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ABSTRACT
Background: One of the key issues in electroencephalogram (EEG) monitoring is accurate 
signal acquisition with less cumbersome electrodes. In this study, the L2 phase electro-
deposited nanoporous platinum (L2-ePt) electrode is introduced, which is a new type of 
electrode that utilizes a stable nanoporous platinum surface to reduce the skin-electrode 
impedance.
Methods: L2-ePt electrodes were fabricated using electro-deposition technique. Then, the 
effect of the nanoporous surface on the surface roughness and the electrode impedance 
were observed from the L2-ePt electrodes and the flat platinum (FlatPt) electrode. The 
skin-electrode impedances of the L2-ePt electrodes, a gold cup electrode, and the FlatPt 
electrode were evaluated when placed on the hairy occipital area of the head in ten subjects. 
For the validation of using the L2-ePt electrode, a correlational analysis of the alpha rhythms 
was performed in the same subjects for simultaneous EEG recordings using the L2-ePt and 
clinically-used EEG electrodes.
Results: The results indicated that the L2-ePt electrode with a roughness factor of 200 had 
the lowest mean impedance performance. Moreover, the proposed L2-ePt electrode showed 
a significantly lower mean skin-electrode impedance than the FlatPt electrode. Finally, the 
EEG signal quality recorded by the L2-ePt electrode (r = 0.94) was comparable to that of the 
clinically-used gold cup electrode.
Conclusion: Based on these results, the proposed L2-ePt electrode is suitable for use in 
various high-quality EEG applications.
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INTRODUCTION

The coordinated activities of the neurons, as measured in an electroencephalogram (EEG), 
are synchronized with various cognitive states, such as wakefulness, perception, attention, 
and memory.1,2 In clinics, the EEG is used to diagnose epilepsy, observe sleep patterns, and 
estimate the depth of anesthesia.3-5 In addition to the cognitive and clinical studies, EEG 
recording capability has been incorporated into consumer devices for daily activities,6 and is 
used in brain-computer interface applications due to its non-invasiveness and high temporal 
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resolution.7,8 For EEG recordings in daily life, increasing the quality of the EEG signal is 
important, as is improving the convenience of measuring the signal. In particular, the 
skin-electrode impedance significantly influences the signal-to-noise ratio of the measured 
signal.9,10 At the same time, the electrode should be unobtrusive and easy to install for daily 
use, otherwise the applications will be limited to clinical settings.11

The adoption of the electrode suitable for recording EEG in daily life facilitates the out-of-the 
laboratory EEG recoding. In laboratories and clinics, a wet silver-silver chloride electrode is 
a commonly used biopotential recording electrode due to its reliability and robustness.12,13 
The electrode adheres well to the skin and enables the stable acquisition of signals with 
relatively few motion artifacts.14 On the other hand, the use of an electrolytic paste is 
uncomfortable for the user, time consuming to install, and hinders self-installation,6 which 
makes the wet electrode unfeasible for daily life EEG recording applications. On the contrary, 
dry electrodes use no electrolytic gel or paste to mediate the electrode and skin interface.12 
The use of a dry electrode is convenient for users, because it does not require the tedious 
processes of applying the paste and then cleaning the residues after the recording.15 However, 
dry electrodes show a high skin-electrode impedance due to the capacitive coupling with 
the skin and the poor adherence to the skin. These characteristics make the dry electrode 
more prone to motion artifacts. For these reasons, it is more challenging to use a dry 
electrode than a wet electrode on ambulatory patients or freely moving users.16 The need for 
improved performance and comfort led recent studies to develop electrodes with different 
characteristics, including a flexible thin film electrode using micro-robot and replica molding 
techniques,17 carbon nanotube electrodes,9 and micromachined spiked electrodes.15

A nanoporous platinum electrode, namely L2 phase electro-deposited nanoporous platinum 
(L2-ePt), has been previously reported as a way to increase the effective surface area of the 
electrode to facilitate electrochemical reactions for glucose oxidation, O2 reduction, and 
H2O2 reduction in an electrochemical glucose sensor.18 The L2-ePt electrode has a three-
dimensional nanoporous surface, and is fabricated by mixing a reverse micelle (L2) solution 
and platinum nanoparticles. Park et al.19 showed that the surface roughness can be controlled 
through varying the amount of charge used during electroplating. The nanoporous surface 
structure of the L2-ePt increases the effective surface area, which subsequently reduces the 
impedance of the electrode. Furthermore, the L2-ePt electrode was utilized in neural cell 
stimulation and extracellular potential recording applications due to its large effective surface 
area, biocompatibility, and highly controllable fabrication characteristics.18,20 With the 
above-mentioned properties suitable for recording biosignals, however, no study has used 
the L2-ePt electrode in EEG recording applications.

The current study proposes the L2-ePt electrode as a new electrode for conveniently capturing 
high-quality EEG signals. The fabricated L2-ePt electrodes were compared to commonly used 
clinical electrodes, such as gold cup electrodes and flat platinum (FlatPt) electrodes. Initially, 
the increased effective surface area of the fabricated L2-ePt electrode was quantitatively 
confirmed through an electrochemical technique called cyclic voltammetry, and the effect 
of surface roughness was further observed through the electrode impedances of the L2-ePt 
electrodes in a saline solution. Then, the electrode impedance in the saline solution was 
compared with that for the FlatPt electrodes. Finally, the skin-electrode impedance and EEG 
signals, including the alpha rhythm, were acquired from the head using the L2-ePt electrode, 
and captured signals were compared to the simultaneously recorded EEG signals that were 
captured using a gold cup electrode and a FlatPt electrode.
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METHODS

Fabrication
An electrochemical analyzer (Model CH660; CH Instruments Inc., Bee Cave, TX, USA) was 
used for bulk electrolysis (the electro-deposition process) and cyclic voltammetry (electrode 
cleansing and surface area calculations). During the cyclic voltammetry procedures, an Ag/
AgCl (3 M KCl) electrode and a platinum wire were used as a reference and counter electrode, 
respectively. The active electrode was FlatPt foil for the electro-deposition process, and 
nanoporous platinum electrodes during the cyclic voltammetry procedures.

According to previous research on the fabrication of L2-ePt electrodes, nanoporous platinum 
layers were electrochemically deposited onto platinum foil surfaces (Fig. 1A). Initially, a 
mixture of t-octylphenoxypolyethoxyethanol (Triton X-100; 50 wt%), a 0.3 M NaCl aqueous 
solution (45 wt%), and hexachloroplatinic acid (HCPA; 5 wt%) was prepared and then heated 
to 60°C to ensure thorough mixing. A substrate platinum foil was prepared by connecting 
a wire to the non-submerging part of the foil. The submerging part of the platinum foil was 
inserted into the homogeneous mixture, and then the electrochemical deposition process 
took place by applying a constant potential at −0.2 V versus the Ag/AgCl (0.17 mA was used 
to maintain the constant voltage). During this process, the temperature was maintained 
at a constant 41°C using a water jacket connected to a thermostat. In order to remove the 
surfactant (Triton X-100) from the fabricated electrode surface, the electrode was placed in 
distilled water for 3–4 days and the water was replaced every hour.18

Surface roughness measurement
Before measuring the surface area of the L2-ePt electrode, a cleansing process was carried out 
using cyclic voltammography. The electrode was placed in a 1.0 M sulfuric acid solution and a 
cycling potential was applied between +1.2 V and −0.22 V versus the Ag/AgCl, as mentioned in 
Park et al.19 The process was halted when successive cyclic voltammograms produced similar 
results. To quantitatively determine the surface area of the fabricated electrodes, the roughness 
factors (Rf ) were calculated. The definition of the Rf is the ratio of the effective surface area to the 
geometric area of an electrode.18 In order to determine the effective surface area of the fabricated 
L2-ePt electrodes, cyclic voltammetry was performed using a 1 M H2SO4 solution with an Ag/AgCl 
electrode and a platinum wire as a reference and a counter electrode, respectively. The surface area 
of the electrode was determined from the hydrogen adsorption peaks of the cyclic voltammograms 
(scan rate 0.2 V s−1) in the 1.0 M sulfuric acid solution. For the calculation of the effective 
surface area (Equation 1), hydrogen adsorption area (in μC) was determined from the cyclic 
voltammogram by manually marking the starting and the ending peaks (Fig. 1B). The conversion 
factor of 210 μC cm2 was used to convert the units from the cyclic voltammogram into cm2.18,20

  (Equation 1)

A total of eight L2-ePt electrodes were fabricated with varying Rfs (Rf 100, Rf 200, and Rf 300) 
by applying a constant voltage of −0.2 V while varying the final charge value during the electro-
deposition process. Although the charge values were empirically determined, a final charge 
value of 0.5 C cm−2 produced electrodes with an Rf of 100 (approximately 1-hour process), 1.0 C 
cm−2 produced an Rf of 200 (approximately 2 hours process), and charge values higher than 1.5 
C cm−2 resulted in an Rf of 300 (approximately 3 hours process). To observe the nanoporous 
structure of the fabricated electrode (Fig. 1C), a field emission scanning electron microscope 
(FESEM) was used (AURIGA39-37; Carl Zeiss, Oberkochen, Germany).
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The electrical impedances were measured in order to analyze the impedance characteristics 
of the L2-ePt electrodes and the FlatPt electrodes. As shown in Fig. 1D, a transparent acryl 
box was constructed (30 × 20 × 30 mm) with two circular holes (6 mm diameter) that were on 
opposite sides. A 0.9% NaCl solution was used as medium between the two electrodes, which 
were placed at the two openings in the box. At one end of the box, a reference electrode (Ag/
AgCl electrode; 3M, Maplewood, MN, USA) was placed, while at the other end, an electrode 
of interest, either the FlatPt or the L2-ePt electrode, was placed. Then, the electrodes were 
connected to an impedance analyzer (6440A; Wayne Kerr, Bognor Regis, UK) for impedance 
measurements from 20 Hz to 1,000 Hz.17 With this procedure, the electrode impedances of 
the L2-ePt electrodes with different Rfs were compared.
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Fig. 1. Schematic diagrams of experimental design. (A) L2-ePt fabrication process including electro-deposition and 
surfactant removal steps. (B) A cyclic voltammogram of the FlatPt (blue) and the L2-ePt with roughness factor of 
200 (red). The circled area indicates the enlarged hydrogen adsorption area of the L2-ePt. (C) Image of a fabricated 
L2-ePt electrode. (D) Electrode impedance measurement setup using a box filled with 0.9% NaCl solution. 
L2-ePt = L2 phase electro-deposited nanoporous platinum, FlatPt = flat platinum.
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Skin-electrode impedance measurement
The skin-electrode impedance was measured at 30 Hz using an impedance analyzer (F-E5GH; 
Grass Technologies, Warwick, RI, USA) on ten subjects. 30 Hz was used as a benchmark for EEG 
signal recording since the value is within the range of the EEG frequency spectrum, and it is the 
standard skin-electrode impedance monitoring frequency when recording EEG.21 All impedance 
measurements were carried out with current less than 1 μA, which is in a safe current range for 
recording the skin-electrode impedance.22 The L2-ePt electrode, the FlatPt electrode, and the 
gold cup electrode (Grass Technologies) were simultaneously attached to the occipital part of the 
head. To maintain stable contact, a felt pad (Emotive, San Francisco, CA, USA), moistened with 
saline solution, was used as a medium between the electrodes and the skin.

EEG measurement
EEG signals were obtained from all ten subjects. The occipital region was prepared using 
the skin prep gel, and the electrodes were affixed in their stationary positions. Similar to the 
skin-electrode impedance measurement, the felt pad was used between the electrode and 
the skin for both stable contact and enhanced utilization of the nanoporous surface. The 
signals were acquired using an L2-ePt electrode, a FlatPt, and a gold cup electrode that were 
positioned as close to each other as possible. In order to see the dominant alpha rhythm (8–13 
Hz), eye-closed and eye-open cycles were repeated sequentially for 20 seconds each for an 
overall time of two minutes. Before the analog-digital conversion (ADC) process, the EEG 
was band-pass filtered using a cutoff frequency of 1 to 100 Hz, and the sampling rate was 
1,000 Hz. The measured EEG signals were bandpass filtered for the 1–30 Hz frequency region 
in the MATLAB R2013a software (MathWorks, Natick, MA, USA). The correlation coefficients 
were calculated between the gold cup electrodes and the FlatPt electrodes, and between the 
gold cup electrodes and the L2-ePt electrodes.

Statistical analysis
SPSS version 21 IBM software (IBM, Armonk, NY, USA) was used for the statistical analyses. 
The electrode impedance in solution experiment results were assessed with the independent 
sample t-test, and the skin-electrode impedance experiment utilized a one-way analysis of 
variance (ANOVA) and Tukey post hoc test to compare the gold cup electrode, the FlatPt 
electrode, and the L2-ePt electrode. For the EEG analysis, a Wilcoxon signed-rank test was 
used to assess the differences in the measured EEG signal correlations.

Ethics statement
The present study protocol was reviewed and approved by the Institutional Review Board 
of Seoul National University Hospital (IRB No. H-1411-054-624). Informed consent was 
submitted by all subjects when they were enrolled.

RESULTS

Surface roughness
An L2-ePt electrode was electrochemically deposited on a platinum metal substrate. The 
electrode surface morphologies of the L2-ePt and FlatPt electrodes were observed from the 
FESEM images (Fig. 2), and the images showed that the L2-ePt electrode had homogeneous 
nanoporous structures with 10 nm pores, while the FlatPt electrode had a distinguishable flat 
surface different from that of the L2-ePt electrodes. From the cyclic voltammograms of the 
L2-ePt and FlatPt, the area under the hydrogen atom adsorption peaks showed that the L2-ePt 
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electrodes had an enlarged surface area when compared to that of the FlatPt electrode. The 
Rf calculated from the cyclic voltammograms confirmed that the surface area of the L2-ePt 
electrodes increased, while that of the FlatPt electrode remained nearly the same (Table 1).

The electrode impedances of the fabricated electrodes were analyzed using an impedance 
analyzer in saline solution (0.9% NaCl solution). The electrode impedance comparison 
between the L2-ePt electrodes with different Rfs (Fig. 3A and Table 1) at 30 Hz shows 
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Fig. 2. Surface roughness images of the FlatPt electrode and the L2-ePt electrode. (A) FESEM image showing surface 
morphology of the FlatPt. (B) FESEM image of the L2-ePt surface. (300,000 × magnification, scale bar = 100 nm). 
FlatPt = flat platinum, L2-ePt = L2 phase electro-deposited nanoporous platinum, FESEM = field emission 
scanning electron microscope.

Table 1. Rf of the electrodes and corresponding impedances
Characteristics Rf 100 (n = 4) Rf 200 (n = 4) Rf 300 (n = 2) FlatPt (n = 2)
Rf 113.51 (15.50) 203.31 (25.59) 311.65 (47.30) 0.90 (0.028)
SAeff

a,b, cm2 18.18 (2.39) 31.53 (3.56) 46.15 (3.75) 0.25 (0.0078)
ZSolution at 30 Hz

Impedance, Ω 212.20 (9.22) 203.06 (5.02) 209.69 (8.04) 1,633.33 (68.31)
Values are presented as number (SD).
Rf = roughness factors, SD = standard deviation, SA = surface area.
aSAeff denotes effective surface area; bGeometric surface area for all electrodes was 0.14 cm2.
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significant differences between the groups (F [2, 36] = 6.9; P = 0.003). The impedances of the 
Rf 100 L2-ePt electrodes were significantly different from those of the Rf 200 L2-ePt electrodes 
(P = 0.003), but otherwise when the Rf 100 L2-ePt electrodes compared to the impedance 
of the Rf 300 L2-ePt electrodes (P = 0.69). The electrode impedance of the Rf 200 L2-ePt 
electrodes and the Rf 300 electrodes did not show significant difference (P = 0.088). The 
electrode impedance of the FlatPt electrode was significantly smaller than those of the L2-ePt 
electrodes (P < 0.001). After the Rf comparison, the Rf 200 L2-ePt electrodes were used for the 
rest of the experiment due to their lowest mean electrode impedance. In addition,  
Fig. 3B shows the average electrode impedances of the FlatPt electrodes and the L2-ePt 
electrodes across the frequencies between 20 Hz and 1,000 Hz. For the entire frequency range, 
the FlatPt electrodes were significantly different from the L2-ePt electrodes (P < 0.001).

Skin-electrode impedance
The skin-electrode impedances measured from the head (Fig. 4 and Table 2) showed that there 
were significant differences on the hairy occipital part of the head (F [2, 18] = 8.64; P = 0.002). 
The L2-ePt electrode with impedance of 10.0 ± 6.03 kΩ had significant difference from the FlatPt 
electrode with impedance of 26.10 ± 11.83 kΩ, P = 0.003. The gold cup electrode with impedance 
of 12.23 ± 2.78 kΩ was significantly different from that of the FlatPt electrode, P = 0.015.

EEG: alpha rhythm
The eye-closed segments of the raw EEG and a spectrogram of the data displayed noticeable 
alpha waves compared to the eye-open segments (Fig. 5). As shown in Table 2, a Wilcoxon 
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Table 2. Impedance and EEG results by electrode types
Characteristics Gold cup FlatPt L2-ePt P value
ZSolution at 30 Hz (n = 10)

Impedance, kΩ 1.633 (0.068) 0.206 (0.003)
ZSE

a at 30 Hz (n = 10)
Occipital, kΩ 12.23 (2.78) 26.10 (11.83) 10.0 (6.03)

EEGAlpha (n = 10) 0.029
Correlation (Gold cup vs. FlatPt) 0.82 (0.15) (Gold cup vs. L2-ePt) 0.94 (0.05)

Values are presented as number (SD).
EEG = electroencephalogram, SD = standard deviation, L2-ePt = L2 phase electro-deposited nanoporous platinum, FlatPt = flat platinum.
aZSE denotes skin-electrode impedance.
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signed-rank test revealed that the correlation coefficients between the signals acquired by the 
gold cup electrodes and those of the FlatPt electrodes (r = 0.82 ± 0.15), and the correlation 
coefficients between the signals obtained by the gold cup electrodes and those of the L2-ePt 
electrodes (r = 0.94 ± 0.053), were significantly different (Z = −2.19; P = 0.029).
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DISCUSSION

The L2-ePt electrode has been studied as a way to detect electrochemical materials or as a 
pH sensor.23 However, no study has investigated the L2-ePt electrode for EEG recording 
applications, and the electrode characteristics as an EEG recording material remained unknown. 
Thus, this study examined the surface roughness through the electrode impedance comparisons, 
and then we assessed the skin-electrode impedance and EEG signal quality of the L2-ePt to 
provide comparative guidelines for use when considering the efficacy of the L2-ePt electrode.

The L2-ePt electrode has multiple beneficial properties as an EEG sensor. Since the sensor 
material contacting the skin is prone to corrosion, which leads to electrochemical noise 
and signal degradation, the electrode needs to be electrochemically stable. According to 
Fonseca et al.,24 metals such as aluminum and stainless-steel undergo corrosion or copper 
which induce allergic reactions. But, Park et al.25 reported that the L2-ePt electrode exhibits 
neither corrosion nor allergic reactions when exposed under saline conditions. Also, as 
reported in previous studies, the mechanical stability of the L2-ePt electrode was shown by 
applying 12.6 mN with a 5 μm diameter diamond indenter. As a result, the L2-ePt electrode 
displayed an intact electro-deposition layer without peeled off residues.18,23 In addition to 
electrochemical, mechanical stability, and biocompatibility,20 the quantitatively controllable 
fabrication of the electrodes is one of the advantages of the L2-ePt electrode since it is 
possible to produce uniform and quality controlled electrodes. The confirmation of the 
uniform surface through cross-section scanning electron microscope (SEM) was restricted 
due to limitation in uniformly slicing the platinum foil (0.25 mm thick), and possible 
effect of the surfactant residues in the deeper layers. However, previous studies support the 
fabrication of the uniform nanoporous thin film of the L2-ePt when compared to the FlatPt 
surface.26 When plated on a much thinner substrate, the cross-section SEM revealed that the 
nanoporous layer was formed with uniform thickness and free of surfactant residues.18

This study was in agreement with the previous study where Boo et al.26 described the 
relationship between the pore size and the thickness of the electrical double layer. When 
the thickness of the double layer is larger than the pore radius, the double layer is formed 
outside the pores because the equipotential line cannot follow along the pore surface. 
Furthermore, Park et al.18 noted that the larger roughness might not necessarily mean more 
electrochemical activity, but there might be an ultimate porosity. They found that from Rf 
200 and onward, the electrical activity makes a plateau. Consequently, the larger electrode 
impedance of the Rf 300 than that of the Rf 200 from this study may be ascribed to the non-
linear relationship between the roughness and the electrical activity at the surface.

In this study, the impedance in solution was influenced by the nanoporous surface that 
increased the effective contact area between the surface and the medium, and consequently 
reduced the impedance. This decrease in the impedance improved the electrical conductance 
of the electrode for measuring accurate electrical changes that occur under the electrode. 
Park et al.23 reported that high impedance could be a source of noise, which distorts or 
weakens the true neural signals. Moreover, only signals that are in very close proximity 
to the surface of the electrode are recorded and ones that are far away are degraded when 
the electrical impedance is high. The electrode impedance of the L2-ePt electrode when 
measured in the electrolytic solution was significantly lower than that of the FlatPt electrode. 
These results suggest that the nanoporous surface plays a major role in reducing the electrode 
impedance of the L2-ePt electrodes.
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The skin-electrode impedance significantly influences the performance of EEG recording. 
One of the factors affecting the skin-electrode impedance is the effective surface area, where 
larger contact area reduces the skin-electrode impedance by lowering the reactance.27-29 In 
this respect, the lowest skin-electrode impedance of the L2-ePt electrode from our study 
can be credited to the high surface capacitance and reduced impedance due to the increased 
roughness of the L2-ePt electrode surface.23 Also, when used with the moistened-pad, the 
uniform nanopores of the L2-ePt which facilitated electrical charge transfer between the 
moisture and the metal, could have further reduced the skin-electrode impedance. According 
to Han et al.,29 particles trapped in the pores require a longer time to react than particles on 
the flat surface. Consequently, the electron transfer can be enhanced.

However, it is important to note that the reduction in skin-electrode impedance cannot be 
solely explained by the increased effective surface area. As reported by Rosell et al.,30 skin 
impedance is another factor dominating the skin-electrode impedance. Because of the 
human-to-human differences in the skin, it has been reported that the impedance of the skin 
varies across different individuals. However, when the L2-ePt electrode was used with the 
moistened-pad, the individual differences were observed to be reduced. The moisture held in 
the pad may have penetrated the stratum corneum, which would thereby reduce the effect of 
the skin impedance.31 The decrease in the skin-electrode variance between individuals might 
be due to the less influential effect of the stratum corneum.

In terms of employing the developed L2-ePt electrode in daily life EEG recording, the level 
of skin-electrode impedance and convenience should be considered. As many EEG studies 
have noted, a recommended range of the skin-electrode impedance is below 10 or 20 kΩ.32-34 
When compared to the skin-electrode impedances of commercially available electrodes, such 
as Ag/AgCl electrode (in a range of a few tens of kΩ)35 or gold cup electrodes (12 kΩ in this 
study) with conductive paste, that of the developed L2-ePt electrode (10 kΩ in this study) falls 
within in a practical range. The L2-ePt electrode with moistened pad is conceptually similar 
to the “wet” electrode because the skin and the electrode of both conventional electrodes and 
the L2-ePt electrode is mediated by moisture and gel, respectively. However, the proposed 
method maintains the advantage and overcomes the disadvantage of the “wet” electrode by 
providing low skin-electrode impedance without the use of sticky conductive paste that dirty 
the hair and cause inconvenience for the user, which has been one of the major hurdles for 
daily life EEG recording.

In addition to the impedance properties of the electrode over the relevant frequency ranges, an 
EEG was recorded using the L2-ePt electrode to compare its signal recording performance to 
that of the clinically-used gold cup electrode. The improved performance of the L2-ePt electrode 
compared to the FlatPt electrode can be attributed to the increased active surface area due to 
the nanoporous surface. The correlation value of the L2-ePt reflects the effect of the decreased 
skin-electrode impedance on increasing the signal-to-noise level.23 As the enhanced electrode 
impedance performance due to the interaction between the L2-ePt and solution suggests, 
moisture was introduced in order to lower the skin-electrode impedance. Furthermore, the 
action of attaching and detaching the L2-ePt electrode on the head was facilitated by a simple 
contact on the scalp. The similar correlations of the signals acquired by the clinically used gold 
cup electrode and the L2-ePt electrode show that the L2-ePt electrodes can acquire high-quality 
signal. With respect to EEG signal quality comparison, our result is comparable to the previous 
study by Lin et al.,27 where their dry foam electrode showed 96.14% and 90.12% EEG correlation 
on the forehead and hairy sites, respectively. In another study, a flexible silicone-based dry 
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electrode showed 92% correlation from the forehead.36 Therefore, the L2-ePt electrodes can 
be employed in a variety of EEG applications where it would be cumbersome and inconvenient 
to use electrodes with adhesive paste.6 Consequently, the L2-ePt electrode can be used for 
EEG recordings over the hair to provide both convenience and high-quality signal acquisition 
capability. The characteristics of the L2-ePt electrode will be especially useful in brain-computer 
interface applications where user comfort and excellent signal acquisition is important.

However, costly platinum metal was used as the substrate metal for the L2-ePt electrode. 
Despite their price disadvantage, the stable metals, like platinum or gold, are used in 
commercially available EEG recording electrodes. Like the commercial gold or platinum 
electrodes, the L2-ePt electrode provides biocompatibility, mechanical stability, and 
electrochemical stability when recording EEG.

In this study, the possibility and benefits of using nanoporous surface electrodes as 
EEG recording electrodes have been introduced. Using a nanoporous structure, the L2-
ePt electrode exhibited distinguishable surface morphology as well as lower electrode 
impedance, as opposed to those of the untreated FlatPt electrode. Furthermore, the skin-
electrode impedance measurements illustrated that nanoporous electrodes are reliable for 
recording EEG frequencies with lower impedance than the FlatPt electrode, and similar 
impedances to the gold cup electrode. Finally, for the EEG recording experiment, the L2-ePt 
electrodes performed with similar signal quality as the gold cup electrode. In short, this 
study suggests that the nanoporous platinum electrode holds promise as a new method for 
EEG recording in many applications, including brain-computer interface.
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