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Abstract

Schizophrenia is associated with a number of deficits in decision-making, but the scope, nature,
and cause of these deficits are not completely understood. Here we focus on a particular type of
decision, known as the explore/exploit dilemma, in which people must choose between exploiting
options that yield relatively known rewards and exploring more ambiguous options of uncertain
reward probability or magnitude. Previous work has shown that healthy people use two distinct
strategies to decide when to explore: directed exploration, which involves choosing options that
would reduce uncertainty about the reward values (information seeking), and random exploration
(exploring by chance), which describes behavioral variability that is not goal directed. We
administered a recently developed gambling task designed to quantify both directed and random
exploration to 108 patients with schizophrenia (PSZ) and 33 healthy volunteers (HVs). We found
that PSZ patients show reduced directed exploration relative to HVs, but no difference in random
exploration. Moreover, patients’ directed exploration behavior clusters into two qualitatively
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different behavioral phenotypes. In the first phenotype, which accounts for the majority of the
patients (79%) and is consistent with previously reported behavior, directed exploration is only
marginally (but significantly) reduced, suggesting that these patients can use directed exploration,
but at a slightly lower level than community controls. In contrast, the second phenotype,
comprising 21% of patients, exhibit a form of “extreme ambiguity aversion,” in which they almost
never choose more informative options, even when they are clearly of higher value. Moreover, in
PSZ, deficits in directed exploration were related to measures of intellectual function, whereas
random exploration was related to positive symptoms. Taken together, our results suggest that
schizophrenia has differential effects on directed and random exploration and that investigating the
explore/exploit dilemma in psychosis patients may reveal subgroups of patients with qualitatively
different patterns of exploration.
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INTRODUCTION

Growing evidence suggests that schizophrenia is associated with a number of decision-
making deficits. In particular, relative to healthy volunteers (HVs), patients with
schizophrenia (PSZ) show a reduced tendency to use potential reward magnitude in
computing expected value (E. C. Brown et al., 2015; J. K. Brown et al., 2013), less
systematic choice behavior (Strauss et al., 2011) and preferences (Strauss et al., 2012), and
abnormal effort—cost computations in decision-making (Gold et al., 2013). However, these
studies largely focus on the ability to maximize rewards, assuming the reward statistics are
known (or learned from prior experience). Notably, choice of an option of lesser reward
value is not always suboptimal, particularly if that choice would yield potentially useful
information (i.e., by reducing the uncertainty about outcome statistics). Such explore/exploit
choices arise frequently in daily life, whether it involves deciding between meals at a
restaurant (explore the specials or exploit the pizza you know and love?) or treatments for a
chronic disease (explore a novel treatment whose efficacy is uncertain or exploit a known
treatment you have used for years?). From a computational perspective, however, striking
the right balance between exploration and exploitation is difficult, as it involves trading off
the relative benefits of information, which is useful for optimizing future decisions, and
expected value, which is useful for making in-the-moment choices (Gittins, 1979; Gittins &
Jones, 1979).

Recently, we have shown that HVs make explore/exploit decisions using a mixture of two
behavioral strategies: directed exploration, in which information seeking drives exploration
by choice, and random exploration, in which behavioral variability drives exploration by
chance (Wilson, Geana, White, Ludvig, & Cohen, 2014). Algorithmically, directed and
random exploration can be thought of as modifiers of the value associated with different
options (which we denote as Q for the value of option 4). In this framework, one can think
of directed exploration as adding an /information bonus, 1B, to the expected value of each
option according to information provided by choosing that option (i.e., how much the
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outcome would reduce the uncertainty about the true expected value). In contrast, random
exploration adds random decision noise, ny, to the values of both options. This noise tends to
randomize the choice, making us more likely to explore low-value options by chance.
Importantly, the level of randomness can be adjusted, as described below.

As an example, one way to decide between meals at a restaurant is to assign an expected
value (R) to each option, corresponding to how rewarding we think each meal will be. Thus,
a known quantity, pizza, might get a predicted value of /;,,, = 65 out of 100, indicating it
has been reliably good in the past, whereas an unknown special (say, a new pasta dish) might
get Rypecial = 50, based on our best guess about how good it will be. In this context, the
known pizza receives no information bonus, IBpiz;, = 0, because eating it tells us nothing
new, whereas the pasta dish receives a large information bonus, IBgpecial = 20, because
eating it is informative and we will learn how good it is. In contrast, random exploration
simply adds noise to the value of all options, which will sometimes boost the value of
exploring (e.9., /pizza = 1, Mlspecial = 15), but at other times may encourage us to exploit (e.g.,
Mpizza = 10, Mspecial = —5) Or even to select an option that we think we know is bad (chopped
liver for some; gefilte fish for others).

Previous work has indicated that directed exploration increases during adolescence, whereas
random exploration remains constant (Somerville et al., 2017); that directed, but not random,
exploration is reduced by inhibition of the frontal pole (Zajkowski, Kossut, & Wilson,
2017); and that random, but not directed, exploration is altered by the norepinephrine
reuptake inhibitor atomoxetine (Warren et al., 2017). Importantly, a number of studies have
found that schizophrenia is associated with increased aversion to various forms of
uncertainty, including risk, where the probabilities of different outcomes are known (J. K.
Brown et al., 2013), and ambiguity, where the probabilities of different outcomes are
unknown (E. C. Brown et al., 2015; Cheng, Tang, Li, Lau, & Lee, 2012). Such uncertainty
aversion works against directed exploration (where the more informative options by
definition have greater potential for uncertainty reduction and thus are usually more
uncertain to begin with).

While considerable evidence indicates that impaired reward-seeking behavior (goal-directed
exploitation) may specifically contribute to negative symptoms (such as reduced motivation,
or avolition) in schizophrenia (Strauss, Waltz, & Gold, 2014; Waltz & Gold, 2016),
relatively few studies have examined whether motivational deficits in schizophrenia may be
associated with deficits in directed exploration—the tendency to seek information in the
service of resolving uncertainty. Consistent with this idea, in a response time task requiring
participants to discover whether rewards were larger for faster or slower responses, PSZ—
especially those with symptoms of anhedonia—showed reduced tendency to adjust their RTs
toward the more uncertain outcomes (Strauss et al., 2011). This suggests that, even in the
presence of intact reward sensitivity and reward-seeking behavior, avolition in schizophrenia
could result from a reduced tendency to seek information in the service of resolving
uncertainty. Although this result is consistent with reduced directed exploration, it could
have resulted from increased uncertainty aversion writ large (i.e., regardless of exploration
benefits) and also did not have such a straightforward approach to assessing random
exploration. The latter point is particularly important given that a number of studies have
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found that schizophrenia is associated with increased baseline behavioral variability
(Collins, Brown, Gold, Waltz, & Frank, 2014; Strauss et al., 2015), without assessing
whether this variability is used for exploration.

Aside from exploration/exploitation, the issue of how PSZ balance prior beliefs and new
evidence has recently become a major focus in the domain of perceptual processing. In that
context, positive symptoms have been linked to an overweighting of prior beliefs relative to
current sensory evidence, thereby distorting perceptual processing as well as belief
formation (Baker, Konova, Daw, & Horga, 2019; Powers, Mathys, & Corlett, 2017). On the
basis of evidence that uncertainty can drive exploration in the service of reducing
uncertainty about an option, we speculated that if more severe psychosis is associated with
greater reliance on prior beliefs, the severity of psychosis might also be linked to reduced
flexibility in learning as well as a decrement in uncertainty-driven (directed) exploration.
Moreover, if randomness is a strategy to compensate for the inability to direct exploration in
the service of obtaining information and reducing uncertainty, it is possible that psychosis
would also be linked to an /ncreased'tendency for random exploration.

To determine whether schizophrenia was associated with changes in directed and random
exploration, we used our recently developed behavioral task, known as the Horizon Task
(Wilson et al., 2014), to quantify individual differences in directed and random exploration.
In this task, participants make a series of decisions between virtual slot machines, loosely
based on the “one-armed bandits” found in a casino, with participants receiving a bonus in
proportion to the number of points they earn (Figure 1). When chosen, each bandit pays out
a reward in the form of points sampled from a Gaussian distribution whose mean is different
for each option, varies from game to game, and is (initially) unknown to the subject. Thus, to
maximize their earnings, they must try to exploit the slot machine with the highest mean
payoff but can only be sure which option is best by exploring first.

The key manipulation in the Horizon Task is the number of choices participants ws// make in
the future—the time horizon. The horizon determines how valuable it is to explore. When
the horizon is short, it is usually best to exploit (because any information value of the chosen
option could not be further exploited in future trials); in contrast, when the horizon is long,
exploration has more value. For example, when dining at a restaurant for the last time (a
short horizon), one would likely exploit the favored pizza, but when expecting to return to a
restaurant many times in the future (long horizon), one might take more time to explore the
specials. In this way, the horizon manipulation allows us to quantify directed and random
exploration as the change in information seeking and behavioral variability with horizon.
Crucially, this manipulation allows us to distinguish directed and random exploration from
baseline uncertainty attitude and baseline behavioral variability, factors that may be
unrelated to exploration.

On the basis of our previous work (Strauss et al., 2011), we hypothesized that patients would
show reduced directed exploration, relative to community controls. Moreover, we predicted
that measures of directed exploration would correlate with the severity of negative
symptoms like anhedonia and avolition (amotivation). By contrast, we predicted that
measures of random exploration would 70t correlate with the severity of anhedonia and
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avolition, because these symptoms are thought to specifically reflect reductions in goal-
directed behavior. That is, anhedonia and avolition are thought to specifically reflect
reductions in goal-directed behavior and not necessarily increases in non-goal-directed
behavior, and a reduction in goal-directed behavior does not necessarily /mply an increase in
non-goal-directed behavior (or vice versa). Finally, based on the idea that more severe
psychosis is associated with greater reliance on prior beliefs, we predicted that some
measures of exploration would correlate with the severity of positive symptoms.

To determine the effect of psychotic illness on directed and random exploration, 108 people
with a diagnosis of schizophrenia or schizoaffective disorder (referred to, collectively, as
PSZ) and 33 healthy age-matched community volunteers (HVs) performed the Horizon Task
at the Maryland Psychiatric Research Center (MPRC), University of Maryland School of
Medicine. All participants gave informed consent, and the research was approved by the
Institutional Review Boards at the University of Maryland School of Medicine.

Clinical and Cognitive Measures

Patients were clinically and pharmacologically stable (no change in drug or dose for at least
4 weeks) outpatients from the MPRC or other nearby clinics. Almost all PSZ were being
treated with antipsychotic medications (see Table S1 for details). The presence of a
schizophrenia spectrum disorder in patients, as well as the absence of a current Axis |
disorder (including drug dependence) and lifetime diagnosis of a psychotic disorder in HVs,
was verified by screening with the Structured Clinical Interview for DSM-IV (First, Spitzer,
Gibbon, & Williams, 1997). The absence of a neurological disorder, cognitively impairing
medical disorder, and psychosis in first-degree relatives was verified by self-report. PSZ
were further assessed with the Scale for the Assessment of Negative Symptoms (SANS;
Andreasen, 1984) and the Brief Psychiatric Rating Scale (BPRS; Overall & Gorman, 1962).

PSZ and HVs were tested using a cognitive battery including the Wechsler Abbreviated
Scale of Intelligence (WASI; Wechsler, 1999), the Wechsler Test of Adult Reading (WTAR,;
Wechsler, 2001), and the Measurement and Treatment Research to Improve Cognition in
Schizophrenia (MATRICS) Consensus Cognitive Battery (MCCB; Green et al., 2004). There
were significant differences between patients and community controls on all measures of
cognition (Table 1).

Experimental Task

We used the Horizon Task (Wilson et al., 2014; Figure 1) to quantify directed and random
exploration. In this task, participants play a series of 120 games, in a self-paced manner,
lasting either 5 or 10 trials each, in which they choose between virtual slot machines, each of
which pays out a reward in the form of points sampled from a Gaussian distribution whose
mean is different for each option, varies from game to game, and is (initially) unknown to
the subject (the standard deviation, however, remained constant at 8 points). Specifically, in
each game, the mean of one option (pseudorandomly chosen in a counterbalanced manner)
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was set to either 40 or 60 points, while the mean of the other was offset relative to this value
by plus or minus 30, 20, 12, 8, or 4 points (pseudorandomly chosen in a counterbalanced
manner). Participants were incentivized to earn as many points as possible, with points
converted into money in a linear fashion (From the instructions: “The points you earn by
playing the bandits will be converted into REAL money at the end of the experiment, so the
more points you get, the more money you will earn.”) Participants were also instructed that
one option was always better, in terms of expected value (“One of the bandits will always
have a higher average reward”) and that the mean payout of each option was constant for
each game.

To maximize their earnings, participants must exploit the slot machine with the higher
average payoff, but they can only be sure which option is best by exploring first. The key
manipulation in the Horizon Task is the number of trials in each game, the horizon, which
determines how valuable it is to explore. When the horizon is short (one trial), exploration
has no value, because there is no opportunity to use new information in the future. When the
horizon is long (six trials), it is often worth exploring at first to gain information that may be
useful later on. Thus, by contrasting behavior between Horizon 1 and Horizon 6 on the first
choice of each game, the Horizon Task can quantify the components of behavior that are
related to exploration.

To control the amount of information participants have before making a decision, each game
starts with four forced-choice trials in which participants are instructed which option to
choose. These forced trials set up two information conditions: an unequal condition, or [1 3],
in which subjects are forced to play one bandit once (to obtain one example payout from that
option) and the other bandit three times (to obtain three example payouts from that option)
(Figure 1A), and an equal information, or [2 2], condition, in which subjects are forced to
play both bandits twice (Figure 1B). Participants completed 30 games of each type
(combination of horizon and information condition) for 120 games total, with the entire task
taking roughly 50 minutes to complete. Basic performance on the task was quantified by
computing the frequency with which participants chose the objectively correct option (i.e.,
the option with the higher generative mean), and participants were paid in proportion to the
total number of points they earned.

Measures of Directed and Random Exploration

The two information conditions in the Horizon Task allow us to quantify directed and
random exploration in a model-free manner by looking at the first choice in each game,
immediately after the four forced trials (Figure 1). Specifically, because directed exploration
involves information seeking, it can be quantified as the probability of choosing the more
informative option in the [1 3] condition, p(high info). Conversely, because random
exploration involves decision noise, it correlates with the frequency of “errors,” choosing the
low-mean option in the [2 2] condition, p(low mean). Crucially, computing these measures
separately for each horizon condition allows us to (a) quantify baseline uncertainty seeking
and behavioral variability as p(high info) and p(low mean) in Horizon 1 and (b) quantify
directed and random exploration as the change in p(high info) and p(low mean) between
Horizon 1 and Horizon 6.
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Statistical Analysis

To assess overall experimental task performance, we submitted individual accuracy scores
(rates of choosing the option with the objectively higher mean) and response times to
repeated-measures analyses of variance (ANOVAS), with choice (trial) number within a
game as a within-subjects factor and diagnostic group as a between-subjects factor. We also
performed repeated-measures ANOVAS to determine whether directed and/or random
exploration varied as a function of horizon and diagnostic group. On the basis of our
identification of a subgroup of participants showing extreme ambiguity aversion (AA;
described below), we performed both of the above analyses on patient group with the
addition of an AA group, as a factor. In cases of significant interactions, post hoc #tests
were used to assess differences in cell means. Additionally, we used #tests and Mann—
Whitney U-tests to examine effects of diagnostic group and AA group on measures
intellectual function and symptom severity (depending on whether the scores were normally
distributed). Finally, we used Spearman correlation analyses to assess relationships among
experimental, standard cognitive, and clinical variables.

Model-Based Analysis

We modeled behavior on the first free choice of the Horizon Task using a slightly modified
version of the Kalman filter model (Markov chain Monte Carlo method) presented in
Zajkowski et al. (2017; Figure 2). This model assumes that participants use the outcomes of
the forced-choice trials to learn an estimate of the mean reward of each option, as well as the
uncertainty in their estimate of that mean, which is then fed into a decision rule that also
includes terms for directed and random exploration.

Briefly, in this model, information seeking is quantified as an information weight, B, with
higher values of B, corresponding to more information seeking. This allows us to quantify
directed exploration as the change in information weight with horizon. Likewise, behavioral
variability is quantified using a reward weight, B 5, with higher reward weights associated
with lower variability. This allows us to quantify random exploration as the change in reward
weight with horizon.

In addition to quantifying directed and random exploration, the model allows us to quantify
the learning process with three parameters: a prior mean, Ry, and two learning rates
corresponding to the initial learning rate, a1, and asymptotic learning rate, a.«. The initial
learning rate parameter is related to the strength of the prior, with a lower value indicative of
a stronger prior. Full details of the model and fitting procedure are outlined in the
Supplementary Materials. In the next subsections, we describe the learning and decision-
making components of the model in more detail.

Learning Component

The learning component of the model assumes that participants learn the values for the mean
reward of each option using the Kalman filter algorithm. The Kalman filter (Kalman, 1960)
has been used to model learning in other learning tasks (Lee, Gold, & Kable, 2020) as well
as other explore/exploit tasks (Daw, O’Doherty, Dayan, Seymour, & Dolan, 2006) and is a
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popular model of Bayesian learning, as it is both analytically tractable and easily relatable to
the delta-rule update equations of reinforcement learning.

More specifically, the Kalman filter assumes a generative model in which the rewards from
each bandit, r; are generated from a Gaussian distribution with a fixed standard deviation,
o, and a mean, m{, that is different for each bandit, / and can vary over time. The time
dependence of the mean is determined by a Gaussian random walk with mean 0 and
standard deviation o, Note that this generative model, assumed by the Kalman filter, is
different from the true generative model used in the Horizon Task, in which the mean reward
of each bandit is constant over time; that is, in the Horizon Task, o= 0. This mismatch
between the assumed and actual generative models is quite deliberate and allows us to
account for the suboptimal learning of the subjects. In particular, this mismatch introduces
the possibility of a recency bias (when ;> 0) whereby more recent rewards are
overweighted in the model’s estimate of the mean reward, R!, of each bandit. Note that R!

corresponds to the estimated mean reward after ftrials (i.e., after the model has seen ttrials).

The actual equations of the Kalman filter model are straightforward. The model keeps track
of an estimate of both the estimated mean reward, R!, of each option, /, and the uncertainty

in that estimate, o.. When option /is played on trial  these two variables update according
to

2
(r—RI_1) &)

o
(o

Ri=Rl+

7

1 1 1
= t3 @

(o) (ci_1)'+o7 o

When option 7is not played on trial £ we assume that the estimate of the mean stays the
same but that the uncertainty in this estimate grows as the generative model assumes the
mean drifts over time. Thus, for unchosen option /, we have

Ri=Ri_|
1 1

) () +ed

When the option is played, the update equation (1) for R! is essentially just a “delta rule”
(Rescorla & Wagner, 1972; Schultz,Dayan, & Montague, 1997), with the estimate of the
mean being updated in proportion to the prediction error, r, — R! _ . This relationship to the

reinforcement learning literature is made more explicit by rewriting the learning equations in
terms of the time varying learning rate:
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Written in terms of this learning rate, equations (1) and (2) become

R5=Rf—1+af(rr—R§—1)

and
1.t
a, a; -1 + ad
where
2
od
ag=—.
of

The learning model has four free parameters: the noise variance, o7, the drift variance, aﬁ,

and the initial values of the estimated reward, /A, and uncertainty in that estimate, a(%. In

practice, only three of these parameters are identifiable from behavioral data, and we will
find it useful to reparameterize the learning model in terms of /& and an initial, a4, and
asymptotic, a.co, learning rate. In particular, the initial value of the learning rate relates to oy,
o, and oyas
0'(% + agr
a] =

O'(%+O'§+O'2.

While the asymptotic value of the learning rate, which corresponds to the steady state value
of of if option 7is played forever, relates to a4 (and hence o,and o) as

Ao = %(—ad + «/a‘% + 4ad).

Although this choice to parameterize the learning equations in terms of a1 and a. is
somewhat arbitrary, we feel that the learning rate parameterization has the advantage of
being slightly more intuitive and leads to parameter values between 0 and 1, which are easier
to interpret.

Decision Component

Once the average reward of each option, R, has been estimated from the outcomes of the
forced-choice trials, the model makes a decision using a simple logistic choice rule:
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1
T+ exp(BRAR + AT + fis)’

p(choose right ) =

where AR = R, — RPE™ is the difference in predicted reward between left and right

options (note that the predicted reward for bandit 7on time ¢is R! _ ;) and A/is the difference

in information between left and right options (which we define as +1 when left is more
informative, —1 when right is more informative, and 0 when both options convey equal
information in the [2 2] condition). Note that we code information, A/, as a categorical
variable, not as a continuous variable. While in principle, A/should be a continuous variable,

proportional to the uncertainty in each of the options sift — a{igh‘ (Gershman, 2019), in

practice, the range of uncertainties in the Horizon Task is too small to dissociate the
continuous from the categorical formulation.

The three free parameters of the decision process are the reward weight, Bz, the information
weight, B, and the spatial bias weight, s Thus, the decision component of the model has
10 free parameters (B, in the two horizon conditions, and Bz and B sin the four Horizon x
Uncertainty conditions). These parameters were fit for each subject using a hierarchical
Bayesian approach outlined in detail in the Supplementary Material. Directed exploration is
then quantified as the change in information weight with horizon, while random exploration
is quantified as the change in reward weight with horizon. We assume that these three
decision parameters can take on different values in the different horizon and uncertainty
conditions (with the proviso that B, is undefined in the [2 2] information condition, because
A/=0).

Overall Measures of Experimental Task Performance

Overall, HVs performed better than PSZ, but this difference in performance
did not change over the course of the game—All groups chose the objectively
correct (higher value) option more often than would be predicted by chance (controls, mean
fraction correct = 0.71; patients, 0.68), both ps < 0.001. Participants also showed evidence of
learning, manifest by an increase in performance as a function of time (Figure 3A), p<
0.001, that was qualitatively consistent with the previously reported behavior of healthy
young adults (Wilson et al., 2014). Overall, HVs performed better than PSZ, as indicated by
a main effect of group, £ go5 = 8.53, p=0.004, but this difference in performance did not
change over the course of the game (interaction between group and trial number, /5 gg5 =
1.11, p=0.35).

Measures of Directed and Random Exploration

PSZ showed reduced directed exploration relative to HVs—As noted above, our
main analyses (repeated-measures ANOVAs with horizon as a within-subjects factor and
group as a between-subjects factor) focused on behavior on the first free choice as a function
of horizon. These analyses revealed that patients with schizophrenia showed reduced
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directed exploration, relative to HVs, as main effects of group, F 139 = 8.83, p=0.003, and
horizon, £ 139 = 68.2, p< 0.001, on p(high info) were qualified by a significant Group x
Horizon interaction, F 139 = 6.41, p=0.012. As shown in Figure 3B, PSZ showed lower
information seeking during Horizon 6 games, #39 = 3.20, p=0.002, and, to a lesser extent,
during Horizon 1 games, #39 = 2.26, p=0.026. Moreover, PSZ showed a reduction in the
change in p(high info) with horizon, #39 = 2.53, p=0.012, consistent with less directed
exploration in patients.

PSZ and HVs did not differ in random exploration—Consistent with prior reports,
the entire sample of participants showed increased behavioral variability with horizon
(increases in low-mean value choices with increased uncertainty), #; 139 for main effect of
horizon = 44.91, p< 0.001. Furthermore, patients showed greater overall behavioral
variability relative to controls, F; 139 for main effect of group = 3.99, p= 0.05. However, as
shown in Figure 3C, the two groups did not differ in the impact of horizon on behavioral
variability, as the interaction between horizon and group was not significant, £ 139 = 0.70, p
= 0.403. Thus, there was no evidence that the two groups differed in their levels of random
exploration.

Identification of Patient Subgroups Based on Ambiguity Aversion

Twenty-one percent of patients exhibit a form of extreme ambiguity aversion,
in which they almost never chose more informative options—In addition to
examining between-group differences in directed and random exploration, we looked at
individual differences in directed and random exploration. In Figure 4A, we plot p(high info)
in Horizon 6 against p(high info) in Horizon 1. In Figure 4B, we do the same thing for p(low
mean). In these plots, each point corresponds to a participant, and the diagonal line is the
line of equality. Thus, points above the diagonal line correspond to subjects showing
increased directed (90.9% community controls, 73.1% patients) or random (66.7%
community controls, 67.6% patients) exploration with horizon. The most striking feature of
Figure 4A is the separation of two groups of subjects with regard to directed exploration: a
group of 25 participants showing extreme ambiguity aversion [p(high info) < 0.25 for both
Horizon 1 and Horizon 6], at the bottom left, and a group of non-AA participants, in the
center of the plot, accounting for the majority of participants from both diagnostic groups
(93.9% community controls, 78.7% patients), exhibiting behavior similar to what we have
previously seen in students and younger teens (Somerville et al., 2017; Wilson et al., 2014).
This clustering into two groups based on p(high info) was supported by additional clustering
analysis using A-means and Gaussian mixture model analysis (see Supplementary Materials
for details). In brief, our by-eye heuristic was more conservative than k-means (which puts
two more subjects in the AA group) and less conservative than Gaussian mixtures (which
puts three fewer subjects in the AA group). For this reason, we retained the original heuristic
as the cutoff in the article. Regardless of the clustering, the qualitative results are the same.

Participants in the AA group almost never chose the more ambiguous (and hence higher
information) option. This group of 25 individuals has many more patients (7 = 23, 21.3% of
patients) than community controls (7= 2, 6.1% of community controls). Such extreme
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ambiguity aversion has not been seen before in either student or adolescent populations in
this same task (Somerville et al., 2017; Wilson et al., 2014).

AA had a clear impact on performance, as AA patients chose the objectively high reward
option much less frequently than non-AA patients, #pg = 6.86, p< 0.001 (Figure 5A). In
addition, AA patients exhibited impaired learning over the course of the game, /5 530 for
Group x Trial Number = 4.32, p< 0.001. Nevertheless, overall performance in AA patients
was above chance, indicating at least some engagement with the task (mean fraction correct
= 0.63), t-test relative to chance &, = 21.10, p< 0.001. Critically, however, despite large
differences in measures of directed exploration (by definition, and see Figure 5B), AA and
non-AA patients did not differ on measures of random exploration, #gg = 1.140 for Zp(low
mean), 4o = —0.614 for Ap(low mean; Figure 5C). Both groups showed evidence of an
effect of horizon on random exploration, with increased variability for Horizon 6 compared
to Horizon 1, non-AA g4 = 6.18, p< 0.001; AA b, = 4.53, p<0.001.

Model-based analyses further reinforced the above interpretation, revealing that AA patients
showed no evidence for information seeking in any context. Consistent with model-free
measures of directed and random exploration, model-based analyses indicated that AA
patients showed no evidence for information seeking in any context (Figure S3).
Specifically, for the AA patients, we observed reduced information weighting in both
Horizon 1 and Horizon 6 relative to non-AA group patients (100% of samples less than zero,
respectively). In addition, AA patients showed much reduced reward weight in the [1 3]
condition (100% of samples), which is almost zero for most people in this group. Both
results are consistent with the extreme AA in this group and suggest that AA patients base
their decisions almost exclusively on avoiding the uncertain option in the [1 3] condition.
Interestingly, reward weight does not appear to differ between non-AA and AA patients in
the [2 2] condition, consistent with the ability of AA patients to perform quite well in this
condition.

Among non-AA participants, there was a trend toward a main effect of
diagnostic group on performance—Although the main group of (7= 85) non-AA
patients showed evidence for directed exploration (effect of horizon on choice of informative
option &4 from one-sample test on Ap(high info) = 6.71), p < 0.001, their levels of overall
performance, f14 = —2.49, p=0.015, and directed exploration, # 14 for between-group
difference in Ap(high info) = —2.454, p=0.013, there was a trend toward a main effect of
diagnostic group on performance, £ 579 = 3.67, p= 0.058 (Figure S4A), suggestive of
reduced performance relative to community controls. Among non-AA participants, the
interaction between group and horizon was not significant, /5 570 = 0.57, p=0.721,
however.

Next, we asked whether non-AA controls and non-AA patients showed differential effects of
horizon on directed exploration, finding that the interaction between group and horizon
trended toward significance, £ 114 = 2.81, p= 0.059 (Figure S4B). A post hoc ~test directly
comparing non-AA patients and non-AA controls revealed a significant between-group
difference in the proportion of high-information choices at Horizon 6, two-sided #14 = 2.69,
p=0.008. There was also a trend toward significantly elevated levels of behavioral
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variability in non-AA patients relative to non-AA controls, £ 114 for main effect of
diagnosis on Zp(low mean) = 3.75, p=0.055 (Figure S4C). However, the lack of a
significant interaction between subject type and horizon, £ 114 = 0.20, p = 0.66, indicates
that non-AA patients, relative to non-AA controls, did not differ in random exploration.

Consistent with the model-free measures, non-AA patients exhibited reduced directed
exploration relative to controls, as indicated by a reduction in the information weight, g, in
Horizon 6 (96.5% of samples for the mean information weight of non-AA group patients
below those for non-AA group controls; Figure S5). As expected, non-AA patients and non-
AA controls differed in their levels of educational attainment and on multiple measures of
cognitive performance (Table S1).

In PSZ, information-seeking behavior was related to measures of intellectual
function—Other than task performance, what distinguished AA patients from non-AA
patients? Surprisingly, we found that the two patient subgroups identified based on AA
scores did not differ on any symptom measure (effect sizes = -0.23-0.17), including
ratings for avolition/anhedonia, #g = 0.557. The two groups differed greatly, however, on
measures of intellectual function, including estimates of current 1Q (from the WASI) and
premorbid 1Q (from the WTAR and the Reading subtest of the WRAT; see Table 2).
Furthermore, we observed significant differences between AA and non-AA patients on
composite scores and working memory domain scores from the MATRICS battery, f1og =
2.53, p=0.013.

Relationships Among Measures of Explore/Exploit Behavior, Cognition, and Symptoms

In PSZ, random exploration was related to positive symptom severity—Finally,
we looked at the correlations between cognitive and symptom measures and both the model-
free and model-based measures of behavior. We observed one systematic relationship
between a clinical symptom measure and a measure of information seeking: Mean negative
symptom scores correlated negatively with change in information weight, a model-based
measure of directed exploration, such that patients with higher levels of negative symptoms
showed reduced directed exploration (Table 3). We observed several significant correlations
between clinical symptom severity and measures of behavioral variability (random
exploration). Specifically, we observed a significant correlation between the model-free
measure of behavioral variability [Zp(low mean)] and the positive symptom cluster score
from the BPRS, rhoygg = 0.23, p= 0.015. We also observed significant correlations between
the model-free measure of random exploration [Ap(low mean)] and both the positive
symptom cluster score from the BPRS, rhoypg = 0.39, p< 0.001 (Figure 6A) and the overall
BPRS score, rhoygg = 0.29, p=0.002. We observed significant negative correlations
between positive symptom scores from the BPRS and several model-based measures of
behavioral variability and random exploration (Table 3). Finally, we observed a significant
negative correlation between a model-based measure of performance (the initial learning
rate, a) and both the positive symptom cluster score from the BPRS and the overall BPRS
score (Figure 6B). As noted in the Methods, the initial learning rate parameter is related to
the strength of the prior, with a lower value indicative of a stronger prior. Thus, a significant
negative association between the learning rate and positive symptoms is especially
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intriguing, as it implies that increased positive symptoms are associated with a stronger
effect of the prior (indicated by lower a1). This finding is consistent with the results of
several earlier studies (Baker et al., 2019; Powers et al., 2017) as well as theoretical accounts
of inference in schizophrenia (Corlett et al., 2019; Fletcher & Frith, 2009; Jardri & Deneve,
2013), suggesting that positive symptoms are related to (and perhaps even caused by) overly
strong priors. The presence of overly strong priors in a subset of patients may explain why
patients showed similar rates of random exploration, but reduced rates of directed
exploration, relative to controls.

Correlations between cognitive variables and behavior in the patient group—
As shown in Table 4, we observed multiple significant correlations between standardized
measures of intellectual function and experimental measures of information seeking. Overall
information seeking [Zp(high info)] across the two-horizon condition correlated strongly
with numerous measures of intellectual function, including estimates of current and
premorbid 1Q (from the WASI and WTAR, respectively), a measure of cross-domain
cognitive capacity (the MATRICS composite scores; Figure 6C), and measures of domain-
specific abilities, from the MATRICS (Working Memory, Processing Speed, Attention and
Vigilance, and Verbal Learning). With all of these measures, patients with evidence of higher
intellectual capacity showed greater overall information-seeking behavior. Horizon-
dependent increases in directed exploration [as measured by Ap(high info)] also correlated
with several measures of intellectual function: estimated current 1Q from the WASI,
MATRICS composite score, and MATRICS Verbal Learning (Figure 6D); that is, patients
with higher intellectual capacity were more likely to exhibit adaptive changes in
information-seeking behavior, with longer horizon.

It is important to note that almost all measures of cognitive function showing positive
correlations with information-seeking behavior showed negative correlations with undirected
behavioral variability, as measured by Zp(low mean; see Table 4 and Figure 6E). Intellectual
variables in controls were a/so found to correlate positively with information-seeking
behavior and negatively with behavioral variability (see the Supplementary Results and
Table S3). Finally, multiple strong correlations were also observed between standard
cognitive measures and model-based measures of performance in patients (Table S4).
Specifically, patients exhibited a significant correlation between a model-based measure of
overall performance (the prior mean parameter) and overall estimated 1Q, from the WASI
(Figure 6F). This same relationship was observed in controls (Table S5).

DISCUSSION

In this article, we investigated the explore/exploit trade-off in patients with schizophrenia. In
particular, we asked whether patients differed from community controls in their tendency to
engage in directed and random exploration and in their overall level of uncertainty aversion
and behavioral variability. We found that patients, as a group, showed reduced information
seeking, reduced horizon-dependent directed exploration, and increased overall behavioral
variability, but no difference in horizon-dependent random exploration. That patients were
sensitive to horizon for random exploration is indicative that they understood the task and
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acted appropriately when exploration was of more potential utility; they simply did not show
the same degree of directed/strategic exploration for information gain.

Indeed, a major driver of the difference between PSZ and HVs was the prevalence of
extreme ambiguity aversion in the PSZ population. Participants in this ambiguity-averse
group almost never chose the more informative option on the first, or later, free choice trials.
Such behavior was rare in the HVs recruited for this study (only 2/33 showed extreme AA)
and was not apparent in previously reported studies in college students and adolescents
(Somerville et al., 2017; Wilson et al., 2014). Separating our subjects into three subgroups
(non-AA HVs, non-AA PSZ, and AA PSZ—the AA HV group was too small for
meaningful analysis), we found that directed exploration was absent in the AA PSZ, yet still
significantly diminished in non-AA PSZ, relative to non-AA HVs. In contrast, there were no
differences in random exploration across the three groups. This suggests that schizophrenia
has a selective impact on directed exploration. Directed exploration has been shown to rely
predominantly on prefrontal cortical mechanisms (Daw et al., 2006), with rostrolateral PFC
having been identified as one specific locus (Badre, Doll, Long, & Frank, 2012; Zajkowski
et al., 2017). Importantly, prefrontal processes underlying uncertainty processing and
decision-making have frequently been implicated in abnormalities in learning and decision-
making in schizophrenia (Hernaus et al., 2018; Krug et al., 2014; Lancaster et al., 2016). If
extreme ambiguity aversion does reflect a qualitatively different decision-making process,
then a key goal for future work should be to determine exactly what that difference entails,
from both cognitive and neural perspectives. Exploratory analyses of the current data set
found no differences in symptom measures in the AA PSZ group and the main group of
PSZ, but these groups did differ on measures of current and premorbid 1Q, as well as current
working memory function.

Furthermore, we observed a number of significant correlations between experimental
measures of behavior and symptom scores. Of particular interest was the negative
correlation between positive symptoms and the initial learning rate in the model. A higher
initial learning rate in PSZ with greater positive symptoms is consistent with the idea that
more psychotic patients use stronger prior beliefs (Baker et al., 2019; Powers et al., 2017).
According to our framework, the strength of priors is negatively correlated with learning
rate, such that overly strong priors would be associated with a reduced impact of PEs and
reduced updating. Thus, it would take many more large PEs to adapt the posterior. This is
because the strength of the prior is represented by the variance about the mean expected
value, rather than the mean itself and is thus more likely to influence the impact of the
prediction error (the learning rate) than the magnitude of the prediction error.

We also found that measures of random, but not directed, exploration showed positive
correlations with psychotic symptom severity, such that more psychotic patients exhibited
more random exploration. This result suggests that more psychotic patients may exhibit
more unsystematic behavioral variability, in conditions with greater uncertainty (i.e., longer
horizons), as a compensatory mechanism for an overall reduced ability/tendency to engage
in greater information-seeking behavior. Further tests of these ideas could come from studies
using measures of psychosis-like phenomena in healthy individuals, such as the Peters
Delusions Inventory (Peters, Joseph, Day, & Garety, 2004) or the Cardiff Anomalous
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Perceptions Scale (Bell, Halligan, & Ellis, 2006), or in studies involving samples of
psychosis patients and controls, where symptom data are available for both groups.

Contrary to our hypotheses, we did not observe strong correlations between experimental
measures of exploration and negative symptom severity. In our previous work (Strauss et al.,
2011), we observed a significant correlation between the severity of clinically rated
anhedonia and a computational measure of uncertainty-driven exploration. However, that
task was not designed to dissociate uncertainty aversion from reduced directed exploration,
per se. The results of the current study suggest that uncertainty aversion may contribute
substantially to deficits in goal-directed exploration, in psychotic illness. Of note, we also
did not observe strong correlations between negative symptom severity and experimental
measures of random exploration, in either a positive or negative direction; that is, the effect
of uncertainty (horizon) on the tendency to engage in unsystematic behavioral variability
was not a function of the severity of motivational deficits in PSZ. Whereas measures of
directed and random exploration were found to be largely unrelated to measures of
motivational deficits in PSZ, we observed numerous systematic relationships between
measures of exploration and measures of intellectual function. Specifically, we found that
most cognitive measures correlated positively with measures of directed exploration but
negatively with measures of random exploration. These results indicate that strategic
information-seeking behavior is most characteristic of individuals with the greatest capacity
to use information to guide learning and behavior. By contrast, random exploration was most
prominent in PSZ with the most severe cognitive impairment. In short, a critical manner in
which schizophrenia impacts learning is by reducing information-seeking behavior. The
question of whether reduced information-seeking behavior is a cause or consequence of
deficits in working memory, selective attention, and processing speed, for example, has not
been resolved, however.

Study Limitations

Our study had a number of limitations that could affect the generalizability of our results.
Specifically, the gambles in the Horizon Task involved only gains and no losses. Thus, we
cannot discern whether such a large group of participants would show extreme ambiguity
aversion with regard to potential losses.

Second, one might question whether the extreme ambiguity-aversion behavior reflects a
qualitatively different decision-making process, such as a failure to understand the task.
While the present data cannot rule out this interpretation, we believe that it is unlikely to
account for the observed effects. Of note, participants in the AA group performed
particularly well, if not betterthan controls, in the egual information condition (i.e., when
there was no difference in uncertainty between the options). Thus, participants in the AA
group were able to choose the more rewarding option very effectively when the estimation
of expected value depended solely on the integration of previous outcomes and was not
influenced by the amount of information about either option. Nonetheless, task performance
in PSZ may have been aided by additional training or informational displays designed to
reduced working memory demands, and future studies on this topic should include the use of
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debriefing methods, such as quizzes, to identify participants who fail to fully comprehend
the task and exhibit poor performance for nonspecific reasons.

Third, while correlation analyses revealed no significant effects of antipsychotic medication
type or dosage on any of our dependent variables, definitively identifying or ruling out
influences of psychotropic medications on experimental measures of exploration (especially
given known effects of norepinephrine-modulating drugs on exploratory behavior; Warren et
al., 2017) would require either studies involving antipsychotic-naive patients or controlled
clinical trials.

In summary, our findings suggest that schizophrenia has dissociable effects on directed
exploration and random exploration. Such a dissociation between the two types of
exploration is consistent with a number of our earlier findings (Somerville et al., 2017;
Warren et al., 2017; Zajkowski et al., 2017). While the full extent of the neural circuits
underlying directed and random exploration is currently unknown, a key question for future
work will be to determine whether the changes in explore/exploit behavior seen here in PSZ
are related to specific aspects of brain function.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Schematic of the horizon and information conditions in the Horizon Task.
In this task, participants play a series of 120 games, in a self-paced manner, lasting either 5

or 10 trials each, in which they choose between virtual slot machines, each of which pays
out a reward in the form of points sampled from a Gaussian distribution whose mean is
different for each option, varies from game to game, and is (initially) unknown to the
subject. After four forced-choice trials, participants make either one or six free choices. The
key manipulations in the Horizon Task are the number of free choices in each game (termed
the “horizon”), which determines how valuable it is to explore, and the amount of
information the participant has about each option (how many observed outcomes, from one
to three). When the game is short (five total trials, one free choice; termed Horizon 1),
exploration has no value since there is no opportunity to use new information in the future.
When the game is long (10 total trials, 6 free choices; termed Horizon 6), it is often worth
exploring at first to gain information that may be useful later on. The four forced-choice
trials set up two information conditions: A) an unequal condition, or [1 3], in which subjects
see one example from one bandit and three from the other, and B) an equal information, or
[2 2], condition, in which subjects see two draws from each bandit. Thus, there are four
combinations of horizons (1 vs. 6) and information (equal vs. unequal).
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Figure 2. Graphical representation of the model.
Each variable is represented by a node, with edges denoting the dependence between

variables. Shaded nodes correspond to observed variables, that is, the free choices cC59,
forced-trial rewards 7549, and forced-trial choices 2“9, Unshaded nodes correspond to
unobserved variables whose values are inferred by the model.
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Figure 4. Percentages of information choices.
A) Percentages of high-information choices at Horizon 1 plotted against those at Horizon 6,

in patients (red crosses) and controls (blue circles). While most participants make more
high-information choices at Horizon 6 than at Horizon 1, a subset of participants
(predominantly schizophrenia patients) make few high-information choices in both horizon
conditions. These individuals were said to be “ambiguity averse.” B) Percentages of low-
mean-value choices at Horizon 1 plotted against those at Horizon 6, in patients (red crosses)
and controls (blue circles).
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Figure 5. Comparison of experimental measures from the Horizon Task in ambiguity-averse

(AA) and non-AA patients.

A) Overall Horizon Task performance in AA and non-AA patients. B) Directed Exploration

in AA and non-AA patients. C) Random Exploration in AA and non-AA patients.
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Figure 6. Relationships between cognitive and behavioral measures in patients.
A) Composite Measurement and Treatment Research to Improve Cognition in Schizophrenia

(MATRICS) scores correlated positively with overall information seeking in both patients
and controls. B) Composite MATRICS scores correlated inversely with overall behavioral
variability in both patients and controls. C) Verbal Learning scores from the MATRICS
correlated positively with directed exploration scores in both patients and controls. D)
Overall 1Q estimates from the Wechsler Abbreviated Scale of Intelligence correlated
positively with prior mean, a model-based performance metric. Also in patients, ratings for
psychotic symptoms correlated (E) positively with random exploration scores and (F)
negatively with initial learning rate, a model-based indicator of the strength of prior beliefs.
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