
© 2024 Journal of Medical Signals & Sensors | Published by Wolters Kluwer - Medknow 1

Address for correspondence: 
Dr. Majid Ghoshuni, 
Department of Biomedical 
Engineering, Mashhad Branch, 
Islamic Azad University, 
Mashhad, Iran. 
E‑mail: ghoshuni@mshdiau.
ac.ir

Abstract
Background: This study explores a novel approach to detecting arousal levels through the analysis 
of electroencephalography (EEG) signals. Leveraging the Faller database with data from 18 healthy 
participants, we employ a 64‑channel EEG system. Methods: The approach we employ entails the 
extraction of ten frequency characteristics from every channel, culminating in a feature vector of 
640 dimensions for each signal instance. To enhance classification accuracy, we employ a genetic 
algorithm for feature selection, treating it as a multiobjective optimization task. The approach 
utilizes fast bit hopping for efficiency, overcoming traditional bit‑string limitations. A hybrid operator 
expedites algorithm convergence, and a solution selection strategy identifies the most suitable feature 
subset. Results: Experimental results demonstrate the method’s effectiveness in detecting arousal 
levels across diverse states, with improvements in accuracy, sensitivity, and specificity. In scenario 
one, the proposed method achieves an average accuracy, sensitivity, and specificity of 93.11%, 
98.37%, and 99.14%, respectively. In scenario two, the averages stand at 81.35%, 88.65%, and 
84.64%. Conclusions: The obtained results indicate that the proposed method has a high capability 
of detecting arousal levels in different scenarios. In addition, the advantage of employing the 
proposed feature reduction method has been demonstrated.
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Introduction
The recognition of arousal levels plays a 
pivotal role in enhancing human–machine 
interaction by enabling machines to 
emulate human emotional attributes more 
accurately. Arousal, a fundamental aspect of 
human emotional experience, significantly 
influences decision‑making processes. It 
is mediated by the limbic system, which 
impacts brain signals, notably observable 
through electroencephalography (EEG) 
signals. Despite the advancements in EEG 
signal analysis for arousal recognition, 
challenges persist in achieving real‑time 
detection and distinguishing real arousal 
from superficial expressions, such as those 
in lie detection scenarios.

Recent studies have primarily concentrated 
on two main avenues: traditional machine 
learning methods, which necessitate 
explicit feature selection (FS) and 
extraction, and deep learning approaches, 
which automate these procedures but 

demand significant data and computational 
resources. Notably, methods such as 
linear and nonlinear estimation have been 
applied to categorize brain signals, with 
varying degrees of success in real‑time 
application and accuracy in emotional 
state recognition, including stress, anxiety, 
and joy.[1‑6] Furthermore, novel approaches 
using deep belief networks and enhanced 
capsule network‑based models have shown 
promising results in emotion classification 
through EEG signals, achieving high 
accuracy in distinguishing between 
positive, negative, and neutral emotions.[7‑13] 
Despite these advancements, a gap remains 
in effectively processing EEG signals for 
arousal detection in real‑time applications, 
necessitating an exploration of new feature 
extraction and selection algorithms.

This study introduces a novel method that 
integrates frequency‑based features with 
an advanced feature reduction technique 
to classify arousal levels from EEG 
signals efficiently. Our proposed method 
is designed to overcome the limitations 
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of existing techniques by ensuring higher accuracy 
and real‑time processing capabilities. We chose this 
approach based on preliminary findings suggesting that 
frequency‑based features, when optimally reduced, could 
provide a more accurate and computationally efficient 
means of recognizing arousal states. This method stands to 
significantly improve real‑time arousal detection, offering 
enhanced decision‑making support, better environmental 
interaction for individuals, and facilitating precise 
therapeutic interventions. By focusing on the efficacy of 
new feature extraction and selection algorithms, this study 
aims to bridge the gap in real‑time arousal detection, 
underscoring the potential of our approach over existing 
methodologies.

Materials and Methods
This section begins by presenting the database utilized in 
the study. Subsequently, it delineates the different phases 
of the proposed methodology, encompassing feature 
extraction, FS, and the classification function. A schematic 
representation of the proposed method is depicted in 
Figure 1.

Database

To examine the proposed method, we first introduce the 
dataset. Next, the devised approach is implemented on the 
dataset, and the resultant findings are showcased.

In this article, the Faller paper dataset has been used.[14] 
The data related to this database consist of real‑time EEG 
signals during arousal, which have been used to change 
the arousal of an individual from the rightward side of 
the Yerkes–Dodson curve to its leftward side toward the 
optimal performance state. Specifically, a brain–computer 
interface (BCI) has been used, which dynamically stores 
the electroencephalography (EEG) signal information. 
A boundary avoidance task refers to a sensorimotor 
operational pattern executed as an aerial navigation task 
within virtual reality, creating conditions where arousal is 
intensified and quickly leads to failure. The data have been 
recorded according to a BCI system, and the goal is to 
change the individual’s arousal level by reducing the target. 

In total, 18 healthy participants (aged 19–33 years, all 
right‑handed, 4 females) with natural or corrected‑to‑normal 
vision participated in this study. They were also familiarized 
with the virtual reality three‑dimensional flight simulation 
platform through the control of virtual aircraft for a 
minimum of 60–120 min before the experiment, either on 
the same day of the experiment or the day before. Each 
subject has to move approximately once every 2 s during 
a box. A weighted sum of three sinusoids with various 
frequencies and amplitudes along the gait axis models 
the trajectory that the moving boxes create. The difficulty 
of the experiment is adjusted by reducing the size of the 
boxes at regular intervals (every 30 s) during each trial. 
Therefore, user‑controlled flight during each trial (up to 
90 s) can be divided into three distinct periods of the same 
box trajectory but with varying difficulties continuously 
adjusted. Figure 2 represents the trajectory and the size of 
the boxes.

During the protocol execution, various signals, such as the 
64‑channel brain signal (20–10) and cardiac systems, were 
recorded, and finally, the changes induced in the extracted 
features from the mentioned signals are presented in 
various graphs.

Data preprocessing

To create a suitable dataset for classification to detect 
arousal levels, the signal of each individual within a 2 s 
interval where the target is observed is considered the input 
signal, and the target size in this experiment is considered 
the label of the signal that in this paper, to address the issue 
of imbalanced classes (classes with limited data), only the 
signals related to targets 1 and 2 are considered. After 
aligning the data and removing irrelevant signals, 252 2‑s 
signals (64 channels) are obtained, with 150 instances 
belonging to Class 1 and 102 instances belonging to 
Class 2, and considering that the sampling frequency of the 
brain signal is 256 Hz, the final signal X= [x1, x2, …x252] 
has 252 × 64 × 512 dimension and the signal of each Xi 
has 64 × 512 dimension and the final label vector has a 
dimension of 252 × 1.

EEG signal 
64 channels

18 participants

Pre processing
signal

segmentation

Feature extraction
10 frequency

feature

Feature selection
based on

Genetic algorithm

Classifiction
divided into
2 classes by

SVM classifier

Figure 1: Diagram of proposed methodology. EEG – Electroencephalography, SVM – Support vector machine
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Feature extraction

Selecting appropriate features is pivotal for optimizing the 
performance of any classification system. Various methods 
are available for pattern recognition in EEG signals, among 
which extracting features in the frequency domain is notably 
prominent. This approach is widely acknowledged for its 
effectiveness in discerning various brain activities. At this 
stage, the time domain signal is mapped to the feature 
domain. In this research, the frequency domain is utilized for 
feature extraction. Specifically, the spectral estimation of the 
signal for each instance and each channel is first computed 
using the Fourier transform. Subsequently, rhythmic 
activities are divided into different frequency bands. Based 
on frequency ranges, eight types of waves can be identified: 
delta (δ) (0.5–3 Hz), theta (θ) (4–7 Hz), alpha (α) (8–12 Hz), 
beta (β) (15–30 Hz), β1 (7.5–12 Hz), β2 (12.5–15.5 Hz), 
β3 (16–31 Hz), and high β (32–100 Hz), which are written 
from low to high frequencies. In addition, two ratios, θ/α 
and θ/β, are considered two ratios that can represent useful 
features. Finally, 10 features are extracted from each signal, 
and considering the data being 64 channels, the resulting 
feature vector has a dimension of 640.

Feature selection

FS is a pivotal aspect of the proposed classification 
system, warranting special attention. To address this, we 
have employed a genetic algorithm (GA) to tackle the FS 
problem. Initially, we formulated the FS conundrum as a 
multiobjective optimization problem with three objectives. 
In this formulation, features contributing to enhanced 
classification accuracy are accorded a higher probability of 
survival. We have incorporated a rapid bit‑string mutation 
technique, which eschews the constraints of traditional 
bit‑string mutations, thereby bolstering efficiency.

Moreover, we have implemented both a mutation operator 
and a crossover operator to expedite convergence and 

enhance overall performance. In addition, we have devised 
a solution selection strategy to identify the most suitable 
feature subset.

In the GA framework, each candidate solution for the 
problem, or chromosome, is encoded as a vector. In our 
approach, we utilize a binary bit‑string to represent the 
chromosome, where “1” indicates FS and “0” denotes 
otherwise. To illustrate, considering a dataset D as an 
example, chromosome i in the population is encoded by a 
bit‑string from D, as described in Eq. 1:[16]

1 2( ) ( )i i. i. i.jX t  = x ,x ….x  (1)

{ }= 0,1 . = 1,2.…. . i = 1,2,…,i.jx j D N.

where Xi(t) represents the ith chromosome in the tth 
generation, and N denotes the initial population.

Cost or fitness function

The fitness cost serves as a pivotal metric for assessing 
the performance of each sample or feature. To harness the 
benefits of both wrapper and filter approaches in FS, our 
cost function takes into account not only the classification 
error rate but also the distance metric. Moreover, we 
incorporate the ratio of selected features as the third 
objective to facilitate superior dimensionality reduction.

The formula of the cost function is shown in Eqs. 2 and 
3: [16,17]

Classifierf = D+E +α  (2)

Selected faeture vector

All feature vector

N
=

N
α

 (3)

where α is the feature rate and is calculated from the 
number of features in the feature vector selected in each 
chromosome to the total number of extracted features. D is 
the distance metric, which section “The hybrid operator” 
describes this parameter. E Classifier is also the error rate 
obtained for classifying the train set with the feature vector 
selected in each chromosome.

The hybrid operator

GAs possess the capability to evade local optima through 
the utilization of crossover and mutation operators, 
thereby exploring a broad search space when selection 
pressure is aptly managed. However, their efficacy in 
fine‑tuning near local optima is limited, often leading to 
prolonged running times. To enhance their fine‑tuning 
capabilities, hybrid GAs (HGAs) have been developed 
across various applications, such as the traveling 
salesman problem, graph partitioning problem, and image 
compression.

In a HGA, chromosomes undergo refinement through 
appropriate local search operations. We introduce a HGA 
tailored for the FS problem. The fundamental concept 

Figure 2: Recorded signal of virtual position as a function of horizontal 
position [15]
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behind our HGA is to integrate problem‑specific local 
search operations within a GA framework.[18]

The objective function

The primary objective of the objective function is to 
minimize the classification error rate. In addition, we 
incorporate the distance metric as the second objective. 
The aim of the distance metric is twofold: to maximize the 
distance between samples from different classes (Db) and 
to minimize the distance between samples within the same 
class (Dw).

Eqs. 4‑7 provide the objective function:[16,17]

, 1, 2DwD K L
Db

= =
 (4)

,
1 1
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 (5)
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 (7)

where K and L are the number of the classes, and F is 
the feature vector selected in each chromosome. N and 
M are also the number of the samples in the class a or b, 
respectively. || || is the Euclidean distance.

Fast bit mutation

In bit‑string mutation, the algorithm randomly selects 
some genes with a mutation probability of P and alters 
their original values. When applied to FS, basic bit‑string 
mutation gradually reduces the size of the feature set 
while maintaining a balanced ratio of selected features. 
Specifically, if the ratio of selected features is relatively 
low, most chromosomes encode zeros (0). Consequently, 
randomly selected genes are likely to be zeros, leading 
to an expansion in the feature set size through mutation. 
A slow pace of feature reduction results in a sluggish 
evolutionary or FS process.

Moreover, in our approach, we employ both regular 
crossover and uniform crossover. In uniform crossover, 
each gene in the offspring chromosomes is independently 
selected from either parent. Since no preference is given 
to either parent, roughly half of the genes in the offspring 
chromosomes originate from the first parent and the 
remainder from the second parent. Notably, the regular 
crossover operator yields two complementary offspring, yet 
in our method, only one is chosen.

By applying the proposed FS method from among 640 
input features, those with more information are selected for 
classification. After the features are selected and normalized, 

a classification function is used to separate the two classes. 
The classification process is based on initially dividing the 
data into two groups: training and testing. We used the 
leave‑one‑out (LOO) cross‑validation for this experiment 
design. Therefore, the train and test sets depended on the 
employed LOO technique. After determining the training 
data and unknown coefficients, the classification function 
is determined using the training data, whose labels are 
also specified. In other words, the classification function 
is trained at this stage, and its parameters are specified for 
classifying the classes. After the classification function is 
determined, it is applied to the test data. In this stage, the 
unlabeled data are fed into the predetermined classification 
function, and the obtained labels from the classifier are 
compared with the actual labels to determine the accuracy 
of the function.

The classification function

Support vector machine (SVM) stands out as one of 
the prominent machine learning methods, introduced 
by Wapnick et al. in the 1990s. This method employs 
principles known as structural risk minimization (SRM) 
to minimize model error, contrasting with other methods 
such as artificial neural networks that utilize empirical 
risk minimization principles. Typically, SVMs are utilized 
for binary or multiclass classification and regression tasks. 
Essentially, SVMs approximate the regression function by 
utilizing a set of linear functions.

In constructing an SVM model, the user defines parameters 
C and ε. The parameter C serves as a regularization 
parameter, ranging from zero to infinity. Larger values 
of C imply that SVM does not tolerate errors in 
training data, leading to a complex model and reduced 
generalization ability. Conversely, as C approaches zero, 
the model can tolerate higher error levels, resulting in a 
simpler model. The parameter ε, also ranging from zero 
to infinity, plays a crucial role in determining support 
vectors and consequently the model’s performance. 
While large values of ε reduce the number of support 
vectors (desirable), excessively widening the ε range is 
not advisable. Conversely, very small values of ε lead to 
selecting numerous support vectors, increasing the risk of 
overfitting.

The linear regression problem in SVM can be extended to 
nonlinear regression through the use of kernel functions, 
which map data to a feature space where linear regression 
can be applied. Various kernel functions, including 
polynomial kernels and radial basis function (RBF) kernels, 
have been introduced.

SVM is an efficient learning system rooted in the theory of 
constrained optimization, employing the principle of SRM 
to achieve a globally optimal solution. In SVM regression 
models, a smooth function approximates the dependent 
variable y, which is a function of multiple independent 
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x variables. Similar to other regression problems, the 
relationship between independent and dependent variables 
is assumed to be expressed by a linear function f(x), along 
with some allowable error ε.[19]

( )  f x . ( )Tw x b= +ϕ  (8)

(1) If W is the coefficient vector, b is the coefficient of the 
regression function, and ϕ is the kernel function, then the 
goal is to find a functional form for f(x). This is achieved by 
training the SVM model with a set of samples (the training 
set). This process involves the successive optimization of 
the error function.

Performance criteria

To compare different methods with various features, it is 
necessary to first specify a set of criteria for comparison. 
To conduct a more detailed examination of the criteria, we 
first define a set of variables based on the confusion matrix.
•	 True negative (TN): The count of samples belonging to 

Class 1 that are correctly classified as Class 1
•	 False negative (FN): The count of samples belonging to 

Class 1 that are incorrectly classified as Class 2
•	 False positive (FP): The count of samples belonging to 

Class 2 that are incorrectly classified as Class 1
•	 True positive (TP): The count of samples belonging to 

Class 2 that are correctly classified as Class 2.

Using these variables, we have utilized the following 
criteria:

Accuracy = (TP + TN)/total, sensitivity = TP/(TP+FN), 
specificity = TN/(TN+FP).

Through the implementation of the suggested FS 
methodology, from an initial set of 640 input features, 
100 features enriched with more significant information 
are identified for classification purposes using a GA. 
Following the selection and normalization of these 

features, the SVM classification function is employed 
to differentiate between two classes, utilizing SVM with 
three distinct kernels: linear, RBF, and polynomial. The 
classifier operates on a foundational process where, 
initially, data are segregated into training and testing 
cohorts, and the validation is conducted using the LOO 
cross‑validation technique.

Results
The presented results indicate the classification performance 
of the system for distinguishing between different levels of 
arousal (two levels). These results have been examined on 
EEG signals, and the experiments have been conducted in two 
ways. The first experiment is individual centric, meaning that 
the experiment is conducted independently for each individual, 
and the results are reported separately for each person. In this 
context, the performance of the proposed FS method has been 
evaluated and compared with other methods to assess its 
impact. In the second experiment, data from all individuals 
has been combined, and the data from 17 individuals are 
considered training data, whereas the remaining data from 
one individual are used as test data, and the final results are 
reported based on this setup. The results obtained from each 
of the experiments will be analyzed further.

Performing the experiment on each individual separately

In this case, all stages are carried out for each individual 
separately, independently of other individuals. The results 
of the LOO cross‑validation obtained for each individual 
are presented in Tables 1‑3. Figure 3 shows the LOO 
method used for validating each individual. As illustrated 
in the figure, during each step of the LOO cross‑validation, 
a single sample is isolated for the test set, whereas the 
remaining samples constitute the training set. In this 
iterative process, a classifier is developed using the training 
set. Subsequently, the performance of the developed 
classifier is evaluated using the isolated test sample, as 

Figure 3: The leave‑one‑out method used for validating each individual
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depicted in Figure 3. This process is repeated for each 
sample in the dataset, allowing for a comprehensive 
assessment. Finally, accuracy, sensitivity, and specificity 
metrics are computed based on the results obtained from all 
steps of the LOO cross‑validation.

In addition, the results are presented in two scenarios: 
using all features and using features extracted by the GA. 

As evident from the obtained results, the efficacy of the 
proposed feature reduction method is markedly apparent.

Furthermore, the effectiveness of the proposed feature 
reduction approach has been assessed against three other 
FS methods, alongside a baseline approach where no FS 
is applied. The compared methods encompass FS based on 
principal component analysis, FS based on evolutionary 

Table 2: The classification sensitivity of the proposed method for 18 people and using 3 different kernels
Subjects All features Selected features

Linear SVM Polynomial kernel RBF kernel Linear SVM Polynomial kernel RBF kernel
1 0.88 0.89 0.89 0.97 0.99 0.99
2 0.86 0.89 0.89 0.85 0.96 0.98
3 0.86 0.89 0.89 0.93 0.98 0.99
4 0.85 0.88 0.88 0.94 0.98 0.98
5 0.58 0.77 0.85 0.88 0.88 1
6 0.68 0.85 0.80 0.89 0.88 0.92
7 0.70 0.84 0.88 0.85 0.82 0.94
8 0.83 0.88 0.89 0.98 0.98 0.99
9 0.81 0.90 0.85 0.95 0.98 1
10 0.83 0.92 0.87 0.99 1 1
11 0.81 0.93 0.83 0.91 0.98 0.98
12 0.86 0.92 0.91 0.97 1 1
13 0.89 0.91 0.89 0.93 1 1
14 0.81 0.92 0.91 0.90 1 1
15 0.88 0.93 0.90 0.96 0.99 1
16 0.84 0.91 0.91 0.88 0.97 0.99
17 0.87 0.88 0.92 0.99 1 1
18 0.82 0.89 0.89 0.85 0.96 0.99
Average 0.87 0.85 0.86 0.92 0.95 0.98
SVM – Support vector machine; RBF – Radial basis function

Table 1: The classification accuracy of the proposed method for 18 people and using 3 different kernels
Subjects All features Selected features

Linear SVM Polynomial kernel RBF kernel Linear SVM Polynomial kernel RBF kernel
1 0.86 0.86 0.86 0.95 0.95 0.96
2 0.70 0.69 0.72 0.81 0.83 0.83
3 0.78 0.75 0.75 0.89 0.89 0.87
4 0.87 0.84 0.87 0.94 0.94 0.96
5 0.91 0.90 0.93 0.98 0.95 0.93
6 0.62 0.54 0.54 0.73 0.71 0.75
7 0.72 0.71 0.78 0.85 0.86 0.89
8 0.84 0.82 0.81 0.91 0.93 0.90
9 0.82 0.75 0.81 0.84 0.84 0.84
10 0.83 0.81 0.79 0.92 0.93 0.94
11 0.81 0.76 0.81 0.95 0.92 0.98
12 0.88 0.84 0.86 0.95 0.91 0.96
13 0.73 0.70 0.70 0.97 0.92 0.97
14 0.61 0.63 0.64 0.82 0.83 0.89
15 0.83 0.78 0.83 0.93 0.90 0.92
16 0.80 0.79 0.79 0.86 0.88 0.87
17 0.80 0.81 0.84 0.97 0.94 0.94
18 0.81 0.82 0.83 0.97 0.93 0.95
Average 0.79 0.77 0.79 0.92 0.91 0.93
SVM – Support vector machine; RBF – Radial basis function
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algorithms,[20] and the nondominated sorting multiobjective 
organism search algorithm.[8]

The numerical outcomes for the proposed approach 
are succinctly presented in Table 4, where the average 
performance across 18 individuals is compared. In this 
analysis, it is presumed that all stages (preprocessing, feature 
extraction, and classifier) remain constant, with the sole 
differentiation found in the dimensionality reduction and FS 
phases. Subsequently, the proposed approach is evaluated 
based on accuracy, sensitivity, and specificity criteria.

A conspicuous observation emerges from the results: 
utilizing all features yields the lowest classification 
performance, underscoring the challenge posed by high 
dimensionality. Conversely, the proposed dimensionality 
reduction method showcases superior performance 
compared to the other examined methods.

Performing the experiment on the combination of all 
individuals’ data

In this scenario, data from all individuals have been 
combined, and the data from 17 individuals are considered 
training data, whereas the remaining data from one individual 
are used as test data, and the final results are reported based 
on this setup. The results obtained from this scenario are 
presented in Table 5. The results in the ith row correspond to 
the scenario where the ith individual is used as the test, and 
the data from the remaining 17 individuals are combined.

Conclusions
It is imperative to underscore that the proposed method 
represents a significant advancement in the field of 
arousal level detection using EEG signals. By employing 
a 640‑dimensional feature vector derived from the Faller 

Table 3: The classification specificity of the proposed method for 18 people and using 3 different kernels
Subjects All features Selected features

Linear SVM Polynomial kernel RBF kernel Linear SVM Polynomial kernel RBF kernel
1 0.87 0.89 1 0.91 0.99 1
2 0.82 0.86 0.86 0.90 0.97 0.98
3 0.79 0.86 0.86 0.90 0.97 0.98
4 0.82 0.89 0.89 0.94 0.98 0.99
5 0.88 0.87 0.89 1 1 1
6 0.80 0.83 0.89 0.91 0.99 0.97
7 0.83 0.88 0.87 0.99 1 1
8 0.80 0.89 0.89 0.89 0.98 0.98
9 0.78 0.86 0.88 0.93 0.99 1
10 0.84 0.82 0.90 0.81 0.90 0.98
11 0.81 0.88 0.90 0.92 1 1
12 0.84 0.85 0.91 0.89 0.96 0.97
13 0.83 0.88 0.92 0.93 1 1
14 0.82 0.88 0.91 0.87 0.95 1
15 0.87 0.85 0.91 0.88 0.94 0.96
16 0.84 0.83 0.90 0.90 0.98 0.99
17 0.79 0.84 0.90 0.87 0.95 0.98
18 0.83 0.80 0.87 0.96 0.99 0.99
Average 0.85 0.86 0.88 0.96 0.99 0.99
SVM – Support vector machine; RBF – Radial basis function

Table 4: Investigating the performance of the proposed feature reduction method and comparing it with other 
methods

References Feature reduction Classifier Accuracy Specificity Sensitivity
Minimum Maximum Minimum Maximum Minimum Maximum

‑ All features Linear 61.79 91.55 58.86 89.63 78.71 88.81
RBF 54.89 93.14 80.75 92.66 86.21 100

[18] Evolutionary 
algorithm

Linear −20 6 −20 6 −20 6
RBF −20 7 −20 7 −20 7

[20] Search for symbiotic 
organisms

Linear −2.1 7.2 −2.1 7.2 −2.1 7.2
RBF −19.5 2.99 −19.5 2.99 −19.5 2.99

The proposed 
method

Genetic algorithm Linear 73.79 98.75 85.26 99.23 81.72 100
RBF 75.96 98.87 92.85 100.52 96.28 100

RBF – Radial basis function
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Table 5: Investigating the performance of the proposed method to detect the level of arousal by considering the 
combination of all people’s data and evaluating it on one person

Subjects All features Selected features
Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity

1 0.89 0.88 0.80 0.92 0.91 0.89
2 0.74 0.71 0.77 0.86 0.83 0.87
3 0.80 0.90 0.70 0.87 0.91 0.77
4 0.81 0.87 0.76 0.86 0.87 0.86
5 0.58 0.85 0.54 0.71 0.88 0.78
6 0.51 0.65 0.69 0.71 0.79 0.80
7 0.67 0.53 0.78 0.87 0.83 0.87
8 0.85 0.86 0.74 0.88 0.89 0.83
9 0.83 0.85 0.73 0.89 0.89 0.84
10 0.75 0.81 0.70 0.83 0.87 0.81
11 0.84 0.96 0.76 0.88 0.86 0.85
12 0.84 0.99 0.72 0.89 0.91 0.83
13 0.84 0.85 0.75 0.88 0.90 0.87
14 0.70 0.62 0.75 0.78 0.82 0.87
15 0.84 0.81 0.69 0.87 0.91 0.80
16 0.79 0.85 0.72 0.81 0.88 0.81
17 0.83 0.85 0.73 0.85 0.90 0.82
18 0.82 0.88 0.71 0.84 0.88 0.80
Average 0.7783 0.8130 0.7449 0.8135 0.8865 0.8464

database’s 64‑channel EEG signal, our method demonstrates 
a robust ability to classify arousal levels in different 
scenarios. The utilization of a GA for FS, formulated as 
a multiobjective optimization problem, signifies a novel 
approach in this domain.

This methodology notably outperforms existing methods, 
as evidenced by a minimum 4% improvement in average 
accuracy, sensitivity, and specificity in the first scenario. In 
the second scenario, despite the challenges of combining 
data from multiple subjects, the method still maintains 
commendable accuracy and sensitivity.

However, potential limitations include the method’s 
dependency on high‑dimensional data and the complexity 
of the GA, which may necessitate substantial computational 
resources. Furthermore, the study’s narrow focus on a 
specific age group and the utilization of data from a video 
game task could constrain the generalizability of the findings.

The study’s design, focused on two distinct 
scenarios (individual and combined data), was chosen to 
validate the method’s effectiveness across different levels 
of data complexity. This approach ensures the method’s 
robustness and applicability in real‑world scenarios where 
individual variability can play a significant role.

Overall, this research contributes a valuable and efficient 
tool for arousal level detection, with implications for 
enhancing machine understanding of human emotional 
states. Future research could explore the method’s 
applicability to other age groups and settings, potentially 
broadening its utility.
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