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Elevated SFXN2 limits mitochondrial autophagy and increases
iron-mediated energy production to promote multiple
myeloma cell proliferation
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Human sideroflexin 2 (SFXN2) belongs to the SFXN protein family, which is a mitochondrial outer membrane protein involved in
mitochondrial iron metabolism. Mitochondria are indispensable for cellular energy production and iron metabolism. However, it
remains elusive how SFXN2 modulates mitochondrial homeostasis and cellular iron metabolism in multiple myeloma (MM). In this
study, we first found that SFXN2 was significantly elevated and correlated to poor outcomes in MM patients from clinical datasets.
SFXN2 overexpression promoted MM cell proliferation and suppressed starvation-induced autophagy/mitophagy, while SFXN2
knockdown aggravated mitochondria damage and autophagic processes in ARP1 and H929 MM cell lines. Furthermore, inhibition
of SFXN2 exerted effectively anti-myeloma activity in vivo by using myeloma xenograft model. Mechanism studies indicated that
heme oxygenase 1 (HO1) with anti-oxidant function contributed to the process of autophagy suppression and cellular proliferation
mediated by SFXN2. Our study revealed the critical role of SFXN2 in regulating mitochondrial bioenergetics, mitophagy, cellular iron
metabolism, and redox homeostasis in interconnected and intricate way. Collectively, these findings not only provide insights into
the metabolic reprogramming of tumor cells, but also highlight the therapeutic potential of SFXN2 in combination with iron
metabolism as target for prognosis and treatment in MM patients.
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INTRODUCTION
Multiple myeloma (MM) is a common hematological malignancy
worldwide characterized by the clonal expansion of malignant
plasma cells, which typically secret monoclonal immunoglobulin
(termed as “M” protein) thus sustain high endoplasmic reticulum
(ER) stress [1, 2]. Despite considerable improvements in treatments
from proteasome inhibitors to immune modulators, MM remains
incurable [3]. The pathogenesis and progression mechanisms of
MM are still not well understood, and reprogramming of energy
metabolism as an additional hallmark of cancer remains unclear
[4].
Mitochondria are not only the major energy-producing center

via the oxidative phosphorylation (OXPHOS) process coupled with
TCA (tricarboxylic acid), but also essential players in the generation
of vital cellular metabolites including heme [5] and regulators for
cell survival [6]. Mitochondrial homeostasis is tightly controlled to
balance mitochondrial fusion, fission, biogenesis, and autophagy.
Mitochondrial autophagy (mitophagy) is a selective process of
macroautophagy/autophagy targeting mitochondria to protect
cells against the release of proapoptotic proteins, the generation
of toxic reactive oxygen species (ROS), and the futile hydrolysis of
adenosine triphosphate (ATP) by depolarized mitochondria [7].

Under the conditions of mitochondrial membrane potential (ΔΨm)
loss and the E3 ubiquitin ligase PARK2/Parkin recruited to degrade
several outer mitochondrial membrane (OMM) proteins, PTEN-
induced kinase 1 (PINK1) is stabilized onto the OMM to implement
the initial mitophagic pathway. The microtubule-associated
protein 1A/1B-light chain 3 (LC3) induces aggregation and
phagophore nucleation of mitochondria leading to fusion with
lysosomes [8]. In general, mitochondria undergo biogenesis and
fusion under conditions of increased metabolic demand, while the
decreased metabolic requirement may remove the superfluous
mitochondria via fission and mitophagy [9]. Autophagy/mito-
phagy may play a dichotomous role in tumorigenesis to trigger
cancer cells to “autophagy-associated cell death” through
excessive self-digestion [10] or to support the proliferation and
survival of cancer cells by recycling degradation products [11].
The mitochondrion relies on the shuttle of a variety of

metabolites and cofactors across the mitochondrial membrane,
which is accomplished by a superfamily of 53 membrane-
embedded proteins known as the mitochondrial carrier family
(MCF) encoded by the human solute carrier (SLC) family 25 genes
[12]. As an enigmatic group separate from SLC25, the sideroflexin
(SFXN) family is categorized under SLC56 owing to their potential
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4 to 5 transmembrane domains (TMDs) [13, 14]. There are five
mammalian SFXN (SFXN1–SFXN5) subfamily members with
different expression patterns. Among them, SFXN1 was originally
identified from fexed-tail (f/f) mice that exhibited sideroblastic-like
anemia characterized by excess iron accumulation in mitochon-
dria of erythrocytes [13, 15]. A recent study indicated that SFXN1
directly transported serine into mitochondria for one-carbon
metabolism [16]. SFXN2 was also recently reported to participate
in mitochondrial iron metabolism and regulate heme biosynthesis
in SFXN2-knockout cell model [17]. SFXN3 is a mitochondrial
protein enriched in neurons of rodent brains [18]. Mutated SFXN4
protein causes mitochondrial disease and facilitates the assembly
of mitochondrial complex I [19]. Characterization of these SFXNs
has been attracting more and more attention for their great
significance in mitochondrial physiopathology.
In present study, we first found that SFXN2 was elevated in MM

patients with poor outcomes based on clinical datasets. Next, we
utilized MM cell lines and xenograft mouse model to investigate
the functions and related mechanism of SFXN2 in the develop-
ment of MM. We propose that as an OMM protein, SFXN2 may be
involved in iron metabolism and mitophagy suppression via
enhancing ATP energy production and anti-oxidative stress in MM.

RESULTS
Increased SFXN2 is related to poor outcomes of MM patients
and promotes MM cell proliferation
Based on a cohort of MM patients from publicly available NCBI
Gene Expression Omnibus (GES5900 and GSE2658) (Fig. 1a), we
found that SFXN2 mRNA was significantly increased in MM cells
compared to normal bone marrow plasma cells (NP) as well as the
“premalignant” ones with monoclonal gammopathy of undeter-
mined significance (MGUS) (Fig. 1b). In addition, higher SFXN2
expression was associated with a shorter overall survival (OS) in
the newly diagnosed MM cohort from Total Therapy 2 (TT2). In 351
myeloma cases, there were 85 cases at high levels (red curve; 24%)
(Fig. 1c). Similar trend was also observed in the recurrent or
treatment-resistant patients from APEX cohort (Fig. 1c). In
addition, we analyzed MMREF CoMMpass datasets of newly
RNA-seq over the course of MM, and found that SFXN2 could be
inferred as a proxy of cancer progression from lower to higher
aggressivity (Fig. 1d), indicating that exceptionally elevated SFXN2
might predict poor clinical outcomes of MM patients.
To investigate the oncogenic role of SFXN2, we established two

human MM cell lines ARP1 and H929, which stably overexpressed
SFXN2 cDNA (SFXN2-OE) or inducibly knocked down SFXN2
(SFXN2-KD) based on the lentivirus system (Figs. 1e and S1). The
analyses of cell viability and colony formation demonstrated that
SFXN2-OE cells proliferated more rapidly than wild-type (WT) in
both ARP1 and H929 cells; on the contrary, knockdown of SFXN2
induced by doxycycline (DOX) attenuated cell proliferation and the
ability of colony formation compared to their counterparts (Fig. 1f,
g). Consistently, the flow cytometric analysis of cell cycle showed an
increased number of cells in G2/M phase upon SFXN2 over-
expression, while a decreased proportion of G2/M phase cells upon
SFXN2 knockdown compared to WT cells (Fig. 1h, i). Therefore,
SFXN2 has a significant effect on promoting MM cell proliferation.

As a mitochondrial outer membrane protein, SFXN2 is
involved in bioenergetic processes and stress-induced
responses
Since SFXN family functions in mitochondrial metabolism, we
found the sub-cellular co-localization of SFXN2-eGFP with
MitoTracker (Fig. 2a), while the cytoplasmic/mitochondrial separa-
tion experiment (Fig. 2b) confirmed its mitochondrial expression.
In addition, the SFXN2-TRITC fluorescence signals were highly co-
localized with an OMM protein Tomm20 (Fig. 2c), but not co-
localized with the interior mitochondria COX4 (Fig. 2d).

In order to further dissect the molecular function of SFXN2, we
performed a co-immunoprecipitation combined with Mass Spectro-
metry (Co-IP/MS) assay using the protein samples of WT and SFXN2-
OE ARP1 & H929 cells. In total, we obtained thousands of peptides
corresponding to ~810 non-redundant proteins (listed in Table S1).
The Gene Ontology (GO) analysis indicated that most of them were
classified into metabolic process (GO: 0008152) and cellular
component organization or biogenesis (GO: 0071840) (Fig. 2e,
upper panel). Interestingly, the network analysis of GO/KEGG terms
revealed enrichments of “regulation of cellular response to stress”,
“response to endoplasmic reticulum stress”, and “Vesicle-mediated
transport”. Therefore, increased SFXN2 might induce the ER stress
response possibly via autophagy or mitophagy, since ER and
mitochondria shared the phagophore membrane for autophago-
some formation [20, 21]. Moreover, the “Citrate cycle (TCA cycle)”
and “alpha-amino acid metabolic process” also supported the critical
role of SFXN2 in metabolic/bioenergetic processes (Fig. 2e, lower
panel). In brief, SFXN2 may control MM cell growth via modulating
stress-induced responses, mitophagy, and bioenergetic processes.

SFXN2 limits starvation-induced autophagy and promotes
mitochondrial energy production for MM cell proliferation
Following the above conception, we further explored the association
between SFXN2, autophagy/mitophagy and mitochondrial energy
production. We observed remarkable increase of autophagy-related
genes ATG7 and ATG5 upon SFXN2 knockdown in MM cells (Figs. 3a
and S2). Of note, WB analysis confirmed that the expressions of PINK1
and Parkin were increased in SFXN2-KD cells after induced by DOX for
48 h (Figs. 3a and S2). PINK1 and Parkin-dependent mitophagy was
directly evidenced by the abnormal ultrastructure of individual
mitochondria including punctate, rods, and large/round structures
and smaller mitochondrial footprints/area upon SFXN2 knockdown
(Fig. 3b, c). Generally, autophagy is enhanced under the stressed
condition of nutrition-depletion. We checked the effect of SFXN2 on
LC3 conversion and other autophagy indicators in MM cells cultured
with Earle’s Balanced Salt Solution (EBSS). Upon starved for 48 h, high
rates of autophagy/mitophagy were induced in MM cells, which were
indicated by the immunofluorescent (IF) staining of LC3 (Fig. 3d).
Consistently, the morphological of autophagic vesicles (autophago-
some and autolysosome) per cell under transmission electron
microscope verified that increased SFXN2 could limit starvation-
induced autophagy (Fig. 3e). Meanwhile, elevated SFXN2 significantly
alleviated EBSS-induced autophagy that was evidenced by WB
analysis for autophagy-related markers ATG5/7 and Beclin1, and
mitophagy-related markers PINK1 and Parkin at protein level (Figs. 3f
and S3) and mRNA level (Fig. S4). We also examined the ultrastructure
of mitochondria in SFXN2-OE cells (Fig. 3g). In contrast, there were less
mitochondria individuals and bigger mitochondrial footprints in
SFXN2-OE cells compared to WT cells (Fig. 3h), suggesting that the
reduced fragmentation and frequent fusion network was associated
with SFXN2-suppressed mitophagy. The mtDNA content, partially
reflecting the cellular proliferation status, was significantly increased
in SFXN2-OE cells while decreased in SFXN2-KD cells compared to
control cells, respectively (Fig. 3i). In addition, we found that some
mtDNA-encoded genes required for ATP synthesis were de-regulated
upon SFXN2 overexpression or knockdown, including cytochrome C
oxidase I (COX1) and cytochrome b-c1 (cytb) (Fig. S5). Then, we
detected the bioenergy production in both SFXN2-OE and SFXN2-KD
cells. As Fig. 3j shown, there was more production of net ATP in
SFXN2-OE cells while less ATP in SFXN2-KD cells compared to control
cells. Collectively, SFXN2 promotes MM cell proliferation via regulating
mitochondrial autophagy and energy production.

SFXN2 modulates bioenergetic processes via accelerating
cellular iron utilization and increases tumor burden in MM
xenograft model
Recently, Mon EE et al. reported the role of SFXN2 in
mitochondrial iron homeostasis [17]. We tested the total cellular
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ferric (Fe3+) iron content using Perls Prussian blue staining in MM
cells (Fig. 4a). The quantification analysis showed that SFXN2 was
positively associated with iron content (Fig. 4b). The fluorescent
Calcein-AM probes (Fig. 4c) were applied to quantify the

chelatable cytosolic Fe2+ by the quenching of fluorescent Calcein
signal. As Fig. 4d shown, the fluorescence intensity was weaker in
SFXN2-OE cells than that in WT cells, indicating that chelatable
cytosolic Fe2+ was increased; on the contrary, decreased cytosolic

Fig. 1 Increased SFXN2 expression is related to poor outcomes of MM patients and high MM cell proliferation. a Heatmap showed
selective serial genes including SFXN2 from MM GEP cohorts (GSE5900 and GSE2658). b Histogram depicted the signal of SFXN2 mRNA (gene
antisense probe ID 227560) in different stages of myeloma patients from TT2 cohort. c High SFXN2 level was associated with poor overall
survival (OS) in newly diagnosed TT2 patients. Reduced OS was presented in recurrent or treatment-resistant patients with high level of SFXN2
from APEX (Assessment of Proteasome Inhibition for Extending Remissions) cohort. d RNA-seq datasets from MMREF CoMMpass clinical trial
correlated the expression of SFXN2 to higher aggressivity. e Validation of SFXN2 overexpression in ARP1 and H929 SFXN2-OE cells relative to
vehicle-transfected control cells (Ctrl) and confirmation of SFXN2 knockdown post transfection with three independent SFXN2-targeting
shRNAs. f Three-day cell growth curve of WT, SFXN2-OE, and SFXN2-KD ARP1 and H929 cells by MTT detection. g Representative images of
colonies in soft agar formed by SFXN2-OE and SFXN2-KD cells compared to control cells, respectively. h Flow cytometry analysis of cell cycle in
SFXN2-OE and SFXN2-KD cells compared to control cells, respectively. i Quantification analysis showed the proportion of SFXN2-OE and
SFXN2-KD cells in G0/G1, S, and G2/M phases relative to control cells, respectively.

Y. Chen et al.

3

Cell Death and Disease          (2022) 13:822 



Fe2+ was observed in SFXN2-KD cells compared with control cells
(Fig. 4d).
To extend the therapeutic potential of SFXN2 in iron

metabolism in vivo, we established MM xenograft mouse model.

The NOD-SCID mice subcutaneously injected SFXN2-KD ARP1 cells
were divided into four groups, and the xenografts were shown in
Fig. 4e. Tumor growth curve displayed that the tumors in control
mice grew faster than SFXN2-KD mice no matter they were treated
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with Iron Dextran or not, while the tumor volume of SFXN2-KD
mice treated with Iron Dextran was significantly decreased
compared with non-treated SFXN2-KD mice (Fig. 4f). The analysis
of tumor weight showed that the tumors in SFXN2-KD mice were
much lower than in control mice treated with Iron Dextran (Fig.
4g). Therefore, inhibition of SFXN2 significantly suppresses MM
cell growth in vivo under the condition of iron supplement.

SFXN2 controls iron-induced oxidative stresses as well as
mitochondrial heme biosynthesis
Since most of the cellular iron is utilized as essential cofactors of
mitochondrial respiration chain enzymes [22], we detected the
mitochondria localized ferrous (Fe2+) iron using specific fluores-
cent probes. The fluorescence intensity was significantly higher in
SFXN2-KD cells than control cells, however, this trend was
opposite in SFXN2-OE cells (Fig. 5a, b). Next, we measured the
labile heme content, as the labile heme content was in proportion
to the total heme content [23]. There was no significant difference
between WT and SFXN2-OE cells, though SFXN2-OE ARP1 cells
displayed a significant increased heme when supplied with extra
5-Aminolevulinic acid (5-ALA) as precursor intermediate for heme
biosynthesis (Fig. 5c, left panel). In contrast, the labile heme
content was much lower in SFXN2-KD cells than control cells, even
supplied with 5-ALA (Fig. 5c, right panel). In addition, we observed
a decrease or increase of mitochondrial/cytoplasmic heme ratio
(percentage) upon SFXN2 overexpression or knockdown, respec-
tively (Fig. 5d). These results suggest that SFXN2 enhances
mitochondrial iron utilization and turnover to favor the energy
production and growth of MM cells.
Iron usage may cause extra ROS as by-product during energy

production [24]. A well-recognized tight coupling is between
mitophagy activation and ROS production [25, 26]. Thus, we were
motivated to investigate the relationship between SFXN2-
mediated mitophagy and iron-induced ROS stress. The mitochon-
dria staining results showed that higher fluorescence density was
presented in SFXN2-KD cells induced by DOX for 48 h than control
cells (Fig. 5e), indicating a frequent mitochondria fission during
mitophagy. Since the mitochondrial membrane potential (ΔΨm)
enables the initiation of the PINK1/PARK-dependent mitophagy
[27], we detected the ΔΨm using JC-1 probe, a potential-sensitive
dual-emission dye (Green-fluorescent as monomer at low
potential) aggregating in functional mitochondria with high
ΔΨm (Red). As shown in Fig. 5f, the significant increased JC-1
Green/Red intensity ratio post SFXN2 knockdown confirmed the
critical function of SFXN2 in maintaining ΔΨm. High utilization and
turnover of iron in SFXN2-OE cells may increase the demand of
more ROS generation as by-product. We measured the intracel-
lular lipid ROS level in MM cells using a lipid-soluble ratiometric
fluorescent sensor BODIPY™ 581/591 C11 (Fig. 5g, h). However, no
significant difference was observed between WT and SFXN2-OE
cells (Fig. 5h). Erastin is a ferroptosis activator that induces iron-
dependent ferroptosis and triggers cytosolic ROS accumulation
[28]. When Erastin was employed to treat WT and SFXN2-OE cells,
lower ROS levels were observed in SFXN2-OE cells than WT cells
(Fig. 5h). Meanwhile, the treatment of glutathione (GSH)
biosynthesis inhibitor BSO (L-buthionine-S, R-sulfoximine) enabled
SFXN2-OE cells to produce more ROS than WT cells (Fig. S6).

Through silencing SFNX2 by siRNA, the ROS production was
suppressed while the expressions of autophagy/mitophagy-
related proteins ATG7, ATG5, LC3, and Parkin, PINK1 were
increased (Fig. S7a–d). We assume that SFXN2 may control iron-
induced oxidative stress to keep autophagy at certain level, which
will shed light on a mechanism of enhancing the tolerance of ROS-
induced cytotoxicity in MM cells.

SFXN2 alleviates mitophagy and ROS by interacting with HO1
in iron metabolism pathway
It is of great importance to identify the downstream targets/
pathways involved in SFXN2-mediated mitophagy with anti-
oxidative response. We focused on the Heme oxygenase 1 (HO1,
encoded by HMOX1 gene) relying on two reasons: on the one
hand, HO1 physically interacting with SFXN2 was validated by the
analyses of Co-IP/MS (Fig. 6a) and WB (Fig. 6b); on the other hand,
HO1 participated in SFXN2-mediated autophagy according to a
screen of LC3B promoter driven pGL3-Luciferase reporter system.
As shown in Fig. 6c, the treatment of HO1-specific inhibitor HO-1-
IN-1 with an IC50 of 250 nM significantly improved the luciferase
activity in WT cells but not in SFXN2-OE cells compared to mock
treatment, this might be due to the relative suppressed
mitophagy in SFXN2-OE cells.
The expressions of autophagy/mitophagy-related proteins

ATG7, ATG5, Parkin, PINK1, and LC3 were tested in ARP1 cells
treated with HO-1-IN-1 and EBSS individually or both. HO-1-IN-1
treatment resulted in significant elevation of these proteins and
LC3 conversion, and the activation effect was even stronger than
EBSS starvation to a certain extent (Fig. 6d). Moreover, inhibition of
HO1 alleviated the suppression on ATG7, ATG5, LC3, and PINK1 in
SFXN2-OE cells (Fig. S8). We monitored the autophagic flux using
the tandem tagged mCherry-eGFP-LC3 probe to detect autopha-
gosomes (mCherry+ eGFP+; yellow) and autolysosomes
(mCherry+; red puncta) based on pH-sensitive eGFP in lysosomes.
Consistently, inhibition of HO1 enhanced the autolysosomes
formation especially coupled with EBSS starvation (Fig. 6e). WB
analysis confirmed that HO1 was increased in SFXN2-OE cells
while decreased in SFXN2-KD cells compared to control cells,
respectively (Figs. 6f, g and S9).
We also checked the effect of HO-1-IN-1 on intracellular ROS

production. The HO-1-IN-1 treatment triggered less ROS produc-
tion by ~50% in both WT and SFXN2-OE cells than non-treated
control cells, and SFXN2-OE cells were prone to release more ROS
than WT cells (Fig. 6h). These results suggest that SFXN2 adjusts
iron-mediated energy production together with HO1 to decrease
mitophagy and ROS generation.

DISCUSSION
The present study determined the oncogenic role of SFXN2 during
MM tumorigenesis and revealed the therapeutic potential of
targeting SFXN2 related to iron metabolism. Elevated SFXN2 was
associated with poor outcomes of MM patients (Fig. 1a–d), and
anti-myeloma effect of SFXN2 knockdown was evidenced in
xenograft model (Fig. 4e–g). Intriguingly, the interdependency
between SFXN2 and clinical outcomes also exists in Acute Myeloid
Leukemia (AML) based on the gene expression profiling data from

Fig. 2 As a mitochondrial outer membrane protein, SFXN2 is involved in bioenergetic processes and stress-induced responses in MM
cells. a eGFP conjugated SFXN2 (SFXN2-eGFP) was co-localized with the mitochondria-specific MitoTracker Deep Red FM fluorescent dye.
b WB tested the cytoplasmic and mitochondrial expressions of SFXN2, and the antibodies for α-Tubulin and COX IV were used as loading
control, respectively. c Immunofluorescence colocation assay showed that a majority of SFXN2-TRITC was co-localized with endogenous
TOMM20. d The interior membrane of mitochondria lacked SFXN2-TRITC signals. e Co-IP/MS identified SFXN2 interacted proteins by using
specific antibodies. In total, 810 high and medium confidence proteins were undergone enrichment and network analysis of GO (Gene
Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) terms. Pie chart showed # genes, gene hit %, process hits%. Network
enrichment of GO/KEGG was generated by using Metascape (metascape.org).
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Fig. 3 Elevated SFXN2 limits starvation-induced autophagy and promotes energy production for MM cell growth. a WB examined the
expressions of autophagy/mitophagy-related proteins ATG5, ATG7, LC3, PINK1, and Parkin in Ctrl and SFXN2-KD cells. b Representative
transmission electron microscopic images of mitochondrial morphology indicated by red arrows in Ctrl and SFXN2-KD cells. c Quantification
of numbers and sizes of mitochondria by ImageJ in Ctrl and SFXN2-KD cells (p < 0.05, using Kruskal Wallis test in R). d IF staining of TRITC-
labeled LC3b in WT and SFXN2-OE ARP1 and H929 cells. Quantification of fluorescence intensity of TRITC-labeled LC3b in WT and SFXN2-OE
ARP1 and H929 cells (n= 3 in every group, *p < 0.05, **p < 0.01). e Representative photographs showed autophagic vesicles indicated by red
arrows in WT and SFXN2-OE ARP1 and H929 cells post EBSS treatment. Scale bars: 0.5 μm. Quantification of starvation-induced autophagic
vesicles in WT and SFXN2-OE cells (n= 3 in each group, *p < 0.05). f WB examined the autophagy-related proteins ATG5, ATG7, Beclin1, LC3,
PINK1, and Parkin in EBSS-treated WT and SFXN2-OE ARP1 cells compared to non-treated cells. g Transmission electron microscope testified
representative mitochondrial morphology indicated by red arrows in WT and SFXN2-OE cells. h Numbers and sizes of mitochondria were
analyzed by ImageJ (p < 0.05, using Kruskal Wallis test in R). i Relative mtDNA content of WT, SFXN2-OE, SFXN2-Ctrl, and SFXN2-KD cells were
measured by a competitive PCR method. j The level of ATP in WT, SFXN2-OE, SFXN2-Ctrl, and SFXN2-KD cells were determined by the ATP
Bioluminescence Assay Kit (*p < 0.05, ***p < 0.001).
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the TCGA (http://gepia.cancer-pku.cn/detail.php?gene=sfxn2)
[29]. As an OMM protein, SFXN2 played multiple-functional roles
in regulating mitochondrial bioenergetics, autophagy, iron meta-
bolism, and redox homeostasis in an interconnected and intricate
way (Fig. 7).

SFXN2 controlled iron metabolism (Figs. 4 and 5) and ATP
production (Fig. 3j) during metabolic rewiring in MM cells. In
mammals, the five SFXN homologs with distinct expression-
patterns have diverse functions related to mitochondria home-
ostasis, largely depending on the shuttle of many metabolites
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across the mitochondrial membranes [12]. Although the exact
substrate specificities of SFXNs are required to be further
dissected, it is undoubted that SFXN2 plays a critical role in
mitochondrial homeostasis and bioenergy production. Since the
discovery of Warburg effect in the 1920s, evidence has been
mounting that hyperplastic tumor tissues are more dependent on
glycolysis even in aerobic conditions [30], and altered bioener-
getics or metabolic reprogramming are emerging hallmarks of
cancers to fuel the increased energy demand. However, increasing
reports show that most tumor cells maintain normal mitochondrial
fitness and intact OXPHOS respiration to generate ATP [31–33].
Generally, tumor cells lack OXPHOS-to-glycolysis switch but rather
drastically increase glycolysis. It is a strong support for our work
that metabolic reprogramming is not only for ATP generation but
also for reducing equivalent biomass synthesis including NADPH
to balance ROS or other oxidative stresses [32].
Autophagy is induced by various cellular stresses and increasingly

recognized as double-edged player during tumorigenesis [34]. Basal
autophagy may protect cells from excessive free radical damage and
genetic instability, thus preventing malignant transformation [35, 36].
By contrast, autophagy prevents tumor cells from apoptosis to
support tumor growth [37]. Our exploration on autophagy-related
factors, autophagic vesicles, and flux reflected that SFXN2 suppressed
starvation-induced autophagy via influencing ΔΨm and mitophagy in
a PINK1/PARK-dependent manner (Figs. 3a, f, 5e, and 6d). As a
hematological malignancy, MM bears a high level of basal autophagy
compared to other solid tumors. It is plausible that B cell-derived MM
cells keep synthesizing/secreting large amounts of “M” protein, which
make them sustain enlarged ER stress and more autophagy or energy
demands for survival [38]. ER extensively interacts with mitochondria
by sharing the phagophore membrane for autophagosome formation
[20, 39], thus we speculated that MM cells resisted the ER stress by
limiting mitophagy (Fig. 3). In agreement with above conception,
some proteins potentially interacting with SFXN2 were classified into
GO/KEGG terms of cellular ER-mediated stress and bioenergy
metabolic process (Fig. 2e). Our RNA-seq analysis in SFXN2-OE ARP1
and H929 cells compared to WT cells (data not shown) also showed
similar terms, such as “regulation of cellular response to stress
(GO:0080135)”, “cellular macromolecule biosynthetic process (GO:
0034645)”, and “negative regulation of catabolic process (GO:
0009895)”.
The intricate relationships among cellular redox homeostasis,

autophagy, and cell growth are complicated, while iron is an
essential factor in the mitochondrial bioenergetics. First, iron is a
requisite nutrition for almost all critical physiological and cellular
functions, especially for efficient bioenergy production as
elemental heme [40]. Second, dietary or cellular iron has a double
nature in relation to tumorigenesis. Either iron deficiency or over
sufficiency may cause cellular stresses, thus altering the autopha-
gic status even cell death [41, 42]. Cancer cells develop a
dependence on iron well over that of their non-malignant
counterparts, which is termed as “iron addiction” [43]. Consis-
tently, the supplement of iron at supra-physiological level indeed
showed a carcinogenic effect on MM model mice (Fig. 4e). Third,
the effects of SFXN2 on promoting MM cell proliferation and
suppressing autophagy might be secondary to mitotoxicity due to
iron accumulation in the mitochondria and partially bearing on

ferritinophagy or even ferroptosis (data not shown). Ferroptosis is
a recently defined iron-dependent form of non-apoptotic cell
death by Dr. Stockwell and colleagues [28]. SFXN1-dependant iron
overload mediates ferritinophagy activation in cardiomyocytes
hypertrophy [44]. Fourth, the cellular iron level is tightly balanced
to avoid excessive ROS during the Electron Transport Chain (ETC)
based on redox cycle to gain and lose electrons, such as the
Fenton and Haber-Weiss reactions [45, 46].
To balance the Fe2+-catalyzed ROS by-product from SFXN2-

mediated iron turnover in MM, HO1 was recruited by elevated
SFXN2 to execute anti-oxidant activity (Figs. 5, 6, and S4), possibly
depending on the moderate but not excessive activated level of
HO1 expression [47, 48]. HO1 is also the rate-limiting enzyme in
heme catabolism by degrading heme into iron, carbon monoxide
and the endogenous antioxidants biliverdin/bilirubin [49], which
has a cytoprotective role to conquer the oxidative stress induced
by chemotherapeutic agents in tumor cells, thus preventing the
cancer cells from apoptosis and autophagy [50, 51]. Interestingly,
HO1 is reported to be involved in Bortezomib-induced drug-
resistance and cellular proliferation in MM [52, 53]. Though it is
emerging as a novel therapeutic target in hematological malig-
nancies [54, 55], the effect of HO1 inhibitor on ROS production (Fig.
6h) needs to be noticed partially as a result of detrimental effect
caused by heme metabolites or iron accumulation [50, 53, 56].
There are substantial and growing evidences of targeting iron
metabolism to develop the treatment for various cancers based on
the metabolic vulnerability of iron deficiency or excess [42]. Taking
advantage of the balance between the cell type/status-specific
energy demand and cytotoxic oxidative stresses [57, 58] to develop
mitochondrial-targeting anticancer drugs, antioxidants and sensor
molecules [59] still requires more intensive investigation.
Taken together, the present study demonstrates that SFXN2

promotes MM cell proliferation via suppressing PINK1/PARK
mediated mitophagy and HO1-mediated anti-oxidative stress in
concert and intersect with iron metabolism. Collectively, our work
provides new insights into SFXN2-mediated mitochondrial home-
ostasis and bioenergy production, and reveals that targeting SFXN2
may be a promising strategy for the treatment of MM patients.

MATERIALS AND METHODS
Cell culture
Human ARP1 and H929 cells were kind gifts from Dr. Siegfried Janz
(University of Iowa, Iowa City, IA, USA). Cells were cultured in RPMI-1640
medium (Biological Industries, Beit Haemek, Israel) supplemented with
10% heat-inactivated fetal bovine serum (FBS; Biological Industries, Israel)
and 1% penicillin/streptomycin at 37 °C with 5% CO2 mycoplasma-free
condition was secured before further experiments.

Antibodies and reagents
HO1 inhibitor HO-1-IN-1 hydrochloride was purchased from MedChemEx-
press. The following commercial antibodies were used in this study: SFXN2
(ab67191), TOMM20 (ab186734) from Abcam; HO1 (66743-1-Ig), PINK-
1(23274-1-AP), PARKIN (14060-1-AP), and P62/SQSTM1 (18420-1-AP) from
ProteinTech; Atg7 (#2631s), Beclin-1 (#3738), LC3A/B (#12741), α-tubulin
(#2125s), β-actin (#3700s), and goat anti-rabbit IgG-HRP (#7074) from Cell
Signaling Technology; Atg5 (Biological, 110-53818), COX4 (Bioss, bsm-
33037M), goat anti-mouse IgG-HRP (SANTA, SC-2005).

Fig. 5 SFXN2 controls iron-induced oxidative stresses as well as mitochondrial heme biosynthesis. a The fluorescent probes labeling
mitochondria ferrous iron were applied in WT, SFXN2-OE, SFXN2-Ctrl, and SFXN2-KD cells individually. b Quantification analysis of fluorescence
intensity. c The labile heme content in MM cells with or without the treatment of extra 5-Aminolevulinic acid (5-ALA). d The heme content
showed a majority of heme in mitochondria with altered ratio of cytoplasm mitochondrial heme content. e Fluorescence intensity of
mitochondria in Ctrl and SFXN2-KD cells (upper panel) and quantification analysis of fluorescence intensity (lower panel). f Variations in
mitochondrial membrane potential (Δψm) in MM cells were tested by using a JC-1 dye (left panel). Quantification analysis of Δψm were
performed in Ctrl and SFXN2-KD cells (right panel). g Flow cytometry analysis showed intracellular lipid ROS levels in MM cells treated with
ferroptosis/ROS inducer Erastin. h Intracellular lipid ROS levels were quantified through the fluorescence intensity of BODIPY probe.
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Cell proliferation assay, cell cycle, and colony formation assay
Cell proliferation was evaluated as described previously [60]. For MTT
assay, a density of 8 × 103 MM cells/well in 96-well plate was cultured for
48 h. For cell cycle assay, 1 × 106 cells were washed twice with PBS, fixed
with 75% ethanol for 12 h, treated with 200 μg/mL RNase for 15min, and
stained with 50 μg/mL propidium iodide (PI) (Yeasen, China) before

analyzed by FlowSight flow cytometer (Merck Millipore, Germany). For
colony formation assay, 1 × 104 cells in 0.5 mL of 0.33% agar/
RPMI1640 supplemented with 10% FBS in 12-well plate were fed twice/
week for 2 weeks. Cell clusters were considered to be a colony if >40 cells
were present. The colonies were imaged by a microscope, and colony
numbers were counted by using ImageJ software. The data of colony

(
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numbers represent mean ± SD from at least three independent
experiments.

Western blot and RT–qPCR
Detailed western blot and RT–qPCR procedures were described in our
previous report [60]. All reactions were performed as triplicates. The
primers used in this study were shown in Table S2.

Determination of Δψm
Mitochondrial Deep Red fluorescent probe MitoTracker Deep Red FM was
purchased from Yeasen Biotechnology Co., Ltd. (Shanghai, China, NO.
40743ES50). Variations in mitochondrial membrane potential (Δψm) were
measured using a JC-1 kit (Beyotime Institute of Biotechnology, Jiangsu,
China, #C2006). After treated with EBSS, a total of 2 × 106 cells were
harvested and incubated with JC-1 at 37 °C for 20min and then washed
and resuspended in PBS. The samples were analyzed and 10,000 events
were acquired with flow cytometer.

Mitochondrial isolation assay
Mitochondria isolation was operated according to the manufacturer’s
instruction of Cell Mitochondria Isolation Kit (Beyotime Institute of
Biotechnology, Jiangsu, China, #C3601). 5 × 108 ARP1 and H929 cells were
treated with EBSS or RPMI-1640 medium for 48 h. After treatment, cells
were washed with cold PBS for three times, then resuspended with
isolation buffer containing protease inhibitor (1:1000, Biolegend, America,
CAT: 640941). After standing the suspension for 15min, the cells were
homogenized by a Dounce glass homogenizer for several complete up-
and-down cycles and kept on ice. Next, the liquid was centrifuged to
remove debris at 600 × g for 10 min at 4 °C. Then supernatant centrifuged
at 11,000 × g for 10 min at 4 °C. The pellet was the crude mitochondrial
fraction and lysed by mitochondrial lysis fluid for western blot.

Perls Prussian blue iron staining
Perls staining stains iron in blue and other tissues in red. Cells attached to
the slides were fixed in 10% neutral buffered formalin for 10min, washed
and stained with Perls’ stains at 56 °C for 4 h. Then the slides were stained
with nuclear fast red at room temperature for 1 min and imaged using
Image-pro Plus 6.0 (Media Cybernetics, Inc).

Measurement of heme concentration
Intracellular heme concentration was measured by a porphyrin fluores-
cence assay [61]. Total 1 × 105 MM cells were resuspended in 0.5 mL of 2 M
oxalic acid and heated at 100 °C for 30min. Standard solutions of
protoporphyrin with the concentrations of 0, 0.01, 0.1, 1, 10, and 100 nM
were prepared with oxalic acid. Read fluorescence of porphyrin using
400 nm excitation and 662 or 608 nm emission. The relative heme ratio
was calculated based on the absolute meme content of mitochondrial/
cytoplasmic heme ratio (percentage).

Measurement of Fe2+ levels
MM cells (1 × 106) were harvested and incubated with 5 μM of Calcein-AM
(a nonfluorescent lipophilic ester, Yeasen, Shanghai, China, #40719ES50)
for 15min at 37 °C and 50 μg/mL PI for 10min at 4 °C after treated with
EBSS for 48 h. Then the cells were washed twice with PBS and the
fluorescence intensity signals of the cells were analyzed by flow cytometry.
The reduction of Calcein-AM fluorescence intensity represented an
increase of chelatable cytosolic Fe2+. Mitochondrial ferrous iron (Fe2+)
fluorescent probe Mito-FerroGreen was purchased from DojinDo
(NO. M489).

ROS determination
Intracellular ROS levels were determined as described previously [62] and
quantified by measuring the fluorescent BODIPY 581/591 C11 (Invitrogen;
USA; #D3861) or the 2’,7’-dichlorofluorescein diacetate (DCFH-DA; Beyo-
time, China, #S0033) probes by flow cytometry.

Determination of ATP and mtDNA content
The levels of ATP were determined by using an ATP Bioluminescence Assay
Kit (#S0026, Beyotime, China). Total DNA was extracted by using a
bioluminescence kit (D0061, Beyotime, China) and mtDNA copy number
was presented as a ratio of COX1 to 18S rDNA based on TaqMan PCR as
previously described [62].

Lentivirus plasmids and transfection
Lentiviruses were produced by co-transfection of the expression vector of
interest with the packaging plasmids PLP1, PLP2, and VSVG into
HEK293T cells using Lipofectamine™ 2000 Transfection Reagent (Invitro-
gen, USA). Virus supernatant was collected after 48 h. Transfected MM cells
were selected by puromycin to obtain a stable and heterogenous
population of puromycin-resistant cells. Transduction efficiency was
determined by WB test. Plasmids containing human SFXN2 cDNA
(NM_178858) and SFXN2 shRNA cassettes were purchased from Generay
Biotech Co., China. The SFXN2 coding sequence fused with Flag was
cloned into the lentiviral vector, CD513B-1. SFXN2-targeting shRNA under
the control of a DOX-inducible promoter was cloned into the pTRIPZ
vector. Three synthetic siRNAs were also purchased from GenePharma
(Shanghai, China). Detailed RNAi sequences were listed in Table S2.

Immunofluorescent staining
After fixation and permeabilization, cells were incubated with primary
antibodies (LC3-II, Abcam, #48394; SFXN2, Abcam, #67191) at 4 °C
overnight and secondary goat anti-rabbit IgG/TRITC (Abcam, ab6718) or
goat anti-mouse IgG/TRITC (Abcam, #6786), respectively. For autophagy
experiments, cells transduced with mCherry-eGFP-LC3 were starved in
EBSS for 48 h. All images were captured by confocal microscope (TCS SP8;
Leica, Germany).

Transmission electron microscope
The samples were prepared as described previously [63]. Images were taken
under the Olympus EM208S transmission electron microscope. We counted
the numbers and calculated the sizes of mitochondria by ImageJ [64].

Luciferase reporter system
The human LC3B promoter region (−1000, +200 bp) was subcloned into
pGL3-Luciferase (Promega) to construct the chimeric pGL3-LC3B-Luc-3’UTR.
Transfection efficiency was normalized to phRL-null control reporter
(Promega). Luciferase activity was measured by Dual Luciferase Assay
System (Promega).

Mass spectrometry analysis
In order to screen the potential interacting proteins and pathways, we
performed the Co-IP experiment per the manufacture’s instruction (Thermo
scientific Pierce™ Direct Magnetic IP/Co-IP Kit, Catalog number: 88828) using
SFXN2 specific antibody (Abcam, ab67191) and IgG as negative control in WT
and SFXN2-OE ARP1 and H929 cells. SDS-PAGE was used to separate proteins,
and gel bands were excised and digested with trypsin (Promega, USA). The
resulting peptides were analyzed by using a QExactive mass spectrometer
(Thermo Fisher Scientific). The downstream bioinformatics analysis of GO was
conducted at http://geneontology.org/, and the enriched GO/KEGG term

Fig. 6 HO1-mediated anti-oxidant effect contributes to SFXN2-suppressed mitophagy and ROS production during iron metabolism. a Co-
IP/MS identified two original peptide sequences corresponding to HO1 (unipro ID: P09601). b IP assay showed the interaction between SFXN2
and HO1. c Luciferase activity driven by a LC3B promoter sequence screened potent molecules influencing autophagic activity in WT and
SFXN2-OE ARP1 cells before and after treatment of HO1 inhibitor (HO-1-IN-1). d WB analysis showed the expressions of mitophagy-related
proteins ATG7, ATG5, Parkin, PINK1, and LC3 in ARP1 cells treated with EBSS and HO-1-IN-1 individually or both. e ARP1 cells transduced with
mCherry-eGFP-LC3 were incubated with either complete media or EBSS for 48 h. All the images were captured with the confocal microscope
(mCherry-LC3, Red; eGFP-LC3, Green). f, g WB tested the expressions of HO1 and SFXN2 in SFXN2-OE (f) and SFXN2-KD (g) cells. h Flow
cytometry analysis examined intracellular ROS levels in WT and SFXN2-OE cells treated with HO-1-IN-1(left panel). Quantification analysis for
fluorescence intensity was performed in WT and SFXN2-OE cells (right panel).
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data-mining took advantage of an online tool MetaScape at https://
metascape.org/. The proteomics data were deposited to the ProteomeX-
change Consortium (http://proteomecentral.proteomexchange.org) via the
iProX partner repository with identifier PXD027607.

Human myeloma xenograft mouse model
All healthy 6–8 weeks old NOD-SCID mice with similar body weight were
randomized blindly into control or treatment groups. ARP1 SFXN2-KD cells
(2 × 106) were subcutaneously injected into NOD-SCID mice (n= 5 or 6 per
group) from Beijing Vital River Laboratory Animal Technology (Beijing,
China). The mice were treated with DOX (2 mg/mL) or saline solution every
other day. The iron supplement with dose of 40mg iron-dextran/kg was
injected intraperitoneally as previously described [65]. Once the tumor
diameter reached 20mm, the mice would be sacrificed. All animal
procedures were conducted following government-published recommen-
dations for the Care and Use of Laboratory Animal, and approved by the
Institutional Ethics Review Boards of Nanjing University of Chinese
Medicine (Nos. ACU170501 and 201905A003).

Statistical analysis
All data were shown as mean ± SD for ≥3 independent experiments.
Differences between groups were determined using two-sided Student’s t-
test or one-way ANOVA. The survival data were calculated by the
Kaplan–Meier method and analyzed by log-rank (Mantel–Cox) test. The
statistical significance was set at *p < 0.05, **p < 0.01, and ***p < 0.001
using GraphPad Prism 5 software (GraphPad Software Inc., USA).

DATA AVAILABILITY
The proteomics data were deposited to the ProteomeXchange Consortium (http://
proteomecentral.proteomexchange.org) via the iProX partner repository with
identifier PXD027607. All data that support the findings of this study are available
from the corresponding authors upon reasonable request.
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