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Abstract

Cyclin Y (CCNY), which is a cyclin protein known to play a role in cell division, is unexpect-

edly and thus interestingly expressed in non-proliferating neuronal cells. There have been

only a few studies reporting the neuronal functions of CCNY in synapse remodeling and hip-

pocampal long-term potentiation. Therefore, we here provide global and comprehensive

information on the putative functions of CCNY in biological and functional pathways in neu-

ronal systems. We adopted high-throughput RNA-sequencing technology for analyzing

transcriptomes regulated by CCNY and utilized bioinformatics for identifying putative mole-

cules, biological processes, and functional pathways that are possibly connected to CCNY

functions in hippocampal neuronal cells of rats. We revealed that several enriched annota-

tion terms and pathways associated with CCNY expression within neurons, including

apoptosis, learning or memory, synaptic plasticity, actin cytoskeleton, focal adhesion,

extracellular matrix-receptor interaction and chemokine signaling pathway are targeted by

CCNY. In addition, the mRNA levels of some genes enriched for those annotation terms

and pathways or genes reported to be altered in Alzheimer’s disease mouse model were fur-

ther validated by quantitative real-time PCR in hippocampal neuronal cells. The present

study provides an excellent resource for future investigations of CCNY functions in neuronal

systems.

Introduction

Cyclin Y (CCNY) is one of the members of the cyclin family that has been known to regulate

cell division in proliferating cells [1–3]. CCNY was originally identified as an interacting pro-

tein of the cyclin-dependent kinase CDK14/PFTK1 via a yeast two-hybrid screen [4]. Its role

has been investigated in the field of cancer biology by showing that CCNY regulates glioma
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and lung cancer cell proliferation [5, 6]. In addition, CCNY played an essential role in the

maintenance of mammary stem/progenitor cell properties [7] and the control of adipogenesis

and lipid production [8]. Furthermore, CCNY was a key factor for the development of Dro-

sophila, including larval growth, pupal development and metamorphosis [2].

Interestingly, CCNY has been shown to play roles in non-dividing neuronal cells. Role of

CCNY in the nervous system was first described in C. elegans as a regulator for synapse forma-

tion and elimination [9, 10], and it was also found in the mammalian nervous system as a neg-

ative regulator for hippocampal long-term potentiation (LTP) [11], the most widely studied

cellular basis of learning and memory [12–15]. Investigating the function of CCNY in the

non-proliferating neuronal cells is intriguing since CCNY has been generally known for its

role in proliferating cells. Although a few studies reported on the role of CCNY in the nervous

system [9–11], the mechanistic and signaling information on how CCNY functions in the

brain remains mostly unknown. In this study, we provide candidate molecules, biological pro-

cesses and functional signaling pathways that might be regulated by CCNY, a relatively novel

molecule whose function has been rarely investigated.

RNA sequencing (RNA-seq), which is a recent revolutionary tool providing an accurate

and precise measurement of transcript levels, has been widely applied for systematic, compre-

hensive, and global analysis of transcriptome in various species [16–18]. This next-generation

high-throughput sequencing technology has provided an unbiased approach for investigating

pathophysiology of neurodegenerative diseases [19–22]. In this study, the RNA-seq technique,

bioinformatics, and quantitative real-time PCR (qRT-PCR) have been adopted to extract

molecular profiles that are regulated by CCNY in hippocampal neuronal cells and provide

invaluable information on putative biological processes, molecular functions and functional

signaling pathways that CCNY may be involved in hippocampal neuronal system. The exten-

sive and essential resources provided in the present study will serve as a platform for future

investigations of CCNY function in neuronal systems.

Materials and methods

Cell culture

HEK 293T cells were grown in DMEM (HyClone) supplemented with 10% fetal bovine serum.

Hippocampal neuron cultures were prepared from E18 Sprague-Dawley (SD) rat embryos and

maintained for 14–21 days in vitro (DIV) [11]. All experiments handling animals and their

embryos were performed in accordance with the guidelines and regulations of the Korea Insti-

tute of Science and Technology (KIST). All experimental protocols were approved by the KIST

Institutional Animal Care and Use Committee (IACUC; approval number 2016–065).

DNA constructs

The same constructs from our previous study [11] were used for CCNY-WT-EGFP, FUGW-

CCNY-WT, and FUGW-CCNY-shRNA.

Immunocytochemistry

For staining endogenous PSD-95, hippocampal neurons on coverslips were fixed with 4%

paraformaldehyde/4% sucrose in phosphate-buffered saline (PBS) for 15–20 min at room tem-

perature and permeated with 0.1% TritonX-100 in PBS for 10 min at room temperature. Neu-

rons were then incubated with mouse anti-PSD-95 (MA1-046, Thermo fisher scientific, 1:200)

in PBS containing 5% normal donkey serum for 1 hr at room temperature. Anti-mouse
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Cy3-conjugated secondary antibody (1:300) was applied for 45 min at room temperature. Cov-

erslips were then mounted on slide glasses for imaging.

Production of lentivirus

Lentivirus expressing EGFP, CCNY-WT-EGFP or CCNY-shRNA-EGFP was generated as

described in our previous study [11]. Briefly, lentiviral vector FUGW, FUGW harboring

CCNY-WT or CCNY-shRNA, the packaging vector Δ8.9, and VSVG envelope glycoprotein

vector were co-transfected into HEK 293T cells using X-tremeGENE HP DNA transfection

reagent (Roche). Thirty six to 48 hours after transfection, supernatants containing the lentivi-

rus were harvested, aliquoted, and stored at −80˚C.

Sample preparation for RNA-seq

Cultured hippocampal neurons were infected with lentivirus expressing EGFP, CCNY-W-

T-EGFP or CCNY-shRNA-EGFP at DIV5-6, and the neuronal cell lysates were harvested at

DIV14 for total RNA isolation and subsequent RNA-seq.

RNA extraction, cDNA library construction, RNA-Seq and data analysis

RNA-seq was performed as described [23]. Total RNA was isolated using the RNeasy kit (Qia-

gen, Valencia, CA), the RNA-seq library was prepared using the TruSeq RNA Sample Prep Kit

(Illumina, San Diego, CA, USA) and the sequencing was performed based on Illumina Next-

Seq500 platform to generate 150-bp paired-end reads. The sequenced reads were mapped to

the Rat genome (rn4) using TopHat 2, and the gene expression levels were calculated using

Cufflinks [24, 25]. The cuffdiff module in the cufflinks package was used to select differentially

expressed genes (DEGs) from the RNA-seq data which cover the total 17,066 genes. Mean-

while, the FPKM value of each gene was floored to 1, and log2-transformed for further analy-

sis. Heat maps were constructed using Mev [26]. Statistical analyses and graph construction

were performed using R (v. 3.1.0) and PYTHON (v. 2.7.6).

Bioinformatic analysis

To extract the over-represented (enriched) biological annotation terms and pathways from

DEGs, the Database for Annotation, Visualization and Integrated Discovery (DAVID) Bioin-

formatics Resources v6.7 (https://david.ncifcrf.gov) [27, 28] was applied for the Gene ontology

(GO) analysis on the basis of three categories, including biological process, cellular component

and molecular function and also for the Kyoto Encyclopedia of Genes and Genomes (KEGG)

enrichment analysis [29, 30]. The enriched GO terms and enriched KEGG pathways were first

identified based on the uncorrected P-values, and only the terms and pathways that are likely

related to mainly neuronal functions and broadly cell proliferation were represented as figures

(S2–S4 Figs). Some of the identified terms and pathways from the S2–S4 Figs are also pre-

sented as Tables, including the individual genes belonging to each term and pathway (S1 and

S2 Tables). RNA-seq data were closely investigated for all individual genes belonging to the

terms and pathways listed in S1 and S2 Tables. Then, genes showing apparent disparity in the

transcript levels between control, CCNY-WT overexpression, and CCNY knockdown samples

were chosen for quantitative real-time PCR (qRT-PCR) validations. Only the genes showing

statistical significance between the samples of control, CCNY-WT overexpression, and CCNY

knockdown in mRNA levels quantified by qRT-PCR were presented as data in this study. The

result of Cxcl1 gene showing no significance between the samples was included in the data as a

control, which is consistent with the reported study [31].

Cyclin Y-mediated transcriptome analysis in hippocampal neurons
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RNA-seq data access

RNA-seq data have been deposited in the NCBI Gene Expression Omnibus (GEO) under the

accession number GSE84850.

Quantitative Real-Time PCR (qRT-PCR) and analysis

Cultured hippocampal neurons infected with lentivirus expressing EGFP, CCNY-WT-EGFP

or CCNY-shRNA-EGFP for 7–8 days were harvested. Total RNA was extracted using RNAiso

Plus (TaKaRa, Japan) according to the manufacturer’s instructions and was reverse transcribed

into cDNA using the the PrimeScript II 1st strand cDNA synthesis kit (TaKaRa, Japan). The

qRT-PCR was performed using Power SYBR Green PCR Master Mix (Thermo fisher scien-

tific). The reaction mixture contained 0.5 μl of cDNA corresponding to 75 ng of total RNA,

150 nM of each gene-specific primers and 2x Power SYBR Green PCR Master Mix in a total

volume of 20 μl. The cycling parameters of StepOnePlus Real-Time PCR System (Applied Bio-

systems) were as follows: 95˚C for 10 min, followed by 40 cycles of 95˚C for 15 sec and 60˚C

for 1 min. Relative expression level was calculated according to the 2−ΔΔCT algorithm based on

the expression of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene, which did not

show differential expression among samples in the study. Experiments were independently

performed 3 times with duplicates each time. Primer sets used for qRT-PCR are listed in S3

Table.

Immunoblot analysis

Equal amounts of protein denatured in SDS sample buffer were applied to SDS-PAGE, trans-

ferred onto a PVDF membrane, and applied to immunoblot reactions. Protein bands were

visualized by a chemiluminescence method (Millipore or Thermo fisher scientific) and an

imaging documentation system (ImageQuant LAS 4000, GE healthcare). Primary antibodies

against CCNY (Proteintech group), GFP (Roche) or β-tubulin (Abcam) were used.

Results

Experimental model system for RNA-seq based transcriptome analysis

CCNY is unexpectedly expressed in non-proliferating neuronal cells [11]. However, there are

only few reports on the function of CCNY in neuronal systems, which include its regulation of

synapse remodeling and hippocampal LTP [9–11]. Therefore, further investigation on the neu-

ronal functions of CCNY is indispensable. For this aim, we first searched for systematic infor-

mation of gene sets that are possibly regulated by CCNY in the hippocampal neurons; the

region of hippocampus was chosen based on the previous report on the function of CCNY in

hippocampal LTP [11]. We lentivirally overexpressed or knockdowned CCNY in the primary

cultured hippocampal neurons (Fig 1a) and confirmed that CCNY mRNA (Fig 1b; EGFP con-

trol, 1.0 ± 0.012; CCNY-WT, 27.87 ± 5.365; CCNY-shRNA, 0.37 ± 0.063) and protein levels

(Fig 1c) were significantly enhanced and reduced in neurons overexpressing and knocking

down CCNY, respectively. Consistent with the previous report showing the existence of

CCNY in the postsynaptic subcellular fraction [11], CCNY wild-type (CCNY-WT) localizes

adjacent to the endogenous postsynaptic density protein-95 (PSD-95) (Fig 1d), supporting the

value of systematic analysis on putative neuronal functions of CCNY.

Up- and down-regulated genes by CCNY in the hippocampal neurons

We next aimed to obtain the profile of genes that are regulated by CCNY in hippocampal neu-

rons and thus performed RNA-seq from each hippocampal neuronal samples that are CCNY
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overexpressed or CCNY knocked down. Gene expression level was calculated as the fragments

per kilobase of transcript per million fragments mapped (FPKM). We found that the

log2FPKM of CCNY is enhanced in the CCNY overexpressed neurons whereas it is reduced in

the CCNY knocked down neurons (S1a Fig). The fold change (fc) was calculated by subtract-

ing the FPKM value of EGFP control from the FPKM value of CCNY-EGFP overexpression or

CCNY shRNA-mediated knockdown samples. Differentially expressed genes (DEGs) were

selected by setting |log2fc|� 0.3 and |log2fc|� 0.33 for CCNY overexpression and knockdown,

respectively. With these criteria, the total of 442 up-regulated and 375 down-regulated DEGs

in CCNY-WT-overexpressing neurons and 529 up-regulated and 671 down-regulated DEGs

in CCNY-shRNA-knockdown neurons were identified (S1b Fig), and the differential expres-

sion profiles demonstrating up- and down-regulations by CCNY overexpression (Fig 2a) or

knockdown (Fig 2b) were displayed.

CCNY-mediated regulation of biological processes, including apoptosis

and learning or memory

To better understand the function of CCNY in neuronal cells, we used the Database for Anno-

tation, Visualization and Integrated Discovery (DAVID) functional annotation tool for con-

ducting the Gene ontology (GO) analysis on the basis of three categories, including biological

process, cellular component, and molecular function [32] from each sets of DEGs shown in

Fig 2. Positive regulation of apoptosis in biological process, extracellular region/space in

Fig 1. Experimental model systems for RNA-seq based transcriptome analysis. (a) Cultured hippocampal neurons expressing EGFP

(Lenti-EGFP Ctrl), CCNY-WT-EGFP (Lenti-CCNY-WT-EGFP) or CCNY-shRNA-EGFP (Lenti-CCNY-shRNA-EGFP) via lentiviral

expression system. (b,c) Relative levels of mRNA (b) and protein (c) of CCNY from the neurons infected with lentivirus expressing EGFP,

CCNY-WT-EGFP or CCNY-shRNA-EGFP. n = 5 from 3 independent experiments. **p<0.01 relative to control, ***p<0.005 relative to

control, student’s t test. Refer to the S9 Fig for the full-length blots of (c). (d) CCNY-WT exists in the spines near the endogenous PDS-95 in

cultured hippocampal neurons, supporting the value of the study on systematic analysis for putative neuronal functions of CCNY. Scale

bars, 20 and 2 μm for the whole neuronal and enlarged images, respectively.

doi:10.1371/journal.pone.0172547.g001

Cyclin Y-mediated transcriptome analysis in hippocampal neurons

PLOS ONE | DOI:10.1371/journal.pone.0172547 February 27, 2017 5 / 16



Fig 2. Up- and down-regulated genes by CCNY in the hippocampal neurons. (a,b) Heatmaps of differentially expressed

genes (DEGs) for up- or down-regulated genes by CCNY overexpression (a) or knockdown (b). Selected gene names are listed

on the right side of the heatmaps. Red indicates up-regulated gene expression level, whereas green indicates down-regulated

gene expression level. The values of log2FPKM were normalized to the value ranges from minimum -2.0 to maximum +2.0.

doi:10.1371/journal.pone.0172547.g002
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cellular component, hormone activity, cytokine activity, pattern binding, polysaccharide bind-

ing, glycosaminoglycan binding, growth factor activity, protein dimerization activity, voltage-

gated ion channel activity, peptide receptor activity, metal ion transmembrane transporter

activity, and carbohydrate binding in molecular function were selected as the GO terms that

are significantly up-regulated by CCNY overexpression while down-regulated by CCNY

knockdown (S2a Fig). In addition, regulation of apoptosis and regulation of cell proliferation

in biological process and extracellular space in cellular component were selected as the GO

terms that are both significantly up-regulated by CCNY knockdown and down-regulated by

CCNY overexpression (S2b Fig). Using qRT-PCR, we further revealed that the mRNA expres-

sion levels of genes such as Acvr1c, Crh, Crhr1, Fcgr2a, Gch1, Gnrh1, Mmp9, Rxfp2, Sphk1,

Btc, Nupr1, and Chek2 belonging to the (positive) regulation of apoptosis in our analysis (S1

Table) were regulated by CCNY (Fig 3a). These data suggest a role of CCNY in apoptosis,

which is highly plausible based on the previous reports showing the regulation of synaptic plas-

ticity such as LTP and long-term depression (LTD) by a signaling pathway involving apoptotic

molecules [33, 34].

In addition to the terms mentioned above, the GO terms related to neuronal functions,

including learning or memory, regulation of synaptic plasticity, neuron development, regula-

tion of neurological system process, and/or positive regulation of glutamatergic synaptic trans-

mission in biological process were also significantly enriched in the down-regulated DEGs by

CCNY knockdown or overexpression (S2a Fig), which could be predicted from the previous

reports showing the CCNY functions in synapse formation, elimination and plasticity [9–11].

Several genes (Bche, Klk8, Pcdh8, Slc6a1, Drd2, and Hrh3) belonging to the terms such as

learning or memory, and synaptic plasticity (S1 Table) were further validated to be regulated

by CCNY using qRT-PCR (Fig 3b).

CCNY-mediated regulation of pathways for the regulation of actin

cytoskeleton, focal adhesion, and Extracellular Matrix (ECM)-receptor

interaction

We next carried out the Kyoto encyclopedia of genes and genomes (KEGG) pathway enrich-

ment analysis [29, 30] to identify enriched metabolic or signaling pathways in each sets of

DEGs shown in Fig 2. Regulation of actin cytoskeleton and chemokine signaling pathway were

selected as the KEGG pathways that are up-regulated by CCNY overexpression while down-

regulated by CCNY knockdown (S3a Fig). In addition, neuroactive ligand-receptor interac-

tion, calcium signaling pathway, cytokine-cytokine receptor interaction, focal adhesion, ECM-

receptor interaction, axon guidance, melanoma, antigen processing and presentation were

identified as the KEGG pathways that are significantly down-regulated by CCNY knockdown

(S3a Fig). DNA replication, systemic lupus erythematosus, and SNARE interactions in vesicu-

lar transport were significantly enriched as up-regulated KEGG pathways by CCNY knock-

down, whereas neuroactive ligand-receptor interaction, allograft rejection, and autoimmune

thyroid disease were significantly enriched as down-regulated KEGG pathways by CCNY

overexpression (S3b Fig).

Since the role of CCNY in AMPA receptor trafficking and LTP [11] is known to be medi-

ated by actin cytoskeleton [35–38] and CCNY localizes adjacent to the PSD (Fig 1d) [11], we

further validated the genes (S2 Table) belonging to the pathways for regulation of actin cyto-

skeleton (Iqub, Itgb5, Itgb8, Pik3r5, Vav2; Arpc1b, Chrm4, Chrm5, Gsn; Mylpf, Wasl) (Fig 4a;

S3, S5 and S6 Figs) and focal adhesion/ECM-receptor interaction (Flt1, Met, Reln, and Sdc4)

(Fig 4b; S7 and S8 Figs), respectively, by qRT-PCR. Moreover, previous studies have reported

CCNY as an inhibitory regulator for LTP [11], which has been assumed as a cellular model for

Cyclin Y-mediated transcriptome analysis in hippocampal neurons
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learning and memory, and the altered levels of several cytokines in memory-deficit Alzhei-

mer’s disease (AD) mouse model [31] that led us to further validate several genes (Ccl2, Ccl7

and Cxcl1; S2 Table) belonging to chemokine signaling pathway in S3a Fig and additional

cytokine genes (Ccl3, Ccl5 and Ccl11) reported in the cytokines-AD study [31] (Fig 5). Inter-

estingly, we found that the cytokines that were altered in the AD mouse model [31] were also

shown to be regulated by CCNY, suggesting a possible role of CCNY in the AD mouse model.

Analysis of overlapping DEGs regulated by CCNY overexpression and

knockdown

Among 442 DEGs that were up-regulated by CCNY overexpression, 153 and 11 genes were

up- and down-regulated, respectively, by CCNY knockdown. Among 375 DEGs that were

down-regulated by CCNY overexpression, 145 and 6 genes were down- and up-regulated,

respectively, by CCNY knockdown (Fig 6a). mRNA expression levels of several genes (Prtn3,

Kcnk13, Kcnj10, Ifi30, Crh, Ccl2, Ccl7 and Hand2) out of 11 that were both up-regulated by

CCNY overexpression and down-regulated by CCNY knockdown (Fig 6b and 6c), and a gene

Fig 3. CCNY affects the biological processes related to apoptosis, and learning or memory in hippocampal neurons. (a,b)

Validation of several genes in GO terms regulated by CCNY. qRT-PCR validations of several genes belonging to the term “(positive)

regulation of apoptosis” in up-regulated GO terms by CCNY overexpression or down-regulated GO terms by CCNY knockdown (a), the term

“learning or memory” in down-regulated GO terms by CCNY knockdown and the term “regulation of synaptic plasticity” in down-regulated

GO terms by CCNY knockdown (b). Refer the S1 Table.

doi:10.1371/journal.pone.0172547.g003
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Fig 4. CCNY affects the pathways for the regulation of actin cytoskeleton, focal adhesion, and Extracellular Matrix (ECM)-receptor

interaction in hippocampal neurons. (a,b) Transcript levels of several genes from “regulation of actin cytoskeleton” pathway (a) and “focal

adhesion” and “ECM-receptor interaction” pathways (b) were analyzed by qRT-PCR. n = 3–5 from 3 independent experiments. *p<0.05

relative to control, **p <0.01 relative to control, ***p <0.001 relative to control, ns, not significant, student’s t test. Refer the S2 Table.

doi:10.1371/journal.pone.0172547.g004

Fig 5. CCNY regulates genes related to Alzheimer’s Disease (AD) in hippocampal neurons. qRT-PCR results of several cytokine

genes in the chemokine signaling pathway (S3a Fig) or genes related to AD from CCNY overexpression or knockdown samples. n = 3–5

from 3 independent experiments. *p<0.05 relative to control, **p <0.01 relative to control, ***p <0.001 relative to control, ns, not significant,

student’s t test. Refer the S2 Table.

doi:10.1371/journal.pone.0172547.g005
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(Nrl) out of 6 that were both up-regulated by CCNY knockdown and down-regulated by

CCNY overexpression (Fig 6b and 6d) were further validated by qRT-PCR.

The 153 DEGs that were both up-regulated by CCNY overexpression and knockdown (Fig

6e) and the 145 DEGs that were both down-regulated by CCNY overexpression and knock-

down (Fig 6f) were further analyzed for GO term enrichment (S4 Fig). It implies that a certain

expression level of CCNY is important for physiological maintenance of the GO terms identi-

fied in S4 Fig.

Discussion

In the present study, for the first time, we demonstrated the expression patterns of transcripts

targeted by the cyclin protein CCNY in non-proliferating hippocampal neuronal cells. By con-

ducting bioinformatic analysis, including GO terms and KEGG pathways with the RNA-seq

data, we examined the CCNY-mediated changes in transcriptome pattern and made subse-

quent validations on the transcript changes with qRT-PCR in hippocampal neuronal cells. We

Fig 6. Analysis of overlapping DEGs controlled by CCNY overexpression and knockdown. (a) Venn diagram showing the overlaps

among the four categories. (b-d) Some genes are oppositely regulated by CCNY overexpression and knockdown. (b) Heatmap for the

genes overlapping up-regulated by CCNY overexpression and down-regulated by CCNY knockdown (upper). Heatmap for the genes

overlapping down-regulated by CCNY overexpression and up-regulated by CCNY knockdown (lower). (c,d) Several genes from (b) were

validated by qRT-PCR. n = 3–5 from 3 independent experiments. *p<0.05 relative to control, **p <0.01 relative to control, ***p <0.001

relative to control, ns, not significant, student’s t test. (e,f) Heatmaps for the genes overlapping up-regulated by CCNY overexpression and

up-regulated by CCNY knockdown (e) and the genes overlapping down-regulated by CCNY overexpression and down-regulated by CCNY

knockdown (f).

doi:10.1371/journal.pone.0172547.g006
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analyzed total of eight categories of the genes targeted by CCNY overexpression and/or knock-

down (Fig 6a): up- or down-regulated by CCNY overexpression, up- or down-regulated by

CCNY knockdown, up- or down-regulated by both CCNY overexpression and knockdown,

up-regulated by CCNY overexpression and down-regulated by CCNY knockdown, and up-

regulated by CCNY knockdown and down-regulated by CCNY overexpression. We thor-

oughly examined the patterns of analysis results and found that several GO terms and KEGG

pathways should be considered significantly valuable for further investigations on their roles

particularly in respect to the CCNY-mediated functional phenotypes in neuronal systems.

Through the RNA-seq, transcriptome analysis and qRT-PCR, we presented that actin cyto-

skeleton, learning or memory, focal adhesion, ECM-receptor interaction, apoptosis, chemo-

kine signaling, and AD-related cytokines are affected by CCNY in neuronal cells. Based on our

previous report on the CCNY function in LTP [11] which has been considered as a cellular

mechanism for learning and memory and the findings on CCNY regulation of several AD-

related cytokines (Fig 5), it is highly plausible that CCNY plays a role in learning and memory-

deficit neurological diseases such as AD [39].

The actin cytoskeleton is abundant in the dendritic spines and is an essential factor for

spine structure and plasticity [40–44]. In addition, actin dynamics has been reported to play

an important role in controlling AMPA receptor trafficking and in bidirectional synaptic plas-

ticity such as LTP and LTD [35–38, 45, 46]. Importantly, CCNY, which was shown to be local-

ized in spines (Fig 1d) [11], has been suggested as an inhibitory regulator for AMPA receptor

delivery to synapses during LTP-inducing stimulation [11]. Furthermore, in the present study,

the pathway for regulation of actin cytoskeleton was identified to be oppositely regulated by

CCNY overexpression and knockdown, and several genes involved in the pathway were

qRT-PCR-validated as being regulated by CCNY (S3 Fig and Fig 4a). Therefore, it will be

important to provide direct experimental evidence on the role of CCNY in the actin dynamics

by investigating the cellular and molecular mechanisms underlying the coordination between

CCNY and actin cytoskeleton signaling for neuronal structural and functional plasticity.

The terms and pathways such as DNA replication, mitotic cell cycle, and regulation of cell

proliferation were also identified by the DAVID analysis in our experimental systems. Since

our culture system used in this study is neurons enriched but glia repressed, those terms and

pathways that are related to cell division and are isolated as being targeted by CCNY further

suggest and support the idea that cyclin proteins, including CCNY, may play roles in neuronal

functions by controlling synapses, synaptic plasticity and/or memory [47] plausibly through

the formulation of neuron-specific functional molecular networks.

Transcript expression level of individual genes that we displayed in the present study may

indicate the protein expression (mRNA translation) level of the individual genes. Given that

CCNY plays a role in synaptic plasticity, the genes isolated as being regulated by CCNY in this

study could be involved in the maintenance of synaptic plasticity and memory (re)consolida-

tion, which require new protein synthesis [48–52]. In other words, those genes that did not

exhibit any changes by CCNY should not be overlooked since they may be involved in the

early stage of synaptic plasticity, which does not require a process of protein synthesis. There-

fore, it will be valuable to explore and compare the transcriptome profile changes controlled by

CCNY in an activity-dependent manner with several temporal windows after given an activity.

The global and comprehensive bioinformatic analysis of transcriptome controlled by

CCNY and consecutive validations with qRT-PCR in neuronal cells revealed some valuable

molecules as being regulated by CCNY in neuronal cells and provided useful information on

the neuronal and/or synaptic role of CCNY by suggesting several functional pathways. It will

require in future to experimentally elucidate the CCNY functions in nervous systems in vitro
and in vivo.
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The GO and KEGG pathway analysis adopted in this study provide a meaningful biology

associated with a list of genes from a large number of genes through the systematical classifica-

tions of DEGs and the statistical over-representation (enrichment) to the functional pathways.

However, we cannot overlook the plausibility of other biological meanings that could be

missed by the enrichment analysis since the analysis only relies on the known genes and

known functions, it cannot reveal unknown functions even in the known genes. Moreover,

some biological pathways have been more investigated than others, which relatively builds up

more database for the enrichment analysis and thus likely analyzed with more significance

than others [27, 28, 53, 54].
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