These data suggest that PRV 
suppresses canonical interferon signaling through the JAK-STAT1 pathway. Another signaling protein, β -catenin, 
involved in Wnt/β -catenin signaling, a canonical pathway known to play a vital role in numerous cellular activi-
ties was also decreased after PRV infection. Previous research has shown that β -catenin can act as a host restric-
tion factor to repress basal HIV transcription in astrocytes74,75. However, these proteins need to be further studied 
to see whether they play an important role in PRV infection.

In conclusion, this study provides a comprehensive analysis of the proteomics profile of PRV-infected PK-15 
cells through ITRAQ-based quantitative proteomics. A total of 466 significantly changed proteins were identified; 
however, the function of these differentially expressed proteins remains mostly descriptive. These proteomics 
results are preliminary data that require further investigation to understand the roles of these proteins in PRV 
infection, thereby enabling new antiviral therapeutic targets of PRV infection.

Methods
Cell culture and virus infection. The virulent wild-type PRV strain PRV ZJ (Zhejiang) was utilized in this 
study76. PK15 cells (obtained from the American Type Culture Collection, Manassas, VA) were grown in modified 
Eagle’s medium (MEM, Gibco, Life Technologies, Austin, TX) supplemented with 10% fetal bovine serum (Gibco, 
Life Technologies, Austin, TX) and maintained in a humidified incubator at 37° C and 5% CO2.

The monolayer of confluent PK15 cells was dispersed with 0.25% trypsin and 0.02% ethylenediamine-
tetraacetic acid (EDTA) and seeded in 6-cm cell culture flasks. PK15 cells were cultured for nearly 24 h for 80% 
confluence and washed twice with PBS. Then, the cells were infected with PRV with 70 μ L of 105.67/mL 50% tissue 
culture infective dose (TCID50) per well. After 1 h of adsorption, infected cells were maintained in MEM supple-
mented with 2% FBS. Uninfected PK15 cells were used as the mock-infected group. The PRV-or mock-infected 
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cells were collected at 24 h postinfection (hpi). Each group was processed with three independent biological 
replicates. Viral propagation was confirmed with cytopathic effect (CPE) under a light microscope and one-step 
growth curve of PRV at 12, 24, 36, and 48 hpi.

Immunofluorescence assays. The cells infected with PRV at different time points and mock-infected cells 
at 24 h were washed twice with PBS and then fixed with 4% paraformaldehyde for 20 min at room temperature 
(RT) and permeabilized with 0.2% Triton X-100 (T8200, Solarbio life science) for 15 min. The cells were then 
incubated with a blocking buffer (PBS containing 5% bovine serum albumin [BSA]) at RT for 30 min. After three 
washes with PBS, the cells were stained with anti-PRV rabbit antibody (PA1–081, Thermo Fisher Scientific) at RT 
for 1 h. After being washed with PBS, the cells were incubated with Alexa Fluor 488 conjugated goat anti- rabbit 
antibody (A-11008, Thermo Fisher Scientific). The nuclei were stained with DAPI (C0060, Solarbio life science).

Protein isolation, digestion, and labeling with iTRAQ reagents. Infected and mock-infected PK15 
cells were washed twice with PBS and then collected using cell scrapers after the addition of 200 μ l TEAB (0.5 M 
triethylammonium bicarbonate) dissolution buffer. The samples were broken by the ultrasonic wave for 15 min, 
and then following centrifugation at 12000 r/min for 20 min, the supernatant was subsided by adding 4-fold 
volume of cold acetone containing 10 mM DTT for approximately 2 h. After centrifugation at 12000 r/min for 
20 min at 4 °C, the precipitate was collected and mixed with 800 μ l cold acetone at 56 °C to break the proteins’ 
disulfide bonds. Following centrifugation at 12000r/min for 20 min at 4 °C, the dried precipitate was collected 
and dissolved with 100 μ l TEAB dissolution buffer. The protein concentration was determined using the Bradford 
protein assay.

An aliquot of total protein (100 μ g) was dissolved to 100 μ l in a dissolution buffer and then diluted with 500 μ l 
50 mM NH4HCO3. 2 μ g trypsin was added and then incubated overnight at 37 °C. After protein digestion, equal 
volume of 0.1% formic acid was added for acidification. Peptides were purified on Strata -XC18 pillar, which was 
first activated with methanol, then balanced by adding 1 ml 0.1% formic acid three times, washed with 0.1% for-
mic acid +  5% acetonitrile two times, and eluted with 1 ml 0.1% formic acid +  80% acetonitrile. The peptides were 
dried by vacuum centrifugation. The dried peptides powder was redissolved with 20 μ l 0.5 M TEAB for peptides 
labeling.

The peptides were labeled with iTRAQ Reagent-8 plex Multiplex Kit (AB Sciex U.K. Limited) according to the 
manufacturer’s instructions. The samples and labeled marker were as follows: PRV-infected samples were labeled 
with iTRAQ tag 115, iTRAQ tag 116, or iTRAQ tag 117, and mock-infected samples were labeled with iTRAQ tag 
118, iTRAQ tag 119, or iTRAQ tag 121. All of the labeled samples were mixed with an equal amount. The labeled 
samples were fractionated using high-performance liquid chromatography (HPLC) system (Thermo DINOEX 
Ultimate 3000 BioRS) using a Durashell C18(5 μ m, 100 Å, 4.6 ×  250 mm). Finally, 12 fractions were collected.

LC-MS/MS Analysis. Data acquisition was performed with a Triple TOF 5600 System (AB SCIEX, Concord, 
ON). Samples were chromatographed using a 90 min gradient from 2–30% (mobile phase A 0.1% (v/v) formic 
acid, 5% (v/v) acetonitrile; mobile phase B 0.1% (v/v) formic acid, 95% (v/v) acetonitrile) after direct injection 
onto a 20 μ m PicoFrit emitter (New Objective) packed to 12 cm with Magic C18 AQ 3 μ m 120 Å stationary phase. 
MS1 spectra were collected in the range 350–1,500 m/z for 250 ms. The 20 most intense precursors with charge 
state 2–5 were selected for fragmentation, and MS2 spectra were collected in the range 50–2,000 m/z for 100 ms; 
precursor ions were excluded from reselection for 15 s.

Data analysis. The original MS/MS file data were submitted to ProteinPilot Software (version 4.5, AB Sciex) 
for data analysis. MS/MS data were searched against Sus scrofa UniProt database (March 9, 2016, containing 
35,303 sequences, http://www.uniprot.org/proteomes/UP000008227). The following search parameters were 
used: the instrument was TripleTOF 5600, iTRAQ quantification, cysteine modified with iodoacetamide; biolog-
ical modifications were selected as ID focus, the Quantitate, trypsin digestion, Bias Correction and Background 
Correction was checked for protein quantification and normalization. For false discovery rate (FDR) calculation, 
an automatic decoy database search strategy77 was used to estimate FDR using the PSPEP (Proteomics System 
Performance Evaluation Pipeline Software) algorithm. Only proteins with at least one unique peptide and unused 
value more than 1.3 were considered for further analysis. Among the identified peptides, some were excluded 
from the quantitative analysis for one of the following reasons. (1) The peaks corresponding to the iTRAQ labels 
were not detected. (2) The peptides were identified with low identification confidence. (3) The peptides were 
claimed by more than one protein. (4) The S/N (signal-to-noise ratio) for any peptide ratio was too low. (5) 
Peptides had a combined feature probability <  30% because of semitryptic peptides, peptides missing an iTRAQ 
reagent label, peptides with low probability modifications and peptides with large delta masses. For protein abun-
dance ratios measured using iTRAQ after normalization, we specifically used ratios with p value <  0.05, and only 
fold changes >  1.5 or <  0.667 were considered significant.

Bioinformatics analysis. The identified and differentially expressed proteins sequences were mapped with 
Gene Ontology Terms (http://geneontology.org/). A homology search was first performed for all the identified 
sequences with a localized NCBI BLASTP program against NCBInr animal database. The e-value was set to less 
than 1e-5, and the best hit for each query sequence was taken into account for GO term matching. The GO term 
matching was performed with blast2go v4.5 pipeline78. Clusters of Orthologous Groups of Proteins System (COG, 
http://www.ncbi.nlm.nih.gov/COG/) was employed for the functional annotation of genes from new genomes 
and for research into genome evolution. Pathway analyses were conducted using the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) platform. The pathway enrichment statistics were performed by Fisher’ s exact test, and 
those with a corrected p value <  0.05 were considered the most significant pathways.

http://www.uniprot.org/proteomes/UP000008227
http://geneontology.org/
http://www.ncbi.nlm.nih.gov/COG/


www.nature.com/scientificreports/

8Scientific RepoRts | 7:45922 | DOI: 10.1038/srep45922

Western blot analysis. The infected and mock-infected cells were collected at 24 hpi. Equivalent amounts 
of cell lysates from each sample were mixed with 5 ×  sample loading buffer and boiled for 10 min, separated by 
12% SDS-polyacrylamide gels and transferred to PVDF membranes (Millipore). The membranes were blocked 
with 5% nonfat milk in Tris-buffered saline containing 0.1% Tween-20 (TBST) and then incubated overnight 
at 4 °C with primary antibodies specific for β -Actin (4967, Cell Signaling Technology), beta-catenin (51067-
2-AP), STAT1 (10144-2-AP), GRB2 (10254-2-AP) and PCNA (60097-1-Ig) purchased from Proteintech Group. 
Membranes were then washed with TBST three times and incubated with a horseradish peroxidase (HRP) con-
jugated secondary antibody (Proteintech Group) for 1 h at ambient temperature. Finally, protein bands were 
visualized by addition of the SuperSignal West Pico chemiluminescent substrate (Thermo, Rockford, IL) reagent.
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