
 gels

Article

Comparison of Finite Difference and Finite Volume
Simulations for a Sc-Drying Mass Transport Model

Ilka Selmer 1,* , Patricio Farrell 2 , Irina Smirnova 1 and Pavel Gurikov 3,*
1 Institute for Thermal Separation Processes, Hamburg University of Technology, Eißendorfer Straße 38,

21073 Hamburg, Germany; irina.smirnova@tuhh.de
2 Weierstrass Institute (WIAS), Mohrenstr. 39, 10117 Berlin, Germany; patricio.farrell@wias-berlin.de
3 Laboratory for Development and Modelling of Novel Nanoporous Materials, Hamburg University

of Technology, Eißendorfer Straße 38, 21073 Hamburg, Germany
* Correspondence: ilka.selmer@tuhh.de (I.S.); pavel.gurikov@tuhh.de (P.G.)

Received: 9 October 2020; Accepted: 22 November 2020; Published: 25 November 2020
����������
�������

Abstract: Different numerical solutions of a previously developed mass transport model for supercritical
drying of aerogel particles in a packed bed [Part 1: Selmer et al. 2018, Part 2: Selmer et al. 2019] are
compared. Two finite difference discretizations and a finite volume method were used. The finite
volume method showed a higher overall accuracy, in the form of lower overall Euclidean norm (l2)
and maximum norm (l∞) errors, as well as lower mole balance errors compared to the finite difference
methods. Additionally, the finite volume method was more efficient when the condition numbers of
the linear systems to be solved were considered. In case of fine grids, the computation time of the
finite difference methods was slightly faster but for 16 or fewer nodes the finite volume method was
superior. Overall, the finite volume method is preferable for the numerical solution of the described
drying model for aerogel particles in a packed bed.

Keywords: aerogel particles; supercritical drying; finite difference method; finite volume method;
mass transport simulation; advection-diffusion equation

1. Introduction

Supercritical drying of wet gels, such that they become porous aerogels, is the crucial step
in aerogel production. The drying process uses supercritical CO2 as extraction medium and is;
thus, conducted under moderate temperature but elevated pressure and; therefore, may be
cost-intensive. A comprehensive overview of experimental studies and mass transport models
investigating the kinetics of supercritical drying of gels is given by Şahin et al. [1]. Within the last
two years, a several model of the supercritical drying for spherical gel particles were developed [2–7].
All these works show that the gel drying process for particles is significantly faster than for monoliths of
comparable size [2–7]. This observation highlights the fact that aerogel particles are highly promising
for future applications in industrial products. Selmer et al. developed their physical mass transport
model for the supercritical drying of gel particles in a packed bed and analyzed mass transfer steps that
limit the overall drying kinetic to optimize the process [2,3]. Hatami et al. developed a similar model
and improved the optimizing procedure to allow a fast drying process with low CO2 consumption [6].

All reported mass transport models result in a set of coupled partial differential equations if the
mass transport in the outer bulk fluid is considered additionally to the mass transport within the gel
particles [3–6]. Şahin et al. and Hatami et al. discretized the spatial dimensions via the finite difference
method and solved the resulting coupled set of differential-algebraic equations using the built-in
ordinary differential equation solver in Matlab [4–6]. Selmer et al. discretized the spatial dimension of
the gel particles via the finite difference method [8,9] and the spatial dimension of the bulk fluid in
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the autoclave via the finite volume method [3,10]. The finite volume method can preserve discretely
important physical quantities such as mass [11].

During the supercritical drying process, the physical properties of supercritical CO2 and its
mixture with ethanol or other solvents strongly depend on the composition of the mixture which varies
during the drying process from pure ethanol (or another solvent) in the gel to almost pure CO2 [3].
Therefore, especially in mass transport models describing the supercritical drying process of small
particles, a high spatial resolution of the domain with gel particles is required for accurate results. This,
in turn, leads to high computation times.

For this reason, we set the aim of this work so as to investigate the behavior of numerical solutions
of gel particles drying models according to their accuracy and efficiency, to increase the confidence in
the simulation results reported so far.

In the present paper, two possible numerical discretization techniques of the resulting partial
differential equations of Selmer et al.’s model [2,3] are implemented, namely the finite difference
method [8,9] and the finite volume method [10]. Both discretization techniques are compared
numerically by studying the quality of the approximations via Euclidean norm (l2) and maximum
norm (l∞) errors, as well as the efficiency via the condition numbers of the linear systems to be solved.

The supercritical drying of spherical, ethanol-filled silica gels packed in a cylindrical bed serves
as the example system. Two initial ethanol concentrations in the bulk fluid, which represent the
pressurization using CO2 with or without addition of excess solvent to the wet gels, are evaluated.
Both pressurization techniques are applicable and implemented in supercritical drying processes.

2. Mass Transport Model of Supercritical Drying

The aim of supercritical drying is to extract a solute (in our case ethanol) from a wet gel using
supercritical CO2 (component 1). The mass transport model presented here, and discussed in
Selmer et al. 2018 from the physical point of view [2], results in a system of coupled partial differential
equations. The partial differential equations are written here in terms of concentration of ethanol
(component 2), c2. In the drying process, ethanol is transported by diffusion from the inside of the
porous gel particles (Equation (1)) to the bulk fluid (Figure 1). The flow of the bulk fluid through the
packed bed is modeled by convection (Equation (2)) (Figure 1). The packed bed leads to non-ideal
flow behavior, which is included through a time dependent dispersion factor DL (Equation (2)). Thus,
two domains are considered: The spherical gel particles (subscript g), described by radial mass
transport along the radial axis r; and the bulk fluid (subscript f ), described by axial mass transport
along the axial axis z. Both domains are connected due to the mass transfer of ethanol across the
boundary. This connection appears as a boundary condition for the mass transport within the particle
(Equation (8)) and as a source term source2, f for the mass transport of the bulk fluid (Equation (2)).
It is assumed in our model that the gel particles are monodisperse and evenly distributed along the
cylindrical autoclave. Since the mass transport within the gel particles depends on the mass transport
of the bulk fluid, which in its turn varies along the axial packed bed height z, the mass transport within
the gel particles should also depend on their position z in the packed bed. This fact is explicitly stated
in (Equation (1)). The drying process is a dynamic process and thus depends on the time denoted
with t. The source term source2, f describes the ethanol being extracted from the gel particles (at axial
position z in the packed bed) into the bulk fluid. The term is calculated as the temporal change of the
amount of ethanol (in moles) within all gel particles divided by the accessible volume of the bulk fluid
Vf = Aac·ψ·L (Equation (4)). Aac stands for the cross-sectional area of the autoclave, ψ for the porosity
of the packed bed and L for the length of the packed bed. The temporal change of the ethanol amount
within the porous gel sphere is negative during the course of the drying since ethanol concentration
with time decreases, but the source term itself is positive.
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radial coordinate of spherical gel particle, r = 0—gel particle center, r = R—gel particle radius, t—
time). 
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Figure 1. Supercritical drying of gel particles in a packed bed (z—axial coordinate of packed bed,
z = 0—top of packed bed, z = L—bottom of packed bed, ∆z—slice of packed bed,

.
mCO2 —CO2

flow,
.

mEtOH—ethanol flow,
.
V—volume flow, ρf—fluid density (mixture of CO2 and ethanol), r—radial

coordinate of spherical gel particle, r = 0—gel particle center, r = R—gel particle radius, t—time).

Physical properties of supercritical CO2 and its mixture with ethanol or other solvents strongly
depend on the system parameters such as temperature, pressure and composition of the mixture [2].
The temperature and pressure are treated as constant during the drying process. The composition
of binary mixture x2 is directly related to the mixture concentration c and ethanol concentration
c2 (Equation (5)) and varies during the drying from pure ethanol (x2 = 1) to pure CO2 (x2 = 0).
Physical properties, such as the effective diffusion coefficient Dg, the mixture concentration cg and
the fluid density ρ f , as well as the parameters that are functions thereof, such as the interstitial fluid
velocity u (Equation (3)) and the mass transfer coefficient β (Equation (8)), are highly dependent on the
radial, axial and temporal distribution of the mixture compositions in the gel body x2,g(r, z, t) and the
bulk fluid x2, f (z, t). For example, at a pressure of 10 MPa and a temperature of 321 K, the parameters
being directly dependent from the mixture composition can vary during supercritical drying between

1.41·10−9 and 7.68·10−9 m2

s for the effective diffusion coefficient Dg (assumption: Gel porosity
εg = 0.93, gel tortuosity τg = 3.48),
9.67·103 and 1.77·104 mol

m3 for the mixture concentration cg and the fluid density ρ f ,

5.54·10−9 and 2.87·10−8 m2

s for the diffusion coefficient in the bulk fluid,
3.09·10−5 and 7.18·10−4 Pa·s for the viscosity of the bulk fluid and between
2.34 and 1.66·102 for the resulting Schmidt number.

Parameters that are independent from the mixture composition are written in bold font throughout
the text and as follows: The surface of a single spherical gel particle Ap, the number of particles in the
packed bed Np, the cross-sectional area of the autoclave Aac, the length of the packed bed L, the porosity
of the packed bed ψ and the mass flow rate of the ethanol–CO2 mixture

.
m.

∂c2,g(r, z, t)
∂t

=
1
r2

[
∂
∂r

(
r2
·Dg

(
x2,g(r, z, t)

)
·cg

(
x2,g(r, z, t)

)
·
∂x2,g(r, z, t)

∂r

)]
(1)
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∂c2, f (z, t)

∂t
= DL(t)·

∂2c2, f (z, t)

∂z2 −

∂
(
c2, f (z, t)·u

(
x2, f (z, t)

))
∂z

+ source2, f
(
x2,g(r, z, t), x2, f (z, t)

) (2)

u
(
x2, f (z, t)

)
=

.
m

Aac·ψ·ρ f
(
x2, f (z, t)

) (3)

source2, f
(
x2,g(r, z, t), x2, f (z, t)

)
= −

Np

Aac·ψ·L
·
∂
∂t


r=R∫

r=0

4·π·r2
·εg·c2,g(r, z, t) dr

 (4)

c2 = x2·c (5)

Initial and boundary conditions are presented in Equations (6)–(8) for the gel particle domain and
in Equations (10)–(12) for the bulk fluid domain. For each gel sphere (at a certain packed bed height z),
the boundary conditions were given by the Neumann condition at the center (Equation (7)) and by the
molar flux across the boundary layer at the surface (Equation (8)).

∀r,∀z,
t = 0

c2,g(r, z, 0) = c2,g,0 (6)

r = 0,
∀z,∀t

∂c2,g(0,z,t)
∂r = 0 (7)

r = R,
∀z,∀t

−Dg
(
x2,g(R, z, t)

)
·
∂c2,g(R,z,t)

∂r
= β

(
x2, f (z, t), u(x2, f (z, t)

)
·

(
c2,g(R, z, t) − c2, f (z, t)

) (8)

For the top of the packed bed, the Danckwerts’ boundary condition [12] was chosen so that no
loss of ethanol across the upper boundary occurs due to dispersion of ethanol (Equation (11)). It was
useful to define the flux of ethanol f2 as follows:

f2 := −DL·
∂c2, f

∂z
+ u·c2, f . (9)

In order to simplify the boundary condition at the top of the packed bed: The flux of ethanol across
the upper boundary is set to zero (Equation (11)) according to the Danckwerts’ boundary condition [12].

At the bottom of the packed bed, a Neumann boundary condition was used (Equation (12)).

∀z, t = 0 c2, f (z, 0) = c2, f ,0 (10)

z = 0, ∀t 0 = u
(
x2, f (0, t)

)
·c2, f (0, t) −DL(t)·

∂c2, f (0,t)
∂z = f2(0, t) (11)

z = L, ∀t
∂c2, f (L,t)

∂z = 0 (12)

3. Numerical Solution of the Mass Transport Model

The coupled partial differential equations were solved numerically. Equation (1), which describes
the mass transport within the porous gel particles, was always solved using the finite difference method
(FDM), whereas Equation (2), which describes the mass transport of the bulk fluid in the packed
bed, was solved using either the FDM (Section 3.1) or the finite volume method (FVM) (Section 3.2),
(Supplementary Materials).
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Equation (1) was discretized using an explicit scheme, since it is easy to implement. Without its
dependencies on r, z , t, Equation (1) is written as follows:

∀z
∂c2,g
∂t = 1

r2

[
∂
∂r

(
r2cgDg

∂x2,g
∂r

)]
(13)

which gives, after applying the product rule,

∀z
∂c2,g
∂t =

2cgDg
r

∂x2,g
∂r + Dg

∂cg
∂r

∂x2,g
∂r + cg

∂Dg
∂r

∂x2,g
∂r + cgDg

∂2x2,g

∂r2 . (14)

Equation (14) was discretized using a forward difference for the time derivative and central
differences for the spatial derivatives

n = 1, . . . , N
∀s,∀k

ck+1
2,g,n,s−ck

2,g,n,s
∆t =

2ck
g,n,sDk

g,n,s
n∆r

xk
2,g,n+1,s−xk

2,g,n−1,s
2∆r

+ck
g,n,s

Dk
g,n+1,s−Dk

g,n−1,s
2∆r

xk
2,g,n+1,s−xk

2,g,n−1,s
2∆r

+Dk
g,n,s

ck
g,n+1,s−ck

g,n−1,s
2∆r

xk
g,2,n+1,s−xk

g,2,n−1,s
2∆r

+ck
g,n,sDk

g,n,s
xk

2,g,n+1,s−2xk
2,g,n,s+xk

2,g,n−1,s

∆r2

(15)

where the super index k refers to time, s to the axial index in the packed bed/autoclave domain
(cf. Figure 2), and n to the radial index of the gel particle domain. N stands for the number of
nodes used to discretize the gel particle domain. The temporal as well as both spatial discretizations
were based on equidistant nodes resulting in constant time ∆t = tk

− tk−1 and constant radial steps
∆r = rn − rn−1 . We can rearrange Equation (15) to

n = 1, . . . , N
∀s,∀k

ck+1
2,g,n,s = ck

2,g,n,s + ∆t
∆r2

{[(
1− 1

n

)
xk

2,g,n−1,s − 2xk
2,g,n,s

+
(
1 + 1

n

)
xk

2,g,n+1,s

]
Dk

g,n,sck
g,n,s

+ 1
4

[(
xk

2,g,n−1,s − xk
2,g,n+1,s

)((
Dk

g,n−1,s −Dk
g,n+1,s

)
ck

g,n,s

+
(
ck

g,n−1,s − ck
g,n+1,s

)
Dk

g,n,s

)]}
.

(16)

The initial condition of the gel particle domain was set to

∀n,∀s, k = 1 c0
2,g,n,s = c2, g,start. (17)

The boundary conditions of the gel particle domain were discretized using central differences for
the spatial derivatives. Two artificial nodes (n = 0, n = N + 1) were placed beyond the boundaries
n = 1 and n = N and calculated as follows:

n = 0, ∀s, ∀k ck
2,g,0,s = ck

2,g,2,s, xk
2,g,0,s = xk

2,g,2,s, ck
g,0,s = ck

g,2,s, Dk
g,0,s = Dk

g,2,s (18)

n = N + 1, ∀s,∀k ck
2,g,N+1,s = ck

2,g,N−1,s − 2∆r βk
s

Dk
g,N,s

(
ck

2,g,N,s − ck
2, f ,s

)
. (19)

The artificial node n = 0 was used to solve Equation (16) for ck+1
2,g,1,s and the artificial node n = N + 1

for ck+1
2,g,N,s .
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The domain which describes the mass transport in the bulk fluid (Equation (2)) was solved with
both numerical methods (Sections 3.1 and 3.2). Without its dependencies on r, z, t, Equation (2) was
written as follows:

∂c2, f

∂t
= DL·

∂2c2, f

∂z2 −
∂
(
c2, f ·u

)
∂z

+ source2, f . (20)

Using this definition of the flux (Equation (9)) allows Equation (20) to be rewritten as

∂c2

∂t
= −

∂ f2
∂z

+ source2, f . (21)

The source term source2, f (Equation (4)), which describes the ethanol being extracted from porous
gel particles to the bulk fluid in the packed bed with time, was discretized for both numerical methods
in the same way (Equation (22)): It was calculated as the difference between the accumulated ethanol
within a single porous gel particle (placed at axial position s ) at time t = k and at time t = k+ 1, divided
by the time step ∆t = tk+1

− tk and multiplied by the particles per bulk fluid volume
Np
V f

=
Np

Aac·ψ·L
(Equation (22)). The accumulated ethanol within a single porous particle was calculated by the
summation of the ethanol concentration ck

2,g,n,s in each spherical shell element n, times the volume of
each spherical shell element Vg,n times the gel porosity εg (Equation (22)):

∀s,∀k sourcek
2, f ,s =

Np
Aac·ψ·L·∆t ·

(
N∑

n=1
ck

2,g,n,s·Vg,n·εg −
N∑

n=1
ck+1

2,g,n,s·Vg,n·εg

)
. (22)
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In the following, we will distinguish between two versions of possible discretizations using the 
FDM to solve numerically the diffusion-advection equation. The difference is given by the 
discretization of the advective term in Equation (20). 

xS+1

FDM FVM

xS L

0

xS

x1

x2

xs

xs-1

xs+1

x2

x3/2

x1/2

x5/2

xs-1/2

xs+1/2

xS-1/2

Δx zx1

x0

xs

xs-1

xs+1

Δzs

x3/2

x5/2

xs-1/2

xs+1/2

xS-1/2

Δzs

Δx

Figure 2. Axial discretizations of the packed bed for FDM and FVM. S—number of nodes, xs—sth node
(blue), x0, xS+1—artificial node (green), ∆x—distance between neighboring nodes, xs+ 1

2
—cell interface

(in the middle of two neighboring nodes), ∆zs—length of volume element (grey boxes, boundary boxes
in dark grey).

3.1. Solving the Diffusion-Advection Equation Using the Finite Difference Method

Finite difference methods are a flexible tool to discretize partial differential equations and easy
to implement.
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Figure 2 shows the equidistant axial discretization of the bulk fluid/packed bed domain for the
FDM and the FVM (Section 3.2). For FDM, the first discretization node was placed at z = 0 and the last
one at z = L. Therefore, both boundary volume elements/cells (grey boxes) were half of the length of
the inner volume elements:

∆zs :=
{

∆z = ∆x
∆z
2 = ∆x

2

s = 2, . . . , S− 1
s = 1, S .

(23)

Additional to the number of nodes S in the packed bed domain, two more artificial nodes (x0 and
xS+1 ) outside the domain were needed to discretize the boundary conditions via the FDMs.

In the following, we will distinguish between two versions of possible discretizations using the
FDM to solve numerically the diffusion-advection equation. The difference is given by the discretization
of the advective term in Equation (20).

3.1.1. Discretization of Advection Term: Version A

In version A, the advective term −
∂(c2, f ·u)

∂z was discretized. The discretization of Equation (20)
using an explicit forward difference in time, a first order backward difference and a second order
central difference in space results into

s = 1, . . . , S
∀k

c2, f (tk+1, (s− 1)·∆x) ≈ ck+1
2, f ,s

= ck
2, f ,s +

∆t
∆x2 ·[ck

2, f ,s−1 − 2ck
2, f ,s + ck

2, f ,s+1]D
k
L

+ ∆t
∆zs
·[ck

2, f ,s−1·u
k
s−1 − ck

2, f ,s·u
k
s ] + ∆t·sourcek

2, f ,s

(24)

3.1.2. Discretization of Advection Term: Version B

In version B, the advective term −u·
∂c2, f
∂z − c2, f ·

∂u
∂z was discretized instead of −

∂(c2, f ·u)
∂z . Thus,

the discretization of Equation (20) using an explicit forward difference in time, a first order backward
difference and a second order central difference in space is given by

s = 1, . . . , S
∀k

c2, f (tk+1, (s− 1) ·∆x) ≈ ck+1
2, f ,s

= ck
2, f ,s

+ ∆t
∆x2

{[
ck

2, f ,s−1 − 2ck
2, f ,s + ck

2, f ,s+1

]
Dk

L + ck
2, f ,s−1·u

k
s

·∆zs + ck
2, f ,s·u

k
s−1·∆zs − 2·ck

2, f ,s·u
k
s ·∆zs

}
+ ∆t

·sourcek
2, f ,s

(25)

The corresponding discretized initial and boundary conditions for versions A and B are

∀s, k = 1 c0
2, f ,s = c2, f ,start (26)

s = 0, ∀k 0 = −uk
0·c

k
2, f ,0 + Dk

L·
ck

2, f ,1−ck
2, f ,0

∆x

ck
2, f ,0 = ck

2, f ,1·
Dk

L
Dk

L+uk
0·∆x

(27)

s = S + 1, ∀k ck
2, f ,S+1 = ck

2, f ,S. (28)

Equations (24) and (25) can be rearranged to a linear system (Equations (29)–(33)) using
the discretized boundary conditions (Equations (27) and (28)) and corresponding cell sizes ∆zs

(Equation (23)).
∀s,∀k ck+1

2,f = ck
2,f −

∆t
∆x ·

(
Ak

FDM·c
k
2,f − bk

FDM

)
(29)
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s = 1, . . . , S
∀k

ck
2,f =



ck
2, f ,1
...

ck
2, f ,s
...

ck
2, f ,S


(30)

∀s,∀k

Version A:

Ak
FDM =



Dk
L

Dk
L+uk

0·∆x
·(−

Dk
L

∆x − 2·uk
0) +

2·Dk
L

∆x + 2·uk
1 −

Dk
L

∆x 0 · · · 0 0

...
aT

FDM,s
...

0 0 · · · 0 −
Dk

L
∆x − 2·uk

S−1
Dk

L
∆x + 2·uk

S


(31)Version B:

Ak
FDM =



Dk
L

Dk
L+uk

0·∆x
·(−

Dk
L

∆x − 2·uk
1) +

2·Dk
L

∆x + 4·uk
1 − 2·uk

0 −
Dk

L
∆x 0 · · · 0 0

...
aT

FDM,s
...

0 0 · · · 0 −
Dk

L
∆x − 2·uk

S
Dk

L
∆x + 4·uk

S − 2·uk
S−1



s = 2, . . . , S− 1
∀k

Where aFDM,s is nonzero only for the indices s− 1, s, s + 1 and given by
Version A:

aFDM,s =



0
...

−
Dk

L
∆x − uk

s−1
2·Dk

L
∆x + uk

s

−
Dk

L
∆x
...
0



Version B:

aFDM,s =



0
...

−
Dk

L
∆x − uk

s
2·Dk

L
∆x + 2·uk

s − uk
s−1

−
Dk

L
∆x
...
0



(32)
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∀s,∀k bk
FDM =



sourcek
2, f ,1·∆x
...

sourcek
2, f ,s·∆x
...

sourcek
2, f ,S·∆x


(33)

3.2. Solving the Diffusion-Advection Equation Using the Finite Volume Method

Under certain conditions, finite volume methods conserve mass discretely and thus are suitable
here. In the FVM, the ethanol flux f2 (Equation (9)) is evaluated at the cell interfaces xs+ 1

2
and

the ethanol concentration c2, f at the nodes xs (Figure 2, Equation (35)). To discretize the boundary
conditions appropriately (cf. Equations (42)–(44)), the first discretization node was placed at z = x1

and the last node at z = L . Thus, the bottom boundary volume element was halved (Figure 2):

∆zs :=
{

∆z = ∆x
∆z
2 = ∆x

2

s = 1, . . . , S− 1
s = S

. (34)

The grid definition of the FVM leads to a slightly different grid compared to the FDMs (including
different ∆zs) using the same number of nodes S. This is important for the subsequent comparison of
both methods.

To solve Equation (21), we adapted the time-invariant complete flux scheme version developed
by Farrell and Linke [11], which is based on Voronoï meshes [13]. They considered a numerical
scheme for stationary problems, which we extended to time-dependent problems via integration:
Equation (21) was integrated on a discrete cell (Figure 2) at time k yielding Equation (35). Here f k

2,s+ 1
2

describes the molar flux which crosses the interface between two neighboring cells. It can be divided
into a homogeneous part and an inhomogeneous part (Equation (36)), which were calculated using
Equation (37) to Equation (41) according to Farrell and Linke [11]. Their idea is based on complete
flux schemes [14–16]. Thus, we used the supercritical drying model of gel particles in a packed bed as
application example for the complete flux scheme developed by Farrell and Linke [11].

s = 1, . . . , S
∀k

c2, f (tk+1, ∆zs·(s− 0.5)) ≈ ck+1
2, f ,s

= ck
2, f ,s −

∆t
∆zs
·( f k

2,s+ 1
2
− f k

2,s− 1
2
) + ∆t·sourcek

2, f ,s
(35)

s = 1, . . . , S ∀k f k
2,s+ 1

2
= f k,homogeneous

2,s+ 1
2

+ f k,inhomogeneous
2,s+ 1

2
(36)

s = 1, . . . , S ∀k f k,homogeneous
2,s+ 1

2
= −

Dk
L

∆x ·

{
B
(
Pk

s+ 1
2

)
·ck

2, f ,s+1 − B
(
−Pk

s+ 1
2

)
·ck

2, f ,s

}
(37)

s = 1, . . . , S ∀k f k,inh.
2,s+ 1

2
= − ∆x·

{
V
(
Pk

s+ 1
2

)
·sourcek

2, f ,s+1 −V
(
−Pk

s+ 1
2

)
·sourcek

2, f ,s

}
(38)

s = 1, . . . , S ∀k numerical Peclét number Pk
s+ 1

2
=

uk
s+ 1

2
Dk

L
· ∆x (39)

Bernoulli function B(x) :=
x

ex − 1
(40)

V(x) :=
e

x
2 − 1− 1

2 x
x(ex − 1)

(41)

The boundary conditions of the FVM (Equations (42)–(44)) were chosen according to
Equations (10)–(12). The difference to the FDM (Equations (26)–(28)) is that the boundary conditions
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are written in terms of ethanol fluxes f k
2,s . Equation (43) implies that no ethanol crosses the upper

boundary which is analogous to the Danckwerts’ boundary condition [12]. At the bottom and at the
end of the packed bed the ethanol flux is only influenced by the transported ethanol in the bulk fluid
(pure convection without any dispersion) (Equation (44)), since the spatial derivative of the ethanol
concentration in the bulk fluid c2, f stays zero at z = L (Equation (12)).

∀s, k = 1 c0
2, f ,s = c2, f ,start (42)

s = 1, ∀k f k
2, 1

2
= 0 (43)

s = S, ∀k f k
2,S = uk

S·c
k
2, f ,S (44)

Equation (35) can be rearranged using Equations (36)–(38), Equations (43) and (44) into a linear
system (Equations (45)–(50)) to calculate the unknown ethanol concentration profile ck+1

2,f within
the bulk fluid along the autoclave height. The division by the vector ∆zs in Equation (45) is meant
component wise (cf. Equations (34) and (47)).

∀s,∀k ck+1
2,f = ck

2,f −
∆t

∆zs
·

(
Ak

CFS·c
k
2,f − bk

CFS

)
(45)

s = 1, . . . , S
∀k

ck
2,f =



ck
2, f ,1
...

ck
2, f ,s
...

ck
2, f ,S


(46)

s = 1, . . . , S ∆zs =



∆z1
...

∆zs
...

∆zS


(47)

∀s,∀k Ak
CFS =



Dk
L

∆x ·B
(
−Pk

3
2

)
−

Dk
L

∆x ·B
(
Pk

3
2

)
0 · · · 0 0

...
aT

CFS,s
...

0 0 · · · 0 −
Dk

L
∆x ·B

(
−Pk

S− 1
2

)
uk

S +
Dk

L
∆x ·B

(
Pk

S− 1
2

)


(48)
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s = 2, . . . , S− 1
∀k

Where aCFS,s is nonzero only for the indices s− 1, s, s + 1 and given by aCFS,s =



0
...

−
Dk

L
∆x ·B

(
−Pk

s− 1
2

)
Dk

L
∆x ·

[
B
(
−Pk

s+ 1
2

)
+ B

(
Pk

s− 1
2

)]
−

Dk
L

∆x ·B
(
Pk

s+ 1
2

)
...
0



(49)

∀s,∀k bk
CFS =



∆z1·sourcek
2, f ,1 + ∆x·

{
V
(
Pk

3
2

)
·sourcek

2, f ,2 −V
(
−Pk

3
2

)
·sourcek

2, f ,1

}
...

∆zs·sourcek
2, f ,s + ∆x·

{
V
(
Pk

s+ 1
2

)
·sourcek

2, f ,s+1 −

[
V
(
−Pk

s+ 1
2

)
+ V

(
Pk

s− 1
2

)]
·sourcek

2, f ,s + V
(
−Pk

s− 1
2

)
·sourcek

2, f ,s−1

}
...

∆zS·sourcek
2, f ,S − ∆x·

{
V
(
Pk

S− 1
2

)
·sourcek

2, f ,S −V
(
−Pk

S− 1
2

)
·sourcek

2, f ,S−1

}


(50)



Gels 2020, 6, 45 12 of 26

4. Results and Discussion

First, we numerically analyze the accuracy of the presented discrete schemes by studying the
convergence behavior and the closure of the mole balance. Second, we discuss the computational
efficiency of all three methods by examining the condition number as well as the duration of
the computation.

The following drying conditions were utilized for all calculations: System pressure P = 10 MPa,
system temperature T = 321 K, gel sphere radius R = 3.175 mm, gel porosity εg = 0.93, gel tortuosity
τg = 3.48, ethanol molar fraction within the gel sphere at the start of the drying xstart

2,g = 1, ethanol molar
fraction within the gel sphere at the end of the drying (depends on system temperature and defines
the drying end) xend

2,g (T = 321 K) = 0.0109, packed bed porosity ψ = 0.4, volume of packed bed

= 1.514·10−4 m3, diameter of packed bed = 2.1·10−2 m, mass flow rate of the ethanol–CO2 mixture
.

m = 0.2003 kg
s . For Figure 9 additional calculations were conducted (see caption of Figure 9).

4.1. Accuracy

4.1.1. Convergence Behavior

We would like to know how the number of nodes influences the quality of the calculated solution.
In the following, the convergence behavior is evaluated for two different initial ethanol

concentrations in the bulk fluid c2, f ,start (Equation (26), Equation (42)), which represent the
pressurization using CO2:

(a) With excess ethanol: corresponding to x2, f ,start = 0.95;

(b) Without excess ethanol: corresponding to x2, f ,start = 0.05 .

The analysis of the convergence behavior is based and presented here in form of the ethanol
molar fraction instead of the ethanol concentration, since the molar fraction (being proportional to the
concentration (Equation (5))) varies from 0 to 1, which allows the reader to easily interpret the results.

First, the solutions of the numerical methods are compared at the node s = S (bottom of the packed
bed), since this node position is equal for all three methods (Figure 2). Thus, the molar fractions of
ethanol in the bulk fluid at the bottom of the packed bed x2, f ,S depending on the drying time are shown
in Figure 3 for different numbers of grid nodes S (S = 2; 4; 8; 16; 32). In our case, an analytical solution
is missing so that solutions on a fine grid (S = 26 = 64) are used as reference in all cases. The solutions
of the FDM calculations are compared with a fine FDM reference solution calculated with FDM version
A and S = 64 grid nodes in total. The solutions of the FVM calculations are compared with a fine
FVM reference solution also calculated with S = 64 grid nodes. Two different reference solutions
were needed, since especially the first node of the FDM and the FVM differs in its principal position
(Figure 2). Both reference solutions presented in form of ethanol molar fraction are additionally shown
in Figure 3 and converge to same solutions.

From Figure 3 it is obvious that increasing the total number of nodes S increases the quality of
the solutions for all three methods. For S = 2 and x2, f ,start = 0.05, the FVM overshoots slightly the
reference solutions in the first drying minutes due to a sharp increase of the molar fraction x2, f ,S at this
position (bottom of the packed) in the beginning of the drying process. The FDM version B prolongs
the drying process compared to the reference solutions.
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Figure 3. Cont.
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Figure 3. Calculated ethanol mole fraction in the bulk fluid x2,f,s at node s = S, using xstart
2,f = 0.05 (left

panels) and xstart
2,f = 0.95 (right panels). Calculated by the FVM, FDM version A and B and the FVM

with the settings used in Selmer et al. 2019 [3] depending on the drying time and the number of nodes
S. Calculation settings: N = 26, SREF = 64, ∆t = 0.05 s (for FVM, FDM version A and B), ∆t = 0.1 s (for
FVM Selmer et al. 2019 [3]), S = 20 (for FVM Selmer et al. 2019 [3]).

In the previous paper [3], 20 nodes were taken for the same calculation using the presented FVM
and x2, f ,start = 0.05 as initial condition. From Figure 3 it is obvious that these 20 nodes (marked as
FVM Selmer et al. 2019) were sufficient to calculate a solution being close to the fine reference solution.

The resulting absolute deviations (at position s = S) between the solutions of the investigated
numerical methods and their corresponding reference solutions are shown in Figure 4. In general,
the deviations of the solutions from the fine reference solutions (Figure 3: in black), restricted to the
corresponding coarser meshes, decrease with an increasing number of nodes, indicating convergence
(Figure 4). The initial condition of the bulk fluid in the packed bed x2, f ,start influences the height as
well as the temporal distribution of the deviations (Figure 4). For high temporal changes (Figure 3,
x2, f ,start = 0.95) high deviations in case of FDM version A and FVM (Figure 4, x2, f ,start = 0.95) can be
observed. Even higher deviations at coarse grids (S = 2; 4; 8) were observed for FDM version B due to
a coarser approximation of the convective mass transport in the packed bed (Equation (25)) compared
to version A (Equation (24)). The FVM shows smaller deviations compared to the FDMs, except for the
usage of S = 16 and S = 32 nodes in case of x2, f ,start = 0.05, where relative high deviations could be
observed in the first drying minutes (Figure 4). These deviations are induced by the approximated
boundary condition of the FVM at the bottom of the packed bed (Equation (44)). The interstitial fluid
velocity u and thus the ethanol flow f2 at z = L could not be evaluated at the cell interface and had to
approximated by using the ethanol concentration c2, f at the final node s = S to estimate the searched
ethanol flow (Equation (44)).

In a second step, the solutions of the numerical methods were analyzed not only at the final node
s = S (bottom of the packed bed) for varying drying times (as presented above), but also for all other
nodes ( s = 1, . . . , S ) in order to have a spatial error distribution (Figure 5).
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A and B). 
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Figure 4. Absolute deviation from reference solution at final node s = S for the FVM, FDM version A and
B, using xstart

2,f = 0.05 (left panels) and xstart
2,f = 0.95 (right panels), depending on the drying time and the

number of nodes S. Calculation settings: N = 26, SREF = 64, ∆t = 0.05 s (for FVM, FDM version A and B).
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Figure 5. Spatial l∞ and l2 error distribution calculated for all drying time steps k for the FVM, FDM
version A and B using xstart

2,f = 0.05 (left panels) and xstart
2,f = 0.95 (right panels). Calculation settings:

N = 26, S = 16, SREF = 64, ∆t = 0.05 s (for FVM, FDM version A and B).

To be able to compare the molar fractions on coarse meshes with the fine reference solution xREF
2,f ,

the molar fractions on the finer reference mesh were interpolated to the coarse grid. The deviations
from the reference solution were calculated for each time step k = 1, . . . , K and for each spatial step
s = 1, . . . , S. Thus, the following mole fraction vector was defined to calculate the l∞ and l2 errors:

x2,f :=
(
x2,f,1, . . . , x2,f,S

)T
with x2,f,s =

(
x1

2, f ,s, . . . , xK
2, f ,s

)T
. s = 1, . . . , S (51)

Figure 5 shows the resulting l∞ and l2 errors calculated at each single node s = 1, . . . , 16 for all
time steps k (as example for a total amount of S = 16 nodes). The l∞ error depicts the maximum value
of the absolute error, the l2 error corresponds to the l2 norm of the error.

As observed already in Figure 4, the highest maximum absolute error (l∞ error) at the last node
s = S = 16 for the case S = 16 nodes and x2, f ,start = 0.05 was given by the FVM due to the approximated
boundary condition at z = L. Nevertheless, the FVM shows small l∞ errors for all other nodes (similar
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to FDM version A) for both initial conditions (Figure 5). Overall, the smallest l2 errors for all nodes (for
all time steps and both initial conditions) were identified for the FVM. Version A of the FDMs shows
generally smaller l∞ and l2 errors compared to Version B (as already seen for the single node s = S at
the bottom of the packed bed (Figure 4)). For both errors, l∞ and l2, and all three numerical methods,
the errors are generally higher for the initial condition x2, f ,start = 0.95 compared to the case using
x2, f ,start = 0.05 due to an almost stepwise change of the molar fraction at the top of the packed bed
(s = 1) in the beginning of the drying process. The molar fraction x2, f ,1 changes here at the beginning
of the drying process from nearly pure ethanol (component 2) to the autoclave entering pure CO2

(component 1). The errors are; therefore, higher at node s = 1 compared to the other nodes.
In a third step, the overall errors calculated for all spatial nodes of the packed bed height

(s = 1, . . . , S) and for all drying time steps (k = 1, . . . , K) are presented in Figure 6 for different
discretizations/grids (S = 2; 4; 8; 16; 32) and both investigated initial conditions.
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Figure 6. Overall l∞ and l2 error calculated for all spatial nodes s and for all drying time steps k for the
FVM, FDM version A and B using xstart

2,f = 0.05 (left panels) and xstart
2,f = 0.95 (right panels) depending

on the reciprocal of the total number of nodes S. Calculation settings: N = 26, SREF = 64, ∆t = 0.05 s (for
FVM, FDM version A and B).
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It is obvious that the overall errors are higher for the initial condition x2, f ,start = 0.95 compared to
the calculations using x2, f ,start = 0.05. For both initial conditions and both errors, l∞ and l2, the FVM
shows the best convergence behavior, meaning the error decreases the fastest for an increasing total
number of grid points S (or smaller grid sizes ∆x).

Next to the above analyzed molar fractions, the calculated drying times as well as the dimensionless
number K1mean (both parameters were defined in the previously published paper [3]) are influenced
by the total number of grid points S in the region of packed bed (Figure 7). The calculated drying
time is the time from start to end of the drying process, whereas the drying process ends when the
ethanol molar fraction is less than xend

2,g (T = 321 K) = 0.0109 within all gel particles of the packed

bed [3]. xend
2,g depends slightly on the system temperature (see previously published paper [3]).

The dimensionless number K1mean is a relative measure that shows which mass transport step is the
limiting one for the overall drying kinetic, being either diffusion in the gel spheres or mass transport in
the bulk fluid. It can be used to find a fast-drying process at low CO2 consumption [3].

From Figure 7a it is obvious that a minimum can be reached for the calculated drying time by
increasing the number of nodes S. The black crosses in Figure 7 mark the settings of the FVM used
in the previously published paper [3]. The calculated drying time from the previously published
paper [3] is close to the found minimal value.

An increase of the total number of nodes S leads to an increasing K1mean number (Figure 7b).
The result of the previously published paper [3] is again close to the K1mean using the FVM and S = 32.
Nevertheless, it is unclear if a maximum can be reached by increasing the total number of grid points
S further.
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Figure 7. Calculated drying time (a) and dimensionless number K1mean (b) calculated by the FVM,
FDM version A and B and the FVM, with the settings used in Selmer et al. 2019 [3] depending on
the reciprocal of the number of nodes S using xstart

2,f = 0.05. Calculation settings: N = 26, SREF = 64,
∆t = 0.05 s (for FVM, FDM version A and B), ∆t = 0.1 s (for FVM Selmer et al. 2019 [3]), S = 20 (for FVM
Selmer et al. 2019 [3]).
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4.1.2. Mole Balances

During the drying process no chemical conversion occurs and thus the balance in terms of mole
fraction of ethanol and carbon dioxide were considered. The closure of the mole balance of ethanol is
shown in Figure 8 in the form of the relative error (Equation (52))

relative error [%] =

(
1−

N2,end

N2,start

)
·100. (52)

As expected, the FVM shows the best closure of the mole balance among all discretizations due
to its requirement by definition to close the mass balance for each volume element (Figure 8a,b).
The relative error of the FDM version A shows a better closure of the mass balance compared to FDM
version B (Figure 8a). A maximum (corresponding to an absolute error minimum) was observed for
the FDM version A (Figure 8b). The black crosses in Figure 8 mark the settings of the FVM used in the
previously published paper [3]. Similar results for the relative errors of the FVM in both studies using
different ∆t and total number of nodes S were obtained. The relative errors of the FVM (expressed
in %) were in the range of 10−4.
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Figure 8. Relative error of the mole balance of the FVM, FDM version A and B and the FVM with the
settings used in Selmer et al. 2019 [3] depending on the reciprocal of the number of nodes S using
xstart

2,f = 0.05 (a). Grey area is zoomed in on the right (b). Calculation settings: N = 26, SREF = 64,
∆t = 0.05 s (for FVM, FDM version A and B), ∆t = 0.1 s (for FVM Selmer et al. 2019 [3]), S = 20 (for FVM
Selmer et al. 2019 [3]).

Comparing the closure of the mole balance of the FVM (for fixed ∆t and total number of nodes S)
depending on the dimensionless number K1mean (Figure 9) shows that the relative error is increasing
almost linearly with increasing dimensionless number K1mean. An increasing dimensionless number
K1mean stands for an increased convective term in the packed bed [3].

For a constant total number of nodes S, an increase of the time step ∆t leads to an almost linear
increasing relative error (not shown in the diagrams).
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Figure 9. Relative error of the mole balance of the FVM with the settings used in Selmer et al. 2019 [3]
depending on the dimensionless number K1mean. Drying conditions: P = 9–17 MPa, T = 315–326 K,
R = 3.175 mm, gel porosity = 0.93, gel tortuosity = 3.48, xstart

2,g = 1, xend
2,g = f(T), bed porosity = 0.4, volume

packed bed = 1.514 × 10−4 m3, diameter packed bed = 2.1 × 10−2 m, xstart
2,f = 0.05. Calculation settings:

N = 26, ∆t = 0.1 s, S = 20.

Summarizing, the FVM shows the highest approximation quality except for a sharp increase of the
molar fraction at the bottom of the bulk fluid (s = S). Version A of the FDM allows for more accurate
calculations compared to version B and should be preferred when choosing the FDM.

4.2. Efficiency

4.2.1. Condition Numbers

The condition numbers of Ak
CFS (Equation (48), Equation (49)) and Ak

FDM (version A and B,
Equation (31), Equation (32)) are shown in Figure 10 corresponding to each numerical method for
two different initial conditions (cf. Section 4.1.1.). The condition numbers vary with the drying time
due to varying dispersion coefficients Dk

L and interstitial velocities uk
s (Equation (31)/Equation (32),

Equation (48)/Equation (49)). The condition number of the FVM is the lowest, whereas the condition
numbers of the FDMs become closer to each other for increasing number of nodes. The condition
number of the FDM version B is up to more than four times higher than the other condition numbers
on coarse grids. Additionally, it fluctuates in the beginning of the drying process. The condition
number of the FVM used in Selmer et al. 2019 [3] with S = 20 nodes is between the condition numbers
at S = 16 and S = 32 of the FVM. The condition number of FDM version B is more sensitive to the
initial condition x2, f ,start than the condition numbers of the other two methods.

Next to the above presented drying time dependencies of the condition numbers, the corresponding
maxima of the condition numbers are shown as a function of the reciprocal of number of nodes S in
Figure 11. The previously discussed results can be easily rediscovered here: The FVM has the lowest
maximal condition numbers, the maximum condition numbers of all investigated numerical methods
increase with increasing number of nodes or decreasing grid sizes and the condition number of the
FDM version B is most sensitive with respect to the initial condition.
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Figure 10. Condition numbers of Ak
CFS and Ak

FDM (version A and B) corresponding to the FVM, FDM
version A and B and the FVM, with the settings used in Selmer et al. 2019 [3], using xstart

2,f = 0.05
(left panels) and xstart

2,f = 0.95 (right panels) depending on the drying time and the number of nodes S.
Calculation settings: N = 26, SREF = 64, ∆t = 0.05 s (for FVM, FDM version A and B), ∆t = 0.1 s (for
FVM Selmer et al. 2019 [3]), S = 20 (for FVM Selmer et al. 2019 [3]).
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Figure 11. Maximum of the condition numbers of Ak
CFS and Ak

FDM (version A and B) corresponding to
the FVM, FDM version A and B using xstart

2,f = 0.05 (left panel) and xstart
2,f = 0.95 (right panel) depending

on the reciprocal of the number of nodes S. Calculation settings: N = 26, SREF = 64, ∆t = 0.05 s (for
FVM, FDM version A and B).

4.2.2. Computation Time

The computation time as a function of the reciprocal number of nodes S is shown in Figure 12.
In principal, the computation time increases for decreasing mesh sizes (or increasing number of nodes S)
for all three methods. The calculations using the FVM take less time than using the FDMs (except
on the finest mesh). Additionally, the calculation time increases for the FDM version B for coarse
meshes due to an overestimation of the calculated drying time (Figure 7a) and thus longer calculation
durations using a fixed time step. Hence, a minimum in the calculation duration of FDM version B can
be observed in Figure 12.Gels 2020, 6, x FOR PEER REVIEW 13 of 31 
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The black cross marks the settings of the previously published paper [3]. Its value is smaller than
for the calculations of this paper due to a time step which is twice the time step of the calculations made
here. Even though the time step is doubled for the calculations in Selmer et al. 2019 [3], the calculation
quality is acceptable as shown in the previous sections.

5. Conclusions

In this work, we evaluated three different numerical methods, based on finite differences and finite
volumes methods, to solve the advection diffusion equation arising in the context of the supercritical
drying process of spherical gel particles in a packed bed.

The FVM showed the best closure of the mole balance, best convergence behavior and lowest
condition numbers. Therefore, this method is recommended to solve the coupled partial differential
equations describing the supercritical drying kinetic in a packed bed developed in Selmer et al. 2018 [2].
A sufficient number of nodes is needed especially for high temporal changes of the molar fractions in
the bulk fluid. The reason is that high spatial and/or temporal changes of the molar fractions result
into high variations of the physical mixture properties and thus changes all particular mass transfer
steps directly or indirectly. Especially the effective diffusion coefficient within the porous gel particle,
the mass transfer coefficient and the interstitial fluid velocity within the packed bed are influenced.
More detailed information is given in [2,3].

The FDM version A showed good accuracy and computational efficiency. It is easy to implement
and should be used with a sufficient number of nodes.

The FDM version B showed the lowest accuracy and efficiency. Thus, it is not recommended to
be used.
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Nomenclature

Aac
[
m2

]
Cross-sectional area of the cylindrical autoclave

aCFS,s
[

m
s

]
Row vector in finite volume matrix

aFDM,s
[

m
s

]
Row vector in finite difference matrix

ACFS
[

m
s

]
Finite volume method matrix

AFDM
[

m
s

]
Finite difference method matrix

Ap
[
m2

]
Surface area of the spherical particle

B(x) := x
ex−1 [−] Bernoulli function

bCFS
[

mol
s·m2

]
Right-hand side vector for finite volume method

bFDM
[

mol
s·m2

]
Right-hand side vector for finite difference method
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c
[

mol
m3

]
Concentration

c2, f
[

molEtOH
m3

]
Ethanol concentration in the bulk fluid

ck
2, f

[
molEtOH

m3

]
Vector ethanol concentration of the axial bulk fluid elements s

c2, g
[

molEtOH
m3

]
Ethanol concentration within the porous gel particle

c f

[
molEtOH+molCO2

m3

]
Mixture concentration in the bulk fluid

cg

[
molEtOH+molCO2

m3

]
Mixture concentration within the porous gel particle

D
[

m2

s

]
Diffusion coefficient

DL
[

m2

s

]
Axial dispersion coefficient in the packed bed

Dg =
εg
τg
·D

[
m2

s

]
Effective diffusion coefficient within the porous gel particle

f [−] Function

f2
[

mol
s·m2

]
Flux of ethanol

h = 1/S [−] Dimensionless grid size

k [−] Time index

K [−] Number of time steps

K1mean [−] Dimensionless number

L [m] Length of the packed bed

l2 [−] Euclidean norm

l∞ [−] Maximum norm
.

m
[

kg
s

]
Mass flowrate of the ethanol–CO2 mixture

max [−] Maximum

n [−] Radial index in gel particle domain

N [−] Number of nodes in gel particle domain

N2,end [molEtOH] End mole number of ethanol

N2,start [molEtOH] Start mole number of ethanol

Np [−] Number of particles

P [Pa] Pressure

P [−] Numerical Péclet number

r [m] Radial coordinate of the spherical particle

R [m] Particle radius

s [−] Axial index in autoclave/bulk fluid domain

S [−] Number of nodes in autoclave/bulk fluid domain

source2, f
[

molEtOH
m3·s

]
Ethanol source term within the bulk fluid

t [s] Time

T [K] Temperature

u = U
ψ

[
m
s

]
Interstitial fluid velocity

U
[

m
s

]
Superficial fluid velocity

.
V

[
m3

s

]
Volume flow

V(x) :=
e

x
2 −1− 1

2 x
x(ex−1)

[−] Function

V f
[
m3

]
Volume bulk fluid

Vg,n
[
m3

]
Volume element of spherical gel particle

x2, f

[
molEtOH

molEtOH+molCO2

]
Ethanol molar fraction in the bulk fluid

x2, f

[
molEtOH

molEtOH+molCO2

] Vector ethanol molar fraction of the axial bulk fluid elements s
and time indices k
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xREF
2, f

[
molEtOH

molEtOH+molCO2

] Reference vector ethanol molar fraction of the axial bulk fluid
elements s and time indices k

x2, f,s

[
molEtOH

molEtOH+molCO2

]
Vector ethanol molar fraction of the time indices k

x2, g

[
molEtOH

molEtOH+molCO2

]
Ethanol molar fraction within the porous particle

xi

[
moli

molEtOH+molCO2

]
Molar fraction of component i

xs [−] Node
xs+ 1

2
[−] Cell interface

z [m] Axial coordinate of the autoclave/packed bed
Greek letters
β

[
m
s

]
Mass transfer coefficient

∆r [m] Distance between neighboring nodes in gel particles
∆t [s] Time step

∆x [m]
Distance between neighboring nodes in autoclave/bulk fluid
domain

∆z, ∆zs [m] Length of volume element
∆zs [m] Vector lengths of volume elements

εg

[
m3

pore f luid

m3
particle

]
(Aero)gel particle porosity

ψ

[
m3

bulk f luid

m3
autoclave

]
Porosity of the packed bed (spherical porous particles are here
assumed to be nonporous)

ρ f

[
kg
m3

]
Density of ethanol-CO2 mixture in the bulk fluid

τg [−] Tortuosity within the porous gel particle
Super and subscripts
0, start Start
1 Component carbon dioxide
2 Component ethanol
ac Autoclave
CFS Complete flux scheme
CO2 Carbon dioxide
end End
EtOH Ethanol
f Bulk fluid
FDM Finite difference method
FVM Finite volume method
g, gel Gel
homogenous Homogenous
i Substance component i
inhomogenous, inh. Inhomogeneous
k Time index
K Number of time steps
n Radial index in gel particle domain
p Particle
REF Reference
s Axial index in autoclave/bulk fluid domain
S Number of nodes in autoclave/bulk fluid domain
T Transposed
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