
REVIEW

Breast cancer lung metastasis: Molecular biology and therapeutic implications

Liting Jina, Bingchen Hanb, Emily Siegelb, Yukun Cuic, Armando Giulianob, and Xiaojiang Cuib

aDepartment of Breast Surgery, Hubei Cancer Hospital, Wuhan, China; bDepartment of Surgery, Samuel Oschin Comprehensive Cancer Institute,
Cedars-Sinai Medical Center, Los Angeles, CA, USA; cLaboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University
Medical College, Shantou, China

ARTICLE HISTORY
Received 13 September 2017
Revised 18 March 2018
Accepted 19 March 2018

ABSTRACT
Distant metastasis accounts for the vast majority of deaths in patients with cancer. Breast cancer exhibits a
distinct metastatic pattern commonly involving bone, liver, lung, and brain. Breast cancer can be divided
into different subtypes based on gene expression profiles, and different breast cancer subtypes show
preference to distinct organ sites of metastasis. Luminal breast tumors tend to metastasize to bone while
basal-like breast cancer (BLBC) displays a lung tropism of metastasis. However, the mechanisms
underlying this organ-specific pattern of metastasis still remain to be elucidated. In this review, we will
summarize the recent advances regarding the molecular signaling pathways as well as the therapeutic
strategies for treating breast cancer lung metastasis.

Abbreviations: BLBC, basal-like breast cancer; TNBC, triple-negative breast cancer; CSCs, cancer stem cells; BCSCs,
breast cancer stem cells; EMT, epithelial-mesenchymal transition; DKK1, Dickkopf1; TGF-b, transforming growth fac-
tor-b; DTCs, disseminated cancer cells; ECM, extracellular matrix; TAMs, tumor-associated macrophages; CAFs, can-
cer-associated fibroblasts; TNC, Tenascin-C; POSTN, Periostin; VCAN, Versica; MSCs, mesenchymal stromal cells; SCB,
succinobucol; VCAM-1, vascular cell adhesion molecule-1; CXCR4, C-X-C motif chemokine receptor 4; CXCL12, Che-
mokine (C-X-C motif) ligand 12; GLI1, glioma-associated oncogene homolog 1; TLR4, toll-like receptor 4; NICD,
Notch intracellular domain.
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Introduction

Breast cancer is the most common malignant disease in women
worldwide.1 It is a heterogeneous disease, and its pathogenesis
remains unclear in most cases. Much progress has been made
in early detection and better treatment of breast cancer, leading
to improved survival. However, a considerable number of
patients will relapse as a result of organ metastasis, especially
those with triple-negative breast cancer (TNBC) which has the
worst prognosis. Breast cancer cells are able to spread to distant
sites, specifically lung, liver, bone, and brain2-4 There, they pro-
liferate into macroscopic masses that lead to death of most
patients.5,6 The 5-y survival rate of breast cancer patients who
recurred with distant metastasis is less than 20%.7,8

The lung, bone, and liver, are the most common metastatic
target sites for breast cancer. In fact, approximately 60% of
metastatic breast cancer patients suffer lung or bone metastasis
in their life.7 BLBC is specifically prone to metastasize to the
lung. Life expectancy is low when this occurs, with median sur-
vival only 22 months after treatment for lung metastasis.9 In
particular, 60–70% of metastatic breast cancer patients who
eventually died were diagnosed with lung metastasis.10

Despite a variety of available approaches for the treatment of
lung metastasis, such as chemotherapy, radiotherapy, and tar-
geted therapy, the survival rate of breast cancer patients with
lung metastasis remains very low. Elucidating and understand-
ing the underlying mechanisms is crucial for developing new

therapeutic strategies. Of note, BLBC markers such as EGFR
and FOXC1 have been shown to control and correlate with
lung metastasis.11-13 In this review, we seek to provide an over-
view of the recent advances in understanding the molecular
basis of lung metastasis of breast cancer with a special emphasis
on cancer stem cell pathways and microenvironment. In addi-
tion to presenting the clinical characteristics of breast cancer
lung metastasis, we discuss the potential therapeutic
approaches that may improve the prognosis of breast cancer
patients with lung metastasis.

Clinical features of metastasis in breast cancer

With improvements in earlier diagnosis of breast cancer, only
5–10% of patients have distant metastasis at the time of diagno-
sis.14,15 However, the risk of recurrent metastatic disease follow-
ing standard treatment is still high. More than 30% of breast
cancer patients suffer recurrence, and the occurrence of lung or
bone metastasis can reach greater than 60% in metastatic breast
cancer patients.7 More than half a million women worldwide
still suffer from metastatic breast cancer annually, and 90% of
the deaths can be attributed to metastasis from breast
cancer.16,17

Bone, liver, lung, and brain are the most common sites of
distant metastasis in breast cancer, which are associated with
the patients’ poor survival outcome.18,19 Furthermore, the
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preference of metastatic organ has also shown to differ between
subtypes of breast cancer.9,17,20,21 Bone metastasis preferentially
occurs in luminal breast cancer patients, while lung metastasis
is commonly diagnosed in TNBC.9,17,20,21 The incidence of
lung metastasis can reach up to 40% in TNBC compared with
only 20% in non-TNBC.22 Gene expression analysis showed
that lung relapse patients were most abundant in the luminal B
and basal subtypes, whereas bone relapse was less frequent in
BLBC. Strikingly, the absence of lung relapse was observed in
the luminal A subtype, while brain metastasis was predomi-
nantly found in patients with BLBC and HER2C breast cancer.9

Of note, Yhim et al. analyzed the survival record of patients
with lung metastasis and found that hormone receptor-positive
breast cancers had the best clinical outcome, while HER2C
cancers and TNBC had the worst prognosis.23 The HER2C
subtype was also found to display a higher risk of developing
liver metastasis.21,24

Most recently, a SEER database analysis indicated that
patients with TNBC, especially BLBC, primarily presented with
lung metastasis. However, there was no difference in the total
probability of lung metastasis across all subtypes.25 Further-
more, the study revealed that all breast cancers regardless of
subtype, were prone to metastasize to bone over other loca-
tions. Specifically the incidience of bone metastasis is highest in
luminal cancers. Although there are discrepancies among
reports regarding the preferred metastatic sites of breast cancer
subtypes, it is widely accepted that different subtypes exhibit
distinctive behavior with regards to the sites of distant
metastasis.

In addition to the poor prognosis associated with meta-
static breast cancer, the clinical presentations and conse-
quences of lung metastasis are extremely serious. Pain,
cough, hemoptysis, pleural effusion, and pulmonary dys-
function are common clinical symptoms which profoundly
affect quality of life and survival. The prognosis of breast
cancer patients with lung metastasis is still poor despite
receiving chemotherapy, targeted therapy, and endocrine
therapy based on molecular receptor profiles. Currently the
best and only method to prevent breast cancer lung metas-
tasis is an earlier diagnosis. Therefore, we must fully under-
stand the mechanism of lung metastasis of breast cancer to
create better treatment strategies. In this review, we summa-
rize the reported cancer cell- and its surrounding microen-
vironment-based mechanisms of breast cancer lung
metastasis and present the challenges we are facing.

Cancer stem cells and associated signaling pathways

Cancer stem cells (CSCs), also named tumor-initiating cells
or stem-like cells from solid tumors of different organs (ie.
breast, lung, thyroid, etc.), have the ability of self-renewal
and differentiation. As such, CSCs can differentiate suffi-
ciently to recapitulate the heterogeneity of tumors.26-28 It
has now been established that breast cancer stem cells
(BCSCs) are responsible for metastatic growth in breast
cancer which contributes to the majority of breast cancer
related mortality.29,30

A large body of evidence now suggests that the presence
of BCSCs is highly associated with specific subtypes.31,32

Chekhun et al. demonstrated that BCSCs are not signifi-
cantly associated with breast cancer of luminal and HER2-
positive subtypes.33 Honeth et al. reported that the CSC
phenotypes are enriched in BLBC compared with other
breast cancer subtypes.34 Studies suggest that CSCs may
play a role in breast cancer lung metastasis, although
whether this is the primary mechanism underlying the
organ tropism of BLBC metastasis is unclear. A subset of
CD44C CSCs in primary breast tumors may possess the
ability to promote distant metastasis.35,36 Yae et al. found
that the lung colonization potential of CD44vC 4T1 mouse
mammary tumor cells is much higher than that of CD44v-
cells due to the increased activity of the cystine transporter
xCT induced by CD44v. This transporter activity is in turn
regulated by the gene epithelial splicing regulatory protein
1.37 In another related study involving clinical samples, Hu
et al. further demonstrated the heterogeneity of BCSCs in
lung metastasis capacities38 and found that CD44v expres-
sion both denotes a subset of BCSCs and promotes lung
metastasis by interacting with osteopontin in the lung
microenvironment. Of note, CD44 is not sufficient to iden-
tify all BCSCs. Whether CD44-negative human BCSCs also
dictate lung metastasis awaits to be determined.

In summary, preclinical and clinical studies have shown that
enrichment of BCSCs may result in increased invasiveness and
a worse prognosis. The development of CSC properties is
known to depend on an intricate signaling network. These sig-
naling pathways play an important role in balancing self-
renewal with differentiation of cancer stem cells.39,40 In the fol-
lowing sections, we summarize the potential roles of common
CSC-associated signaling pathways in breast cancer lung
metastasis.

Notch signaling pathway

Notch signaling is a pathway that relies on cell-cell contact.41

The ligands of Notch bind to the receptors on adjacent cells
leading to activation of the signaling pathway.42 In breast can-
cer, the activation of the Notch pathway could allow BCSCs to
undergo uncontrolled proliferation.43-45 Studies demonstrated
that Notch-1, a Notch signaling pathway receptor, could regu-
late epithelial-mesenchymal transition (EMT) in breast cancer
and BCSCs, where it plays a critical role in self-renewal, prolif-
eration, and apoptosis of BCSCs.46,47

As stated above, the abnormal activation of the Notch sig-
naling pathway participates in breast cancer metastasis by pri-
marily modulating EMT and angiogenesis.48 In addition,
BCSCs that disseminate from primary sites to distant microen-
vironments establish lung niches that are associated with
Notch.48 A study by Chen et al. focusing on the role of Notch
in salivary adenoid cystic carcinoma cells, found that knock-
down of Notch-1 significantly inhibited the formation of meta-
static lung nodules induced by EMT.49 While it is unclear how
the Notch signaling pathway regulates primary tumor cells dis-
seminating to the lung, we speculate that it may play a critical
role in the adaptation of breast cancer cells to metastatic niches.
Notch signaling pathway may also interact with other signaling
pathways to dictate the function and fate of breast cancer cells
during the metastatic process.
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Wnt/b-catenin signaling pathway

Wnt/b-catenin signaling also plays an important role in embry-
onic induction and tumorigenesis of the mammary gland.50,51

The b-catenin nuclear localization and overexpression is an
indicator of Wnt/b-catenin signaling activation. Many clinical
and laboratory studies demonstrated that aberrant activation of
Wnt/b-catenin signaling is associated with poorer prognosis in
breast cancer patients and is enriched in the subgroup of
TNBC.52-54 Moreover, the Wnt co-receptor LRP6 is often over-
expressed in a subtype of aggressive invasive breast cancer like
triple-negative breast cancer.55,56

In addition, BCSCs have increased activation of Wnt/
b-catenin signaling when compared to normal stem-like
cells. Greater signaling could maintain BCSCs in a self-
renewing state and induce the formation of metastatic
niches.57 Suppression of GSK3b (a negative regulator of the
Wnt pathway) was sufficient to diminish the stem cell fea-
tures of breast cancer cells.58 Wnt/b-catenin signaling also
contributes to EMT and metastasis in breast cancer.
Deyet al. found that the patients identified by the Wnt/
b-catenin classifier had a greater risk of lung metastasis in
TNBC.59 Studies using xenograft models demonstrated that
Wnt signaling may link cancer cell self-renewal and expres-
sion of EMT transcription factors with tumor seeding and
lung metastasis in BLBC.60 Other studies suggested that
Wnt/b-catenin can also regulate breast cancer cell prolifera-
tion.61,62 The proteins of the Wnt family are functionally
separated into two classes: those activating the canonical
Wnt/b-catenin pathway and those activating the planar cell
polarity and Wnt/calcium pathways, which do not involve
b-catenin.63,64 Recently, it was reported that the inhibitor of
Wnt Dickkopf-related protein 1 (DKK1) suppresses macro-
phage and neutrophil recruitment in breast cancer lung
metastases in part by antagonizing cancer cell non-canoni-
cal Wnt-JNK signaling.65 Lung metastasis inhibition by
DKK1 is also mediated by reduced Wnt-NF-kB signaling in
breast cancer cells.

It is well-documented that canonical Wnt signaling com-
ponents are commonly up-regulated in breast cancer cells
relative to normal mammary epithelial cells. In contrast,
there are conflicting reports regarding the expression and
role of non-canonical Wnt.66,67 Jiang et al. found that
enhanced non-canonical Wnt (Wnt5a) expression in breast
cancer cells can inhibit lung metastasis through downregu-
lating multiple cell motility-related pathways by regulating
transcription and splicing of some key pathway-associated
genes.68 Concordantly, other studies showed that Wnt5a
may suppress breast cancer progression and loss of its
expression is associated with poor prognosis.67-74 On the
contrary, reports also demonstrated a positive role of
Wnt5a in promoting tumor growth and migration in
TNBC.75-77 The observed paradoxical effects of Wnt5a may
be dependent upon its signaling context, leading to contro-
versy over its role in breast cancer tumorigenesis and
metastasis. In addition, Wnt5a can elicit both canonical and
non-canonical Wnt pathways. More work is needed to elu-
cidate the mechanisms of specific Wnt members and path-
ways in breast cancer development and metastasis.

Hedgehog signaling pathway

Hedgehog (Hh) signaling plays an essential role in ductal devel-
opment in the mammary gland. It also regulates BCSCs and
plays a crucial role in carcinogenesis.78-81 Several recent studies
have provided evidence that paracrine Hh signaling appears to
be an important mechanism in breast cancer growth.82,83 More-
over, Hh has been shown to regulate breast cancer cell migra-
tion.84 We also found such paracrine signaling is associated
with poor prognosis and the basal-like phenotype.85

Inaquma et al. demonstrated that the glioma-associated
oncogene homolog 1 (GLI1) transcription factor enhances lung
metastasis of breast cancer cells in a mouse model via its inter-
action of CXCL12-CXCR4 axis.86 FOXC1, a transcription fac-
tor that is normally overexpressed in BLBC, could directly
induce CXCR4 expression by activating its promoter in endo-
thelial cells thereby controlling angiogenesis in breast cancer.87

Furthermore, FOXC1 controls the cancer stem cell (CSC) prop-
erties enriched in BLBC cells via activation of Smoothened
(SMO)-independent Gli2 activation. This activation leads to
enhanced lung metastasis.88 Zuo et al. used mouse models to
demonstrate that FOXC1 overexpression has more tumorige-
nicity and pulmonary metastatic ability in BLBC.89 It is possible
the secretion of Hh ligand by breast tumor cells mediates a
crosstalk with the lung environment in a paracrine manner.

In breast cancer, dysregulated Hh signaling also exerts its
function through its interaction with other signaling pathways.
In a hepatocellular carcinoma study, activation of Hh signaling
and the transforming growth factor-b (TGF-b) was shown to
promote liver cancer lung metastasis in mouse models.90

Whether the same mechanism is involved in lung metastasis of
breast cancer remains to be determined. It is noted that con-
comitant dysregulation of Hh, Notch, and Wnt signaling path-
ways has been observed in cancer, suggesting their potential
cooperation in promoting tumor development and metasta-
sis.58,91-94 Co-activation of both Hh and Wnt pathways in clini-
cal TNBC samples is associated with shorter recurrence-free
and overall survival.93 Consistent with this finding, nuclear
b-catenin has been shown to increase Gli1 transcriptional
activity in other cancer types.95 To date, mechanisms that coor-
dinate Hh, Notch, and Wnt activity in cell function remain
poorly understood. Using HEK293T, human embryonic kidney
cells, and gene knockout mouse models, Kikuchi et al. demon-
strated that parafibromin, a PAF complex component, binds to
b-catenin, Gli1, and Notch, thereby enabling concerted activa-
tion of Hh-, Wnt-, and Notch-target genes.96 How these path-
ways crosstalk in breast cancer is unclear. In short, further
understanding of their role, regulation, and potential interac-
tion in breast cancer metastasis may facilitate the development
of more effective therapeutic strategies (Fig. 1).

Chemokines

Nearly every tissue expresses chemokines and chemokine
receptors. Chemokines are small proteins that govern the
directed migration of leukocytes under homeostatic conditions
and during specific immune responses.97-99 They are grouped
into four families: C, CC, CXC and CX3C.100,101 Currently,
more than fifty chemokines and twenty chemokine receptors
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have been discovered.102 Apart from their major function in
leukocyte recruitment and inflammation, chemokines have
been implicated in the progression of many cancers including
breast cancer.

CC and CXC

CC chemokines are important determinants of macrophages
and lymphocytes that infiltrate human carcinomas of the
breast.103,104 In addition, CCL2 mediates the development of
the cancer stem cell phenotype.105 In fact, CCL2 can induce
lung overexpression of endogenous toll-like receptor 4 (TLR4)
ligands like S100A8 and SAA3, which can enhance cancer cell
survival.106,107 The endogenous TLR4-dependent innate
immune system plays an important role in pre-metastatic niche
formation in the lung, which is an essential procedure of pro-
cess in lung metastasis.106

The CXCL12-CXCR4 axis is one of the most extensively
studied CXC chemokine signals in metastasis. The expression of
C-X-C motif chemokine receptor 4 (CXCR4) is higher in malig-
nant breast tumors than in normal breast tissues. Chemokine
(C-X-C motif) ligand 12 (CXCL12) is highly expressed in the
lung, bone, liver and lymph nodes, locations where breast cancer
cells prefer to metastasize.108-110 Chemokine and chemokine
receptors have interactions with inflammatory microenviron-
ments in metastatic sites.111 In a study using radiation-treatment
mouse models of breast cancer, Gong et al. found that pulmo-
nary injury from radiation-treatment induced CXCL12-CXCR4
overexpression, which resulted in increased number of meta-
static nodules in the lungs.112 Recently, the expression of
CXCR4 was reported to be higher in TNBC, which has a propen-
sity for lung metastasis.113 Although how the CXCL12-CXCR4
axis induces lung metastasis remains unclear, some studies sug-
gest that this may be due to increased macrophages and micro
vessel density.114 In addition, many reports have demonstrated
VEGF, estrogen, hypoxia and NF-kb can upregulate CXCR4.115-
117 Therefore, CXCR4 may serve as a key downstream effector
or mediator for these cancer progression regulators.

Atypical chemokine

Atypical chemokine receptor proteins are predominantly
expressed on non-leukocytic cell types and are unlikely to be

directly involved in leukocyte migration. D6 and DARC are
atypical receptors for most inflammatory CC chemokines
including CCL2.118, 119 The overexpression of D6 or DARC in
breast cancer was reported to downregulate CCL2 levels and to
subsequently inhibit the proliferation and metastasis of breast
cancer.119-122 However, there is limited research regarding atyp-
ical chemokines, and the invasive effects of D6 and DARC
combined expression in breast cancer cells has not been
demonstrated.

Microenvironment factors

It is well-established that the metastatic cascade is composed of
numerous barriers that must be overcome in order for cancer
cells to form distant metastasis. As discussed, when breast can-
cer cells spread from the primary tumor, they prefer to metasta-
size to specific tissues such as bone, lung, liver and brain. The
communication between disseminated tumor cells (DTCs) and
resident stromal cells in those colonized tissues is diverse. There
are diverse components that create the microenvironment of
tumors such as growth factors, immune cells, cytokines, che-
mokines, extracellular matrix (ECM), tumor-associated macro-
phages (TAMs), cancer-associated fibroblasts(CAFs) as well as
other components that have not yet been confirmed.123,124 The
metastatic microenvironment can be influenced by both organ-
specific factors and the infiltration of different stromal cells.125

Extracellular matrix (ECM) proteins

ECM proteins like Tenascin-C (TNC), Periostin (POSTN) and
Versican (VCAN) are important for the formation of metasta-
sis and play a critical role during the earliest stage of breast can-
cer colonization of a metastatic site such as the lung.126 TNC,
normally produced by fibroblasts, can also be expressed by
BCSCs.127 This aberrant expression of TNC by BCSCs exerts a
metastasis-initiating effect for niche formation for lung coloni-
zation.127,128 POSTN is also a stromal-derived factor capable of
binding to Wnt ligands. It has been shown to promote cancer
stem cell expansion in lung metastasis development.129 Simi-
larly, the infiltrating bone marrow-derived CDllbC/Ly6Chigh

myeloid cells secrete VCAN within metastatic niches in the
lung to potentiate lung metastasis.130 In addition, ECM compo-
nents may facilitate metastatic growth by providing a milieu for
disseminated tumor cells to interact with other cells. Vascular
cell adhesion molecule-1 (VCAM-1) is aberrantly expressed in
breast cancer cells and binds to a4b1 integrin, which also inter-
acts with fibronectin and is expressed in natural killer cells,
monocytes, and other immune cells.131 It was shown that the
pulmonary parenchyma containing collagen and elastin fibers
acts as a preferable soil for the homing of VCAM-1-expressing
breast cancer.132

Transforming growth factor b (TGF-b)

Numerous studies have demonstrated that abnormal expres-
sion of TGF-b promotes breast cancer progression by alter-
ing the microenvironment.133-136 Ye et al. used the 4T1
syngeneic mouse model to demonstrate that TGF-b partici-
pates in creating a lung pre-metastatic microenvironment

Figure 1. Functions of signaling pathways in breast cancer. Signaling pathways
play important roles in breast cancer development and lung metastasis.
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by modulating certain inflammatory cytokines (S100A8/A9)
and growth factors (VEGF, Angpt2).137 Park et al. found
that IN-1130, a novel TGFb¡1 receptor kinase (ALK5)
inhibitor, could suppress lung metastasis in the 4T1 breast
cancer orthotopic xenograft mouse model.138 Another ALK-
5 inhibitor, EW-7197, also blocked breast cancer metastasis
to the lung.139 According to the results of these studies, we
could presume that inhibition of TGF-b signaling alone or
combined with immunotherapy may act as a promising
therapy for breast cancer lung metastasis.

Immune cells

The immune system can both suppress tumor growth and facil-
itate tumor progression. In addition to their role in response to
infection, leukocytes are also involved in cancer progression
and metastasis. Studies have shown that subclinical changes in
leukocyte composition at distant sites of the primary tumor can
induce metastasis.140-142 Neutrophils, one type of leukocyte,
could act as mediators of metastatic initiation.143-145 However,
how neutrophils affect metastasis is poorly understood and
remains controversial. A lung metastasis model of murine
breast cancer demonstrated that some special neutrophils like
CXCR2C neutrophils are responsible for the pro-metastatic
effect of mesenchymal stromal cells (MSCs).146 Recently Wcu-
lek et al. defined the role of neutrophils as mediators of meta-
static initiation by modifying the pre-metastatic lung
microenvironment in breast cancer mouse models,147,148 sug-
gesting that immune cells regulate the formation of metastatic
niches.

Poolard et al. demonstrated that TAMs are essential for the
formation of lung metastasis in breast cancer.149,150 This is par-
tially due to CCL18, secreted by TAMs, which induces EMT in
breast cancer cells.151,152 Several clinical studies demonstrated
that macrophage infiltration could increase metastatic potential
and correlates with poor prognosis in cancer.153 Some pre-
clinical studies found that pulmonary macrophages play an
important role in initiation of lung metastasis.154-156 One
study demonstrated that binding of TAMs to receptor
VCAM-1 could provide a survival advantage to breast cancer
cells in the lung microenvironment.153

CAFs likely also play a major role in breast cancer metasta-
sis. A report showed that CAFs express Tiam1 and osteopon-
tin in human breast cancer and regulate metastasis of breast
cancer.157 Moreover, expression of platelet-derived growth
factor receptor b (PDGFRb), a CAFs associated protein is sig-
nificantly associated with lung metastasis in breast cancer.158

CAFs could also regulate TGF-b ligands, thereby promoting
primary tumor growth. CAFs may also regulate the accumula-
tion of fibrosis, which is associated with distant lung metasta-
sis in breast cancer.159 Takai et al. demonstrated that
Pirfenidone (PFD), a TGF-b inhibitor, could inhibit the
tumor-fibrosis and TGF-b signaling. Its combination with
doxorubicin could inhibit tumor growth and lung metastasis
in TNBC patients.160

In conclusion, diverse resident and infiltrating cell types,
along with secreted growth factors, chemokines, cytokines
and the deposition of ECM components in the metastatic
microenvironment (Fig. 2), create a fertile soil for the

formation of organ-specific niches. Targeting the microenvi-
ronment may be an effective strategy to improve the outcome
of breast cancer metastasis.

Therapeutic strategies

Patients’ overall survival has improved dramatically secondary
to early diagnosis and improved treatments in breast cancer.
However, the 5-y overall survival rate of metastatic breast can-
cer is less than 30%.161 Despite available therapies for meta-
static breast cancer, such as cytotoxic chemotherapies,
endocrine therapies, and targeted therapies, survival rate is still
low. This may be secondary to the lower response rate to sys-
temic chemotherapy and stronger therapeutic resistance of
metastatic breast cancer.162

Furthermore, we need more targeted treatments which build
on the mechanism of metastatic breast cancer in addition to
standard therapies. To date, cytotoxic chemotherapy is the only
standard of care systemic treatment for TNBC. Given BCSCs
are enriched in TNBC, targeting CSC-associated pathways may
be an effective therapeutic approach. Inhibitors against Wnt
and Hh signaling are under preclinical and clinical tests for
TNBC treatment.163-165

Some genomics-based studies continue to shed light on the
molecular understanding of TNBC tumorigenesis and hetero-
geneity and may provide implications for developing TNBC-
targeted therapies.166-169 Of note, Bartholomeusz et al. found
that the MEK inhibitor selumetinib inhibits and prevents lung
metastasis of TNBC in xenograft models,170 suggesting that
MAPK pathway could be a potential therapeutic target for pre-
venting TNBC lung metastasis. Similarly, Cao et al. used succi-
nobucol (SCB), a selective vascular cell adhesion molecule-1
(VCAM-1) inhibitor, to suppress lung metastasis in breast can-
cer.4 In addition, Citterio et al. reported that Rho GEFs could

Figure 2. Lung microenvironment. The communication between disseminated
cancer cells and resident stromal cells plays a critical role in lung metastasis of
breast cancer. Microenvironment components are involved, such as TAMs, CAFs,
TGF-b.
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be a potential target for breast cancer lung metastasis
therapy.171

Recently, immunotherapy has become a hotly pursued ther-
apeutic option for breast cancer, especially metastatic breast
cancer. Combining cancer vaccines with standard cancer treat-
ments could increase therapeutic efficiency.172-174 To date, the
most efficient immunotherapy relies on the infusion of anti-
bodies that directly mediates anti-tumor effector activity, with-
out directly impacting the patients’ own immune response.175

A study using a breast cancer mouse model found that combin-
ing phosphatidylserine-targeting antibody with anti-PD-1 ther-
apy could significantly enhance anti-tumor activity.176

Although the results from these animal in vivo studies could
provide some basic information to clinical therapy, we still face
daunting challenges in treating metastatic breast cancer. Can
we use markers to screen for a higher likelihood of developing
metastases? Can we screen for drug resistance? There are still
many problems to be solved, and having a full understanding
of the genetic, environmental, and immune pathways may lead
to improved care.

Conclusions

In our review, we summarize the studies related to the biology
of lung metastasis in breast cancer. Critical regulators for breast
cancer dissemination to the lung include CSCs and related sig-
naling pathways, chemokines, and microenvironmental cues.
Our knowledge of breast cancer progression has grown expo-
nentially in recent y. However, it is not well understood
whether these regulators connect and cooperate with each other
to control breast cancer metastasis or whether some play a
more dominant role. In addition, there remains a daunting
challenge to develop biomarkers to predict and prognosticate
lung metastasis at initial diagnosis in patients with early stage
disease. Some markers and mechanisms identified in cell and
mouse models need to be validated in clinical studies. This may
require matched primary breast cancer and lung metastasis
samples, a key barrier in establishing the clinical relevance of
research results from preclinical models. Undoubtedly, further
understanding of the underlying mechanism for breast cancer
migration to and colonization of distant sites will create the
foundation to develop more effective therapies for metastatic
breast cancer.
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