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To maintain immunological balance the organism has to be tolerant to self while remaining
competent to mount an effective immune response against third-party antigens. An impor-
tant mechanism of this immune regulation involves the action of regulatory T-cell (Tregs).
In this mini-review, we discuss some of the known and proposed mechanisms by which
Tregs exert their influence in the context of immune regulation, and the contribution of
mathematical modeling for these mechanistic studies. These models explore the mecha-
nisms of action of regulatory T cells, and include hypotheses of multiple signals, delivered
through simultaneous antigen-presenting cell (APC) conjugation; interaction of feedback
loops between APC, Tregs, and effector cells; or production of specific cytokines that act
on effector cells. As the field matures, and competing models are winnowed out, it is likely
that we will be able to quantify how tolerance-inducing strategies, such as CD4-blockade,
affect T-cell dynamics and what mechanisms explain the observed behavior of T-cell based
tolerance.

Keywords:Tregs, mathematical models, CD4-blockade, regulation, tolerance

INTRODUCTION
Immunological tolerance can be defined as the state of unrespon-
siveness to an antigen, following prior contact with that antigen,
where the host remains competent to mount an effective immune
response against third-party antigens. Accomplishing therapeutic
induced tolerance has been one of the major goals of immunology
ever since the pioneering work of Medawar and colleagues (1).

There is a need to keep a balance between aggressive cells and
cells that maintain tolerance to self. On occasions this balance
can be disrupted originating either autoimmunity, when mech-
anisms leading to self-tolerance fail, or immunodeficiency and
susceptibility to infection when the immune system is not able to
mount a proper immune response. Usually, however, the immune
system shows a significant capacity for self-tolerance, in spite of
its equally efficient performance in the protection from foreign
microbes. The ability to orchestrate protective immune responses
is also the major hurdle impeding successful transplantation ther-
apies and hinders the efficacy of therapeutic administration of
foreign proteins and genes.

Random rearrangement of T-cell receptors (TCR) during cel-
lular maturation leads to T cells that will recognize self-antigens.

It was a long held assumption that central tolerance, by means of
negative selection of autoreactive lymphocyte clones, could on
its own account for the establishment of self-tolerance. With-
out such a censoring mechanism these autoreactive cells could
eventually lead to autoimmune disease. Indeed thymocytes must
survive the process of negative selection, which eliminates cells
whose TCRs bind too avidly to self-antigens (2–4). The apop-
tosis of these thymocytes will prevent migration of autoreactive
T cells to the periphery and prevent autoimmunity. Conversely,
absence of negative selecting self-peptide-MHC complexes in the
thymic medulla leads to an increase in mature autoreactive T
cells (5, 6).

However, not all self-antigens are presented in the thymus, and
some developing autoreactive T cells never encounter their anti-
gens, eventually migrating to the periphery. Thus, although central
tolerance contributes to the deletion of a large number of poten-
tially autoreactive T cells, some autoreactive clones can be found
in the periphery of healthy individuals (7, 8). There are, there-
fore, mechanisms that operate in the periphery (i.e., outside the
thymus) to establish self-tolerance toward autoreactive clones that
escape thymic negative selection.
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Initially, one such mechanism was thought to be mediated by T-
cell anergy, described as the functional state in which T cells remain
viable but unable to respond to optimal stimulation through the
TCR and co-stimulatory ligands (9), i.e., unable to proliferate or
to produce interleukin-2 (IL-2) (10, 11). The first observation of
anergy was made with purified human CD4+ T cells stimulated
with large quantities of peptide antigens (10). It was noted that
after antigen stimulation there was down-regulation of TCR and
this was associated with the molecular mechanism for anergy (12).
Subsequent studies with mouse CD4+ T cells suggested that occu-
pancy of the TCR without any other signals was responsible for
the induction of this state (13, 14).

Interestingly, anergic T cells were capable of suppress-
ing proliferation of naïve T cells in vitro (15) and in vivo
(16). In addition, anergic T cells have been shown to inhibit
the antigen-presenting function and survival of dendritic cells
(17). These and other observations led to the proposal of
the “civil service model” (18), postulating that antigen-specific
unresponsive cells can interfere with the generation of help
by co-localizing with other T cells and competing for ele-
ments in the microenvironment (such as adhesion molecules or
cytokines).

However, it was not clear how T cells would become anergic
in vivo, and whether such mechanism was enough to maintain
tolerance. More recently, a specific T cell subset, termed regula-
tory T (Treg) cells, gained prominence as being a key mechanism
maintaining peripheral self-tolerance (19, 20). With hindsight, it is
likely that many of the features of anergic T cells are a consequence
of Treg function.

REGULATORY T CELLS
In 1995 Sakaguchi et al. (19) showed that depletion of a minor
population of CD4+ T cells constitutively expressing CD25 [IL-2
receptor α-chain (IL-2Rα)] led to the generation of a spectrum of
autoimmune diseases when transferred to immune-compromised
recipients. In addition, the co-transfer of CD25+ T cells prevented
the pathology.

Based on this CD25 marker, a population of natural (thymus-
derived) regulatory T cells was identified in the resting immune
system, both in mice and in humans (21). Subsequent studies
showed that these cells express forkhead box transcription fac-
tor 3 (Foxp3) and this finding led to the definite establishment
of a Treg subset (22–24). There is now abundant evidence that
these regulatory T cells are actively engaged in the maintenance
of self-tolerance (25). Furthermore, depletion of Foxp3+ Tregs
originates fatal multi-organ autoimmunity. The phenotype of this
disease is virtually indistinguishable from the IPEX syndrome,
caused by Foxp3 mutations in humans and equivalent to the Scurfy
phenotype in mice (26–28).

THYMIC TREG CELLS
The Treg cells that develop in the thymus, first described as nat-
urally occurring regulatory T cells (nTregs) appear to be selected
for self-antigen/MHC expressed by thymic epithelial cells (29, 30),
in a process that requires TCR triggering in the presence of co-
stimulation (31, 32), but dispenses TGF-β and IL-2 (33, 34). Early
studies with Treg cells showed that these cells express CD25, CD5,

and cytotoxic T lymphocyte antigen 4 (CTLA-4), which are all
induced upon TCR stimulation (19).

In the periphery, nTregs represent around 6–10% of the over-
all CD4+ T-cell population. In order to be sustained they need
continuous TCR triggering and co-stimulation in the presence of
IL-2 (35–37), making IL-2 essential for natural Treg pool mainte-
nance in the periphery (38). Comparative analysis of polyclonal
TCR repertoires showed that TCR sequences from Treg cells were
of broader variety and only partially overlapping with the ones
from non-Treg cells (39). Some studies have shown that antigen-
specific Treg cells are more potent at suppressing the induction of
autoimmune disease than polyclonal populations (40). However,
other studies have also shown that polyclonal Tregs are able to
suppress independently of their specificity (41). Thus, Tregs with
one antigen-specificity can suppress effector cells with many other
antigen-specificities by bystander suppression. Moreover, trans-
plantation studies have shown that Tregs can display a phenome-
non called “linked suppression,” where they can be activated in an
antigen-specific manner, and subsequently suppress responses to
unrelated antigens presented by the same cells (42). Tregs show a
third property called infectious tolerance by which one population
of Treg cells creates a regulatory milieu that promotes the out-
growth of a new population of Treg cells with antigen-specificities
distinct from those of the original population, as long as the new
antigen is present in the same tissue as the antigen recognized by
the original Treg cell (43–45).

PERIPHERAL TREG INDUCTION
Besides nTreg, of thymic origin, it has become apparent that
induced regulatory T cells (iTreg) also exist in the periphery (46,
47). After the discovery of the key role for Foxp3 in Tregs, it was
demonstrated that it was possible for non-Treg cells to acquire both
Foxp3 and the regulatory functions associated with it, therefore
becoming Treg cells themselves (46, 48, 49).

It is likely that peripheral induction of iTreg occurs in response
to non-self antigens like food, allergens, and commensal bacte-
ria (39). Early evidence for in vivo peripheral conversion was
derived from adoptive cell transfer experiments in which poly-
clonal CD4+ CD25− naïve T cells were injected into lymphopenic
mice or mice containing a monoclonal T cell repertoire devoid of
nTregs, or when tolerance was imposed on monoclonal popula-
tions without Treg cells (49–51). In these conditions, homeostatic
proliferation of the donor cells could be observed and part of the
donor cell population became CD25+CTLA-4+GITR+Foxp3+

and acquired suppressive activity. Additionally, when congeni-
tally marked CD4+ CD25− T cells were transferred to WT hosts,
10% of those converted into CD4+ CD25+ Foxp3+ T cells, within
6 weeks (52).

It was first shown in vitro that TCR activation in the presence
of TGF-β would lead to Treg conversion (53). Subsequent studies
supported this observation and demonstrated that iTreg conver-
sion could be greatly enhanced by suboptimal TCR signals or a
combination of strong TCR signals with high doses of TGF-β (47,
53–57). In vivo it is possible to induce oral tolerance by giving the
antigen in the drinking water (58), or to induce transplantation
tolerance using non-depleting anti-CD4 at the time of transplan-
tation (48, 59). In both cases, tolerance induction is accompanied
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by induction of Foxp3+ cells, in a process that requires TGF-β. In
addition to these, many other factors influence the induction of
Tregs both in vitro and in vivo, such as the co-stimulation envi-
ronment, the strength of TCR signaling, mTOR inhibition with
rapamycin, and low levels of essential amino-acids (44, 57, 60–69).

MECHANISMS OF ACTION OF TREG CELLS
In spite of intensive study of Tregs and their properties, the specific
mechanisms by which they control immune responses are still not
fully understood. There are several proposed mechanisms with
experimental support, but it is likely that no single mechanism is
responsible for the full range of biological phenomena involving
Tregs (70). And it is also likely that in different milieu distinct
mechanisms and even alternative subsets of regulatory cells are
involved in tuning the immune response (71).

In Figure 1, we summarize five putative mechanisms of Treg
function: (i) modulation of antigen-presenting cell (APC) activ-
ity through Treg engagement of co-stimulatory receptors on the
surface of APC, leading to weak or abrogated signals from APC
to naive/effector cells; (ii) Treg secretion of cytokines, such as
IL10 and TGFβ, suppressing the activity of effector cells and
APC; (iii) under certain circumstances, Tregs could have a direct
cytotoxic effect, through the production of perforin/granzyme
and induction of apoptosis in effector cells; (iv) Tregs may also
cause metabolic disruption, for example stimulating APCs to

produce enzymes that consume essential amino-acids, prevent-
ing naive/effector cell proliferation, and in the presence of TGFβ

may induce the expression of Foxp3 in naive cells (i.e., they become
Tregs); (v) Tregs could also compete with effectors cells for APC
signals or cytokines, such as IL2.

There is mounting evidence [reviewed in (72)] that Treg cells
exert their effects on different cell types, including CD4+ and
CD8+ T cells, B cells, natural killer T cells (NKT), and DCs (70).
The action of Tregs can be mediated by secretion of immuno-
suppressive cytokines, such as IL-10, TGF-β, IL-35, and galectin-1
(72) or by cell-dependent mechanisms through molecules such as
GITR, CTLA-4, CD39, CD73, and LAG-3 (70). The spectrum of
effect of Tregs on their targets goes from modifying the functional
properties of other immune cells, such as down-regulating tran-
scription of IL-2 (70, 71, 73), and other important growth factors;
to actually killing those cells through granzyme B and perforin
(70, 73–77). For example, there is evidence that Tregs can kill both
immature and mature DCs (74).

Furthermore, Tregs may convert APCs to become themselves
immunosuppressive (78). It has also been proposed that Tregs act
by competing with other cells for growth factors, particularly IL-2
(79, 80). One possible outcome of these interactions is that other
cells become themselves Foxp3+ regulatory cells (45).

These and other suppressive mechanisms may be operational
depending on the microenvironment, biological context, and

FIGURE 1 | Putative mechanisms used by regulatoryT cells. (1) Targeting
DCs – modulation of antigen-presenting cell activity through Treg engagement
of co-stimulatory receptors on the DC surface, leading to weak or abrogated
signals to naïve/effector T cells; (2) Metabolic disruption – includes cytokine
deprivation, cyclic AMP-mediated inhibition, and adenosine receptor

(A2A)-mediated immunosuppression; (3) Competition – for critical cytokines,
such as IL-2, or direct disruption of effector cell engagement with APCs; (4)
Cytolysis – direct cytotoxic effect through the production of Granzyme B and
Perforin and consequent apoptosis of effector T cells or APCs; (5) Production
of inhibitory cytokines – including IL-10, IL-35, and TGF-β.
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immune response. For instance, IL-10 producing cells are more
abundant in lamina propria (81, 82) and perforin or granzyme
expressing Tregs are predominant in tumor environments (83).

MATHEMATICAL MODELING
Due to the complexity of the mechanisms and interactions
involved in the processes of immune tolerance, mathematical
modeling has been used as a tool to explore different conceptual
frameworks of immunological tolerance. Many studies have ana-
lyzed the dynamics of thymocyte development, with positive and
negative selection, as a mechanism of central tolerance (84–91).

Many other studies have focused on modeling the putative
mechanisms of Treg suppression in the periphery. In these mod-
els, typically the dynamics of Tregs, effector cells, and APCs are
studied to find the interaction mechanisms in the model that qual-
itatively reflect the experimental knowledge. For the purposes of
this review, we can divide the models proposed in three categories,
although there is overlap between these in some studies: (i) mod-
els that analyze different putative mechanisms of action of Tregs
(Table 1); (ii) models that analyze the effects of Tregs on different
processes, such as the immune response to pathogens and tumors,
or in allergy; and (iii) models that study the maintenance of Tregs
(homeostasis).

MODELS OF THE MECHANISMS OF TREG ACTION
An early model explicitly considering Tregs was developed by León
and collaborators (92). They considered cross-regulation, where
simultaneous conjugation of a Treg and an effector cell on the
same APC can suppress effector function (92, 93). In this model,
regulation could be due to competition for conjugation sites on
the APC, or through inhibitory signals delivered to effector cells on
the same APC, or by inducing conversion of effector cells to a reg-
ulatory phenotype. This model is developed and analyzed in detail
in several subsequent publications (93–95), and it is reviewed in
Carneiro et al. (96). Recently the model was expanded to study the
dual effect of IL2 in promoting immunity and tolerance (97, 98).
Some authors considered in more detail the dynamics of antigen
and APCs, and compared mechanisms where regulatory T cells
suppress APCs function or maturation with models where Tregs
act directly on effector T cells (99). Other models along these lines
included the processes of APC maturation and the differentiation
of T cells into regulatory or effector phenotypes (100), follow-
ing a previous proposal for this interaction (101). Interestingly, in
these models, survival or proliferation of Tregs is dependent on
feedback from effector T-cells, which is in part responsible for the
bi-stability observed that is interpreted as states of tolerance or
immunity.

Another mechanism of peripheral tolerance modeled by sev-
eral authors involves anergy of effector cells (102, 103). This anergy
can be achieved by tuning the threshold for activation, for exam-
ple through repeated encounter with antigen or APC (102–106),
or through modulation by Tregs. Carneiro et al. compared this
mechanism with their previous model of cross-regulation dis-
cussed above (102). Another model that also explores thresholds
for activation, but based on effector T-cell population response
was studied by Burroughs et al. (107, 108). In this model the rel-
ative levels of Tregs and effector T cells depend on the respective

strength of stimulation by antigen, which can be modulated by
IL-2 – this model is reviewed in (109).

Typically these models consider a limited number of cell popu-
lations (3–6) and analyze one mechanism at a time. However, Kim
et al. proposed a detailed model including dozens of cell popu-
lations, with a spatial component (tissue and lymph node), and
considered multiple mechanisms of Treg action simultaneously
(110). At the other end of the spectrum, Abreu et al. proposed a
model where regulation of the immune system was simply based
on cross-recognition of multiple antigens by the same cell, whether
it is an effector, a regulatory, or an APC (111).

MODELS OF THE EFFECT OF TREGS ON THE IMMUNE RESPONSE
The studies discussed so far are mainly concerned with the mech-
anisms defining the interactions of Tregs and effector cells, often
looking for steady states where one or the other population
dominates, interpreted as tolerance or autoimmune states. Other
models analyze the effects of the existence of Tregs on different
processes.

Many of these models explore the system level effects of Treg
failure and the potential development of autoimmunity. One of
the first models to study this was by León et al. (112), where they
analyzed the relationship between infections and autoimmunity in
general. More recent studies analyzed specific autoimmune con-
ditions, such as multiple sclerosis (113, 114) and inflammatory
bowel disease (115). Grosse et al. analyzed the balance of Th1 vs.
Th2 type responses and their control by Tregs in the context of
allergies, with the objective of analyzing immunotherapy proto-
cols (116). Another study looking at immunotherapy protocols, in
this case modulation of IL2 therapy, used a mathematical model of
helper, regulatory, and memory CD4+ T cells (98). These studies
are mostly theoretical. However, one report described an inter-
esting experimental study of mice injected with tolerogenic or
control peptides and followed for 16 days, with serial measure-
ments of different T-cell subsets. These data were then analyzed
with a mathematical model (117).

Some studies have analyzed the interplay between infections
and regulation of the immune response. One of these modeled
the immune decision between attacking or not a given antigen,
based on the network of interactions between Tregs, Th17 cells,
and growing levels of antigen (as in the case of a pathogen) (118).
And a model analyzing the regulation of the immune response in
early HIV infection, through the expansion of specific Tregs, was
recently introduced (119). Finally, León et al. (120, 121) consid-
ered an expansion of their mechanistic model of Treg – T effector
interactions to study the immune response against tumors, and
their control or expansion.

MODELS OF TREG HOMEOSTASIS
An important question that has also been addressed by modeling
studies is the maintenance of a healthy number of Tregs. Sev-
eral studies included the possibility of the Treg population being
maintained in the periphery in part by feedback from the effec-
tor cells (92, 99, 100). One such model (94) studied the effects of
thymic output and positive/negative selection on proper balance
between tolerance and immunity in the periphery, and concluded
that repertoire selection plays an important role in maintaining
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Table 1 | Summary of mechanistic models ofTreg action.

Cell populations considered Mechanisms of regulation of immune response Some properties of the model Reference

APC, Treg, Teff, and Treg, Teff

conjugates on APC

Competition for activation on APC

Tregs inhibit Teff on same conjugate

Treg maintenance is dependent on Teff

Treg inhibit growth of Teff

Treg induce Teff to become Treg

(92–94, 96)

No explicit APC dynamics

As above plus IL2 Competition for IL2 Non-local interactions (97, 98)

Tregs condition APC Model used to study IL2-based therapies

APC and Ag dynamics Tregs directly suppress Teff (specifically and bystander) Bystander effects are important (99)

APC maturation Tregs suppress APC maturation Direct suppression was more effective

T cells are activated into Treg or

Teff by APC stimulation

Antigen Tp become Treg by interaction with resting APC Strength of antigen stimulus is crucial in

defining whether system is in tolerant or

non-tolerant state

(100)
Immature APC, resting APC,

activated APC

Tp become Teff by interaction with activated APC

Teff activates APC

Treg induces activated APC to restPrecursor T cells (Tp), Teff, Treg

Stochastic model of TCR

triggering for T cells (both

thymus and periphery)

Different thresholds for activation vs. anergy, with or

without co-stimulation

Self-reactive cells in periphery are controlled by

a mechanism of reversible anergy

(103)

T cells with tunable activation

thresholds

Model for integration of signals in successive

encounters with APC

Exhibits self-tolerance (102)
“More cells should lead to less anergy,” which

is not seen in adoptive transfer experiments

Inactive and active Treg and Teff Tregs consume IL2 Strength of antigen stimulation (forTreg andTeff)

defines relative levels of those two populations

(107–109)
IL2 for Teff proliferation, also

helps Treg proliferate

Treg inhibit Teff (from active to inactive) proportionally

to Treg numbers

Cytokine (e.g., IL7) for Treg

homeostasis

APC with different antigens

Teff of multiple specificities

Tregs of multiple specificities

Cells interact with extensive cross-reactivity, but

different avidities

Effector functions are the outcome of individual

cellular decisions (based on cross-reactivity)

(111)

A threshold of conjugation time can be identified

that permits self/non-self discrimination

Comparison of some of the models for Treg action discussed in the text. The model by Kim et al. (110) is too complex to fit in this summary table.

that balance. Baltcheva et al. (122) developed a more detailed
model to analyze the life-long dynamics of precursor and mature
CD25+ T cells (Tregs) in humans, including thymic production,
density-dependent homeostasis, and effector T-cell conversion.

CONCLUSION
The field of regulatory T cells, although relatively recent, has had
an explosion of knowledge driven by detailed experimental work
(20, 65, 72, 123, 124). Indeed there are many more studies than
we could possibly review or even allude to in this mini-review.
However, the mechanistic details of this important function of
the immune system are not completely elucidated (72). Many
authors have developed mathematical models of the interactions
between Tregs and effector cells to try to add to our understand-
ing of these mechanisms. Still, there is a lack of true collaborations
between experimental scientists and modelers in this field. Clearly,
more progress would be possible if such integrated teams worked
together, as has been the case in other areas of medicine, e.g., mod-
eling of viral infections (125). As the field matures and competing

models are winnowed out, it is likely that we will be able to quan-
tify how tolerance-inducing strategies, such as CD4-blockade,
affect T-cell dynamics, and what mechanisms explain the observed
behavior of T-cell based tolerance.
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