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Aphids and their symbionts represent an outstanding model for studies of insect–
symbiont interactions. The aphid microbiota can be shaped by aphid species,
geography and host plants. However, the relative importance of phylogenetic and
ecological factors in shaping microbial community structures is not well understood.
Using Illumina sequencing of the V3–V4 hypervariable region of the 16S rRNA gene,
we characterized the microbial compositions of 215 aphid colonies representing 53
species of the aphid subfamily Greenideinae from different regions and plants in
China, Nepal, and Vietnam. The primary endosymbiont Buchnera aphidicola and
secondary symbiont Serratia symbiotica dominated the microbiota of Greenideinae.
We simultaneously explored the relative contribution of host identity (i.e., aphid
genus and aphid species), geography and host plant to the structures of bacterial,
symbiont and secondary symbiont communities. Ordination analyses and statistical
tests highlighted the strongest impact of aphid species on the microbial flora in
Greenideinae. Furthermore, we found a phylosymbiosis pattern in natural Greenideinae
populations, in which the aphid phylogeny was positively correlated with microbial
community dissimilarities. These findings will advance our knowledge of host-associated
microbiota assembly across both host phylogenetic and ecological contexts.

Keywords: phylosymbiosis signal, microbiota variation, aphid species-specific, host plant, symbiont diversity

INTRODUCTION

Sap-feeding aphids harbor a diverse community of microbes, predominantly symbionts (Jousselin
et al., 2016; Guyomar et al., 2018), which represent an excellent model to study symbiosis in insects.
Almost all aphids possess the primary endosymbiont Buchnera aphidicola within specialized
bacteriocytes to compensate for the nutritional deficiency in their diet (Baumann et al., 1995).
Buchnera is inherited by strict vertical transmission (Koga et al., 2012) and cospeciates with aphids
(Munson et al., 1991; Clark et al., 2000; Xu et al., 2018). In addition, aphids host several types of
secondary symbionts that are not essential for survival. The beneficial roles of secondary symbionts
have been demonstrated in numerous studies, including protection against parasitoid wasps and
fungi (Oliver et al., 2003; Scarborough et al., 2005; Heyworth and Ferrari, 2015), tolerance to
heat shock (Chen et al., 2000; Montllor et al., 2002; Guay et al., 2009) and changes in host
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plant range (Tsuchida et al., 2004; Wagner et al., 2015). Secondary
symbionts usually reside in secondary bacteriocytes, sheath cells,
or the hemocoel (Fukatsu et al., 2000) and undergo maternal
transmission and occasionally horizontal transmission (Russell
et al., 2003; Michalik et al., 2014; Pons et al., 2019). To date,
nine secondary symbionts have been most frequently studied in
aphids, namely, Arsenophonus (Russell et al., 2003), Fukatsuia
symbiotica (Guay et al., 2009), Hamiltonella defensa (Darby et al.,
2001), Regiella insecticola (Sandström et al., 2001), Rickettsia
(Chen et al., 1996), Rickettsiella viridis (Tsuchida et al., 2010),
Serratia symbiotica (Unterman et al., 1989), Spiroplasma (Fukatsu
et al., 2001), and Wolbachia (Augustinos et al., 2011).

Numerous studies have investigated the ecological factors
shaping aphid-symbiotic community structures and highlighted
the importance of geography (Tsuchida et al., 2002; Sepúlveda
et al., 2017; Gallo-Franco et al., 2019) and host plants (Simon
et al., 2003; Ferrari et al., 2012; Brady and White, 2013; Xu S.
F. et al., 2020). Symbiont infection patterns were also related to
aphid species (Qin et al., 2021a), characteristics of aphids (Xu
et al., 2021), and seasonal shifts (Smith et al., 2015; Liu et al.,
2019). Considering the impact of host phylogeny, some studies
substantiated the correlation between microbiota dissimilarities
and aphid relatedness (McLean et al., 2019; Qin et al., 2021a,b),
whereas the phylogenetic signature was not detected in some
aphid groups (e.g., Eriosomatinae and Hormaphidinae) (Xu T.
T. et al., 2020; Xu et al., 2021).

Phylosymbiosis is a term used to describe the eco-evolutionary
pattern, in which the microbial community compositional
similarity is significantly correlated with host phylogeny (Brucker
and Bordenstein, 2013; Lim and Bordenstein, 2020). This pattern
does not assume stable and long-term associations between
hosts and microbes. Both host-microbe codiversification and
ecological filtering by conserved host traits can contribute to the
mechanisms underpinning phylosymbiosis (Sanders et al., 2014;
Mazel et al., 2018; Lim and Bordenstein, 2020). Evidence for
phylosymbiosis has been provided in insects, birds and mammals
(Brooks et al., 2016; Groussin et al., 2017; Chiarello et al., 2018;
Hammer et al., 2020; Trevelline et al., 2020). Phylosymbiosis
signals are variable across host clades and may be weakened or
even erased over extended evolutionary periods (Mazel et al.,
2018). However, the extent to which host phylogenetic scales (e.g.,
from intraspecific to family levels) play a role in phylosymbiosis
detection remains to be explored.

Greenideinae is a subfamily of Aphididae within the
Hemiptera order, in which 179 extant species and 10 fossil
species belonging to 18 genera have been recognized worldwide
(Favret, 2021). Greenideinae comprises three tribes, namely,
Cervaphidini, Greenideini, and Schoutedeniini. Cervaphidini
contains one fossil genus and six extant genera including
Anomalosiphum and Cervaphis. Greenideini is represented by
Allotrichosiphum, Eutrichosiphum, Greenidea, Greenideoida,
Mesotrichosiphum, Mollitrichosiphum, and Tritrichosiphum.
Schoutedeniini consists of Eonaphis, Paulianaphis, Schoutedenia,
and Palaeogreenidea (fossil genus). Greenideinae is monoecious,
with a holocyclic or anholocyclic life cycle. Host plants of
Schoutedeniini species belong primarily to Euphorbiaceae
(Blackman and Eastop, 2021). Cervaphidini colonizes plants

from Fagaceae, Fabaceae, Myrtaceae, Tiliaceae, and so on.
The majority of Greenideini species feed on young leaves or
shoots of Fagaceae. Other plants have also been reported to
serve as hosts of Greenideini, such as Betulaceae, Juglandaceae,
and Moraceae. Some Greenideini species exhibit high host
plant diversity and colonize plants from different families,
whereas many species feed on few types of plants. Greenideinae
is mainly distributed in eastern and southern Asia, with 92
species recorded in China (Blackman and Eastop, 2021).
Some Greenideinae species, such as Greenidea ficicola and
Greenidea psidii, are insect pests that seriously threaten the
economics of agriculture and horticulture. Qin et al. (2021a)
uncovered the phylosymbiotic signatures of the microbial
community associated with Mollitrichosiphum at the genus
level and revealed intraspecific phylosymbiosis within one
aphid species, M. tenicroperus (Qin et al., 2021b). However,
little is known about the microbiota structures across the aphid
subfamily Greenideinae. Greenideinae provides an opportunity
to explore whether phylosymbiotic patterns occur at various host
taxonomic levels in a specific aphid group.

Based on high-throughput 16S rRNA gene sequencing,
we aimed to reveal the microbial community composition
associated with Greenideinae. We fully assessed the contribution
of host identity (i.e., aphid genus and aphid species), geographic
distribution and host plant on bacterial, symbiont (including
Buchnera and secondary symbionts) and secondary symbiont
communities. To further understand the ecological and
evolutionary processes of microbiota assemblages, we explored
the presence of a phylosymbiotic pattern in Greenideinae.

MATERIALS AND METHODS

Aphid Collection and DNA Extraction
We sampled 215 aphid colonies from 29 plant families
and 32 geographic regions of China, Nepal, and Vietnam,
representing 53 species and 9 genera within Greenideinae
(Table 1). Information regarding sample collection is provided
in Supplementary Table 1. The samples for slide mounting
were preserved in 75% ethanol, and the specimens for molecular
experiments were stored in 95% ethanol at −20◦C. All the
samples were deposited in the National Animal Collection
Resource Center, Institute of Zoology, Chinese Academy of
Sciences, Beijing, China. Aphid identification was performed
using morphological examination and DNA barcoding.

DNA extraction was performed using the whole body of a
single adult viviparous female per colony. To remove external
microbial contaminants, aphid individuals were initially washed
with 70% ethanol for 5 min and then rinsed with sterile water
five times. Total DNA was extracted using the DNeasy Blood &
Tissue Kit (QIAGEN, Hilden, Germany). The negative control
contained an equal amount of sterile water instead of aphid DNA.
To identify aphid species and eliminate parasitized samples, DNA
extracts were verified using National Center for Biotechnology
Information (NCBI) BLAST searches of the barcode sequence
targeting the cytochrome c oxidase subunit I (COI) gene. The
DNA samples were kept at−20◦C.
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16S rRNA Gene Amplification, Illumina
Sequencing, and Sequence Processing
The V3–V4 hypervariable region of the 16S
rRNA gene was amplified using the primers 341F
(5′-CCTAYGGGRBGCASCAG-3′) and 806R (5′-
GGACTACNNGGGTATCTAAT-3′). A negative control
was set up for the polymerase chain reaction (PCR), and all
amplifications were conducted in triplicate. The 30-µL PCR
was prepared with 15 µL of Phusion High-Fidelity PCR Master
Mix (New England Biolabs, Ipswich, MA, United States), 3 µL
primers and 10 ng of template DNA. The PCR thermal program
was as follows: 1 min at 98◦C for initial denaturation; 30 cycles of
10 s at 98◦C for denaturing, 30 s at 50◦C for annealing and 30 s
at 72◦C for elongation; and 5 min at 72◦C for final extension.

Amplification products were recovered using 2% agarose gel
electrophoresis, and positive samples with a bright band of
400–450 bp were purified with the GeneJET Gel Extraction Kit
(Thermo Scientific, Wilmington, DE, United States). Sequencing
libraries were constructed with the NEBNext Ultra DNA Library
Prep Kit (New England Biolabs, Ipswich, MA, United States)
and quantified by a Qubit 2.0 fluorometer (Thermo Scientific,
Wilmington, DE, United States) and an Agilent Bioanalyzer
2100 system. Finally, the libraries were sequenced on an
Illumina HiSeq 2500 PE250 platform (Illumina, San Diego,
CA, United States).

Paired-end reads were assembled with a minimum overlap size
of 10 bp and an error rate of 10% using FLASH v1.2.7 (Magoč and
Salzberg, 2011). Low-quality sequences were filtered by QIIME
v1.9.1 (Caporaso et al., 2010), and chimeras were discarded by
UCHIME v4.2.40 (Edgar et al., 2011). Then, sequences were
clustered into one operational taxonomic unit (OTU) at 97%
similarity. Taxonomic annotations of OTUs were assessed with
the RDP classifier (Wang et al., 2007) against the SILVA 128
reference database (Quast et al., 2013). We also manually checked
the taxonomic affiliation using BLAST searches against the
GenBank database. The OTUs with abundances below 0.005%
were filtered as described by Bokulich et al. (2013). The mean
sequence number of three PCR replicates per sample was
calculated to estimate the abundance of each OTU. To mitigate
the heterogeneity of sequencing depth, each sample was rarefied
to the minimum value across all the samples (53,497 reads)
using the ‘otutab_norm’ function in USEARCH v10.0 (Edgar,
2010). Finally, we obtained an OTU table containing taxonomic
classifications of bacterial OTUs and the sequence number per
sample (Supplementary Table 2a).

Statistical Analyses
To better explore the variations in microbial community
structures associated with Greenideinae, two reduced
OTU tables, including symbionts (Buchnera and secondary
symbionts) (Supplementary Table 2b) and secondary symbionts
(Supplementary Table 2c), of aphids were generated. The
relative abundances of OTUs were calculated using the
decostand function and total method in the R package
vegan (Oksanen et al., 2018). The distribution and relative
abundances of symbionts were mapped against the phylogeny of

Greenideinae aphids (detailed analysis methods are provided in
the Supplementary Material) using iTOL v6.3.2 (Letunic and
Bork, 2021). We implemented all of the subsequent statistical
analyses with the bacterial, symbiont and secondary symbiont
OTU tables. Samples were grouped according to aphid genus,
aphid species, geographic distribution and host plant. Detailed
grouping information is shown in Supplementary Table 3.
Statistical analyses were conducted on all groups and groups with
a sample size ≥ 3, excluding Mantel tests, Procrustes analyses,
and ancestral secondary symbiont reconstruction. Samples with
ambiguous information were excluded from analyses.

Shannon and Simpson indices were assessed to evaluate the
alpha diversity using the diversity function of vegan. Considering
the non-normal distribution (Shapiro–Wilk test, p < 0.05)
of alpha diversity data, we used non-parametric Kruskal–
Wallis tests to investigate the microbiota variation among
groups. To simultaneously estimate the separate contributions
of aphid genus (or aphid species), geography and host plant
to microbial alpha diversity, three-way analysis of variance
(ANOVA) was performed using the avop function in the lmPerm
package (Wheeler and Torchiano, 2010). Three-way ANOVA was
conducted on groups with sample size ≥ 2 and sample size ≥ 3,
as the groups with one sample were insufficient for this analysis.

The Bray–Curtis distance (vegdist function of vegan) and
unweighted UniFrac distance (GUniFrac function of GUniFrac)
(Chen and Chen, 2018) were calculated to quantify beta diversity.
First, we applied two kinds of ordination analyses, namely,
unconstrained non-metric multidimensional scaling (NMDS)
and constrained principal coordinate analysis (cPCoA), to
visualize the dissimilarity of microbial communities based on the
beta diversity. Based on Bray–Curtis and unweighted UniFrac
distance matrices, NMDS (stress values < 0.05 indicate excellent
representation) was performed with the metaMDS function
in vegan. CPCoA (capscale and anova.cca functions in vegan)
was implemented with Bray–Curtis distance, as unweighted
UniFrac distance was not suitable for this analysis. Then,
the statistical significance of the microbiota variation between
groups was determined by permutational multivariate analysis of
variance (PERMANOVA) and analysis of similarities (ANOSIM).
PERMANOVA and ANOSIM were conducted on Bray–Curtis
and unweighted UniFrac distances using the adonis and anosim
functions, respectively, with 10,000 permutations in vegan.

To explore the relationship between aphid phylogeny and
microbiota dissimilarities, the Mantel test (mantel function)
and Procrustes analysis (procrustes and protest functions) were
performed with all samples using the matrices of aphid
cophenetic distances and beta diversity (Bray–Curtis and
unweighted UniFrac distances) in vegan. Cophenetic distances
calculate the pairwise distances between the pairs of tips from a
phylogenetic tree using its branch lengths. We used the cophenetic
function in the package ape (Paradis and Schliep, 2019) to
calculate the cophenetic distances of aphid samples. The Mantel
test is a commonly used approach to quantify the correlation
between two matrices (Anderson and Walsh, 2013). Procrustes
analysis is more powerful, in which two matrices are scaled and
rotated to maximize their similarity using principal component
analysis (PCA) (Peres-Neto and Jackson, 2001).
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TABLE 1 | Sampling information for the Greenideinae samples used in the present study.

Aphid tribe Aphid genus Aphid species Number of samples

Cervaphidini Anomalosiphum A. takahashii, A. tiomanensis 4

Cervaphis C. quercus, C. rappardi 5

Greenideini Allotrichosiphum A. cyclobalanopsidis 2

Eutrichosiphum E. alnicoia, E. alnifoliae, E. apicifuscum, E. dubium, E. heterotrichum, 49

E. khasyanum, E. kumaoni, E. parvulum, E. pasaniae, E. pseudopasaniae,

E. sinense, E. sp. 1, E. sp. 2, E. tattakanum

Greenidea G. anonae, G. ayyari, G. brideliae, G. bucktonis, G. camelliae, 76

G. castanopsidis G. cayratiae, G. decaspermi, G. ficicola, G. flacourtiae,

G. kuwanai, G. nigra, G. nipponica, G. prunicola, G. psidii,

G. querciphaga, G. sp. 1, G. sp. 2, G. sp. 3, G. sp. 4, G. symplocosis

Greenideoida G. longirostrum, G. lutea 2

Mesotrichosiphum M. pentaiarticulatum 1

Mollitrichosiphum M. luchuanum, M. montanum, M. nandii, M. nigrofasciatum, M. nigrum, 65

M. rhusae, M. tenuicorpus, M. tumorisiphum

Schoutedeniini Schoutedenia S. emblica, S. ralumensis 11

To investigate the microbial composition changes that
occurred during the evolutionary history of Greenideinae,
a presence/absence matrix of six secondary symbionts in
this study was mapped onto an aphid phylogenetic tree.
The relationships of aphid species were simplified from the
maximum-likelihood tree of Greenideinae aphid samples.
Ancestral microbiome reconstruction was performed using
parsimony and Bayesian approach. Parsimony reconstruction
was implemented in Mesquite v3.70 (Maddison and
Maddison, 2021) with the ‘trace character history’ option
and unordered character state transformations. For Bayesian
reconstruction, we applied the reverse jump Markov
chain Monte Carlo framework with a prior drawn from
a uniform distribution in BayesTraits V3.0.5 software
(Pagel and Meade, 2006). Three independent analyses were
performed for a total of 6,000,000 generations, sampling
every 1000 generations. The first 25% of the generations
were removed as burn-in, and the acceptance rates were
between 0.2 and 0.4.

RESULTS

Microbial Community Composition
Across Greenideinae Aphids
After all quality filtering, a total of 11,506,428 reads (53,518
reads per sample) were obtained. The 16S rRNA gene
sequences were clustered into 162 OTUs and annotated to
35 genera, 24 families, 16 orders, 12 classes, and 6 phyla of
bacteria. At the phylum level, the microbial community of
Greenideinae was composed mainly of Proteobacteria, with an
average relative abundance of 98.74%. Gammaproteobacteria
(95.15%) and Enterobacteriales (94.72%) were the most
commonly classified class and order, respectively. The
most abundant family was Enterobacteriaceae (94.42%),
followed by Anaplasmataceae (2.10%) and Rickettsiaceae
(1.34%). At the genus level, seven symbionts were detected,

among which the relative abundances of Buchnera (68.19%),
S. symbiotica (14.97%), Wolbachia (2.10%), Arsenophonus
(1.80%), and Rickettsia (1.34%) were greater than 1%
(Supplementary Table 4).

The primary endosymbiont Buchnera was present in all
the samples and predominated in most. In addition, each
examined sample was simultaneously infected with 2–6
secondary symbionts. S. symbiotica and Wolbachia were the
most common, with an infection frequency of 215/215, followed
by Arsenophonus (171/215), Rickettsia (96/215), H. defensa
(88/215), and F. symbiotica (86/215). S. symbiotica was the
most abundant secondary symbiont in Greenideinae, and its
relative abundance was even higher than that of Buchnera
in the aphid genus Schoutedenia. The infection pattern of
secondary symbionts within Greenideinae was variable among
different aphid genera and species (Figure 1). The most
frequent secondary symbiont infection type was the combination
of S. symbiotica, Wolbachia, and Arsenophonus (50/215)
(Supplementary Table 5).

At the OTU level, Buchnera (Supplementary Figure 1)
and S. symbiotica (Figure 2) harbored 20–30 OTUs, whereas
other secondary symbionts were represented by only 1–
6 OTUs (Figure 3 and Supplementary Figures 2, 3).
OTU11 or OTU 4915 of Buchnera predominated in most
samples of the aphid genera Cervaphis and Mollitrichosiphum
(Supplementary Figure 1). The aphid genera Greenidea and
Eutrichosiphum were characterized mainly by more than
one type of OTU belonging to Buchnera. Regarding the
secondary symbionts, the dominant OTUs of S. symbiotica
usually differed among aphid species, although most OTUs
were widely distributed in Greenideinae (Figure 2). Wolbachia
was represented by four OTUs, among which the relative
abundance of OTU4 was high in some samples (Figure 3).
We also observed the variability of the relative abundance and
diversity of OTUs belonging to Arsenophonus associated with
Greenideini species (excluding aphid species of Anomalosiphum,
Cervaphis, and Schoutedenia) (Supplementary Figure 2).
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FIGURE 1 | Symbiont community composition shown on the maximum-likelihood tree of Greenideinae aphids. Gray dots on the phylogeny nodes indicate bootstrap
support of over 50%.

The prevalence and relative abundance of other secondary
symbionts (i.e., Rickettsia, H. defensa, and F. symbiotica) were
quite low in most samples (Supplementary Figure 3). For

example, H. defensa and Rickettsia were not detected in the
tribe Cervaphidini, which exhibited the lowest secondary
symbiont diversity in the present study. The majority of
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FIGURE 2 | Heatmap representing the distribution and relative abundances of Serratia symbiotica OTUs among Greenideinae aphids. The phylogenetic relationships
of Greenideinae and S. symbiotica OTUs based on maximum-likelihood analyses are presented.
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FIGURE 3 | Heatmap representing the distribution and relative abundances of Wolbachia OTUs among Greenideinae aphids. The maximum-likelihood trees display
the phylogenetic relationships of Greenideinae and Wolbachia OTUs.

Greenideinae aphids rarely host Rickettsia, except samples from
Mollitrichosiphum.

Variations in the Microbial Community
Diversity of Greenideinae
Kruskal–Wallis tests of alpha diversity revealed a significant
variation in the bacterial, symbiont and secondary symbiont
communities among the aphid genera, aphid species and host

plants (P < 0.05 for both Shannon and Simpson indices).
A significant effect of geography on bacterial and symbiont
communities was detected (Shannon, P = 0.014–0.040; Simpson,
n ≥ 3, P = 0.021–0.027), except that there was no significant
effect on the Simpson index upon using all samples (P = 0.057–
0.066). However, the secondary symbiont communities did not
differ significantly among geographic regions (P = 0.276–0.538).

Three-way ANOVA for alpha diversity indices highlighted the
contribution of aphid identity (i.e., aphid genus or aphid species)
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FIGURE 4 | Constrained principal coordinate analysis (cPCoA) plots of Bray–Curtis distances of bacterial (A,D,G,J), symbiont (B,E,H,K), and secondary symbiont
(C,F,I,L) communities (n ≥ 3). Plots are structured by aphid genus (A–C), aphid species (D–F), geographic region (G–I), and host plant (J–L).

to shaping the microbial community structures when the effect
of different factors was estimated simultaneously. We found that
the microbial communities differed significantly among aphid
genera [Supplementary Table 6; n ≥ 2, F(7,70) = 2.667–4.292,
P ≤ 0.013; n ≥ 3, F(4,69) = 5.333–7.833, P < 0.001] using all
types of data in three-way ANOVA, whereas the effect of the
host plant was not significant (P = 0.127–0.636). A significant
effect of geography was found only on bacterial and symbiont
communities with sample size ≥ 3 compared with the effect of

aphid genus and host plant [F(14,69) = 1.810–2.000, P = 0.005–
0.027]. The results of three-way ANOVA also showed that the
bacterial and symbiont communities were primarily structured
by aphid species [Supplementary Table 7; P < 0.001; n ≥ 2,
F(28,38) = 9.333–11.375; n ≥ 3, F(15,33) = 18.625–19.600]. Aphid
species, geography and host plant did not have a significant
impact on the secondary symbiont community (P = 0.174–0.924).

Unconstrained NMDS plots based on all types of beta
diversity matrices did not show meaningful clustering of samples
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TABLE 3 | Correlations between microbial beta diversity and aphid phylogeny
estimated by the Mantel test.

Microbial community Beta diversity distance Mantel test

r P

Bacteria Bray–Curtis 0.555 <0.001

Unweighted Unifrac 0.234 <0.001

Symbionts Bray–Curtis 0.531 <0.001

Unweighted Unifrac 0.249 <0.001

Secondary symbionts Bray–Curtis 0.243 <0.001

Unweighted Unifrac 0.145 <0.001

Statistically significant P-values (P < 0.05) are highlighted in italics.

structured by aphid genus, aphid species, geographic region or
host plant (Supplementary Figures 4–7). Conversely, cPCoA
plots of Bray–Curtis distances uncovered the significant patterns
constrained by these four factors in bacterial, symbiont and
secondary symbiont communities (Figure 4 and Supplementary
Figure 8; P = 0.001). Aphid species (33.4–62.3% of variance)
explained more of the overall variance in the data than
aphid genus (9.19–32% of variance), geographic region (13–
18.1% of variance) and host plant (12.7–26.9% of variance) in
all the analyses.

PERMANOVA (R2 = 0.408–0.725, P < 0.001) and ANOSIM
(R = 0.278–0.752, P < 0.001) corroborated the greatest effect
of aphid species on structuring the microbial communities
based on Bray–Curtis and unweighted UniFrac distances with
sample size ≥ 3, although no statistical significance among
aphid species (PERMANOVA: P = 0.108–0.141; ANOSIM:
P = 0.127–0.391) or aphid genera (PERMANOVA: P = 0.726–
0.778; ANOSIM: P = 0.386–0.548) was observed in most cases
based on Bray–Curtis distances using all samples (Table 2).
The significant impacts of geographic region (P ≤ 0.006) and
host plant (P ≤ 0. 047) were revealed by PERMANOVA using
all types of beta diversity data. However, their contributions
(geographic region: R2 = 0.145–0.643; host plant: R2 = 0.113–
0.319) were usually limited compared to that of aphid species
(R2 = 0.262–0.725). ANOSIM suggested significant dissimilarities
in microbial communities among geographic regions using all
samples (R = 0.325–0.576, P < 0.001). A significant effect of the
host plant was found only in analyses of the Bray–Curtis distance
(R = 0.135–0.177, P ≤ 0.001).

Relationship Between Microbial
Communities and Aphid Relatedness
Using the Mantel test with all types of beta diversity data, we
detected a positively significant correlation between aphid
phylogeny and the microbial profiles of bacterial, symbiont and
secondary symbiont communities (Table 3; r = 0.145−0.555,
P < 0.001). The results of Procrustes analysis were consistent,
which showed that the microbial community structures
were significantly related to aphid phylogeny (Figure 5;
M2 = 0.570−0.938, P = 0.001).
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FIGURE 5 | Procrustean superimpositions for PCA-scaled aphid cophenetic distances vs. variations in bacterial (A,D), symbiont (B,E), and secondary symbiont
(C,F) communities. Bray–Curtis (A–C) and unweighted UniFrac distances (D–F) were used to estimate the microbiota variations.

Ancient Aphid-Secondary Symbiont
Associations
The ancestral microbiome state was reconstructed to further
understand shifts in the secondary symbionts over the
evolutionary history of Greenideinae. Both parsimony and
Bayesian analyses supported the acquisition of S. symbiotica
and Wolbachia at the base of Greenideinae (Supplementary
Figure 9; Figure 6, and Supplementary Table 8). Regarding the
associations of other secondary symbionts and Greenideinae
aphids, some incongruence was observed between different

analysis approaches. The parsimony-based inference suggested
that Arsenophonus was acquired by the most recent common
ancestor of Greenideinae and subsequently lost in several aphid
species. In addition, parsimony reconstruction reflected the
separate gains of secondary symbionts in different aphid clades,
such as Rickettsia in the clade containing Mesotrichosiphum,
Schoutedenia, Greenideoida, Allotrichosiphum, Eutrichosiphum,
and Mollitrichosiphum (Supplementary Figure 9). The results
of Bayesian ancestral state reconstruction are summarized in
Supplementary Table 8 and visualized in Figure 6; the results
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FIGURE 6 | Ancestral associations of secondary symbionts and Greenideinae aphid species estimated by Bayesian reconstruction. Pie charts at nodes and tips
show the presence of different secondary symbionts. The mean posterior probabilities at nodes are given in Supplementary Table 8.

indicated two independent acquisition events for H. defensa in
the clade containing Eutrichosiphum and Mollitrichosiphum.

DISCUSSION

Symbiont Diversity Associated With
Greenideinae Aphids
The microbial community composition of Greenideinae was
dominated by aphid symbionts, among which seven symbionts
were identified in the ten most abundant genera. The ubiquity
and relative abundance of Buchnera substantiated its obligate
nutritive role in the long-term endosymbiotic relationship with
host aphids (Munson et al., 1991; Douglas, 1998; Liu et al., 2013;
Xu et al., 2018). Multiple infections (i.e., infections with more
than one type of symbiont in a host individual) of secondary
symbionts were common in Greenideinae aphids. Positive

interactions related to cohabitation of secondary symbionts have
been demonstrated in many studies, such as higher resistance to
parasitism than to single infection (Oliver et al., 2006). However,
some coinfecting secondary symbionts with no conditional
mutualism can persist in aphids by hitchhiking with beneficial
symbionts (Smith et al., 2015).

Serratia symbiotica and Wolbachia were found in all examined
Greenideinae samples with high relative abundance. Our study
confirmed the widespread distribution of Wolbachia in aphids
reported by Wang et al. (2014). It is worth noting that the relative
abundance of S. symbiotica was higher than that of Buchnera in
all samples of the aphid genus Schoutedenia. Rübsaamen (1905)
has documented that Schoutedenia can induce galls on its host
plants, differing greatly from other aphids in Greenideinae. This
distinctive biological trait may give rise to different symbiont
community structures and even novel nutrition-biosynthetic
pathways provided by symbionts in the host Schoutedenia. The
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contribution of S. symbiotica to nutritional biosynthesis has been
reported in some aphids (Lamelas et al., 2011; Mccutcheon and
Moran, 2012; Bennett and Moran, 2015). Further research is
required to illustrate the exact effects of S. symbiotica associated
with Schoutedenia aphids.

Arsenophonus associated with Greenideini species exhibited
various infection patterns at the OTU level. Liu et al. (2015)
suggested that the acquisition of new host plants might account
for species differentiation in Greenideini. Improvement of
performance on novel host plants and other ecological benefits
have been demonstrated in previous studies of Arsenophonus
(Wagner et al., 2015; Lenhart and White, 2020). However,
further experiments should be performed to determine whether
Arsenophonus infection is related to the broadening of the host
plant range in Greenideini.

Other secondary symbionts (i.e., Rickettsia, H. defensa,
and F. symbiotica) were not frequent symbiotic partners, and
their relative abundances were quite low in most samples.
Aphid species in Greenideinae usually move rapidly and have
long siphunculi that enable them to efficiently emit alarm
pheromones (Mondor et al., 2002). In addition, ant attending
was observed in many Greenideinae species (Blackman and
Eastop, 2021), providing defense from natural enemies for
aphids. Prior studies have reported the trade-off between fitness
costs (e.g., reduced lifespan and fecundity) and benefits of
hosting symbionts (Oliver et al., 2014; Leybourne et al., 2020;
Zytynska et al., 2021). Therefore, aphids generally tend not to
host defensive symbionts when they obtain protection from
ecological habits (Henry et al., 2015). Greenideinae may have
defensive effects derived from these life history traits, reducing
the maintenance of secondary symbionts providing similar
resistance to parasitism, such as Rickettsia, H. defensa, and
F. symbiotica.

Contribution of Different Factors to
Shaping the Microbiota of Greenideinae
The results of alpha and beta diversity analyses highlighted
the role of host identity in shaping the structures of bacterial,
symbiont, and secondary symbiont communities associated
with Greenideinae. We revealed the strongest impact of aphid
species on microbial profiles, which was in line with previous
evidence for the existence of a species-specific microbiota
in Mollitrichosiphum aphids (Qin et al., 2021a). In addition,
significant microbial community structures constrained by
the aphid genus were identified. Acquiring a large amount
of species-level taxonomic information on insect specimens
is usually time-consuming and challenging. Our results
suggest that genus-level insect identification is meaningful for
investigating host-associated microbiota structures with limited
taxonomic knowledge.

Prior studies have demonstrated that geography (Tsuchida
et al., 2002; Guo et al., 2019; Xu S. F. et al., 2020) and host plant
(Brady et al., 2014; Gauthier et al., 2015; Xu T. T. et al., 2020)
are important factors structuring the symbiont community
composition associated with aphids. Distinct environmental
conditions (Sepúlveda et al., 2017) and spatial limitations

on bacterial dispersal (Moeller et al., 2017) can lend to the
variability of symbionts. In the present study, the geography and
host plant significantly influenced the microbial profiles across
Greenideinae, although their contributions were usually weaker
than that of host identity. Symbiont-assisted speciation has been
reviewed by Brucker and Bordenstein (2012). Some secondary
symbionts of aphids, such as Arsenophonus (Wagner et al., 2015),
play a crucial role in the exploitation and specialization of host
plants. We observed OTU variability in Arsenophonus among
Greenideini species. The species differentiation of Greenideini
was involved in the enhancement of host plant utilization (Liu
et al., 2015). Hence, it seems likely that secondary symbionts
mediate dietary breadth in Greenideini, which potentially
facilitates the diversification of aphids.

Phylosymbiosis Between Greenideinae
Aphids and Their Microbiota
The pattern of phylosymbiosis revealed in Greenideinae was
characterized by a positively significant correlation between
aphid phylogeny and microbial community dissimilarities.
Mantel tests and Procrustes analyses using all types of data
consistently showed the phylosymbiotic microbiota assemblage
in bacterial, symbiont and secondary symbiont communities.
Phylosymbiosis has been reported in host taxa with evolutionary
histories ranging from approximately 0.3–108 million years
(Brooks et al., 2016). However, several factors are likely to
erode phylosymbiosis signals in natural populations during
long evolutionary periods, such as horizontal transmission
of microbes, complete dietary transition and changes in
environmental filters. Combined with previous studies of
Mollitrichosiphum (Qin et al., 2021a) and M. tenicroperus (Qin
et al., 2021b), our studies revealed that phylosymbiosis can
be observed at the subfamily, genus and species levels within
natural populations of specific aphid groups, spanning recent
host speciation events to more distant host divergence.

Considering the strictly maternal inheritance of Buchnera
and primarily vertical transmission of some secondary
symbionts in aphids, one of the possible mechanisms
underlying phylosymbiosis is evolutionary processes, such
as codiversification of Greenideinae and symbionts. The
ancestral association between Greenideinae and two secondary
symbionts, S. symbiotica and Wolbachia, was supported by
ancestral microbiome reconstruction based on both parsimony
and Bayesian approaches. The diversification tendency of
S. symbiotica at the OTU level also indicated host-symbiont
codiversification within Greenideinae. In this study, Buchnera,
S. symbiotica and Wolbachia may serve as hub microbes, allowing
determination of the whole microbial community composition
through microbe–microbe interactions (Fisher and Mehta, 2014;
Agler et al., 2016). Furthermore, previous studies did not detect a
correlation between microbiota similarities and aphid phylogeny
in heteroecious Eriosomatinae (Xu T. T. et al., 2020). The
frequent horizontal transmission of secondary symbionts might
have erased the phylosymbiosis signals in this aphid subfamily.
In contrast, the monoecious life cycle of Greenideinae could have
reduced the horizontal transmission of secondary symbionts
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among aphid populations colonizing different host plants.
Therefore, codiversification of key symbionts and relatively stable
microbial community composition may be responsible for the
phylosymbiosis of Greenideinae.

Ecological filtering by conserved host traits (Moran and
Sloan, 2015; Mazel et al., 2018) can also contribute to the
mechanisms underpinning phylosymbiosis. Closely related hosts
tend to harbor a similar microbiota owing to similar physiologies
or immune responses regulating microbes. In addition, diet
is an important filter shaping the host-associated microbiota,
and complete dietary shifts over long evolutionary periods can
even disrupt phylogenetic signals in microbial communities
(Muegge et al., 2011; Groussin et al., 2017; Chiarello et al.,
2018). Beta diversity analyses showed the influence of host plants
on the structures of the microbial communities associated with
Greenideinae. Dietary shifts, including direct switching to novel
host plants and expansion of the host plant range, did not
cover the phylosymbiosis signals in the present study. Host
plants might be filters that are phylogenetically correlated with
aphids, considering their promotion of species differentiation
in Greenideinae. It seems reasonable that filtering by host
plants is another driver yielding the phylosymbiotic microbiota
of Greenideinae.

CONCLUSION

Unraveling the influence of ecological and evolutionary
factors on microbial community assembly is crucial to
understanding symbiosis in nature. We provided the
first systematic microbiota landscape associated with
Greenideinae. The significant impacts of host identity,
geography and host plant on microbial community
structures were uncovered, among which the primary
contribution of aphid species was highlighted. Moreover,
our study found that microbial community dissimilarities
are correlated with aphid relatedness, providing evidence for
phylosymbiosis in natural aphid populations. We propose
that phylosymbiosis in Greenideinae relies on multiple
mechanisms. Aphid-symbiont codiversification and filtering by
host plants might contribute to the phylosymbiotic microbiota
in Greenideinae.
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