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Background: The role of epigenetic modulation in immunity is receiving

increased recognition—particularly in the context of RNAN6-methyladenosine

(m6A)modifications. Nevertheless, it is still uncertainwhetherm6Amethylation

plays a role in the onset and progression of intracranial aneurysms (IAs). This

study aimed to establish the function of m6A RNA methylation in IA, as well as

its correlation with the immunological microenvironment.

Methods: Our study included a total of 97 samples (64 IA, 33 normal) in

the training set and 60 samples (44 IA, 16 normal) in the validation set to

systematically assess the pattern of RNA modifications mediated by 22 m6A

regulators. The e�ects of m6A modifications on immune microenvironment

features, i.e., immune response gene sets, human leukocyte antigen (HLA)

genes, and infiltrating immune cells were explored. We employed Lasso,

machine learning, and logistic regression for the purpose of identifying

an m6A regulator gene signature of IA with external data validation. For

the unsupervised clustering analysis of m6A modification patterns in IA,

consensus clustering methods were employed. Enrichment analysis was used

to assess immune response activity along with other functional pathways.

The identification of m6A methylation markers was identified based on

a protein–protein interaction network and weighted gene co-expression

network analysis.

Results: We identified an m6A regulator signature of IGFBP2, IGFBP1,

IGF2BP2, YTHDF3, ALKBH5, RBM15B, LRPPRC, and ELAVL1, which could easily

distinguish individuals with IA from healthy individuals. Unsupervised clustering

revealed threem6Amodification patterns. Gene enrichment analysis illustrated
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that the tight junction, p53 pathway, and NOTCH signaling pathway varied

significantly in m6A modifier patterns. In addition, the three m6A modification

patterns showed significant di�erences in m6A regulator expression, immune

microenvironment, and bio-functional pathways. Furthermore, macrophages,

activated T cells, and other immune cells were strongly correlated with m6A

regulators. Eight m6A indicators were discovered—each with a statistically

significant correlation with IA—suggesting their potential as prognostic

biological markers.

Conclusion: Our study demonstrates that m6A RNA methylation and

the immunological microenvironment are both intricately correlated with

the onset and progression of IA. The novel insight into patterns of m6A

modification o�ers a foundation for the development of innovative treatment

approaches for IA.

KEYWORDS

intracranial aneurysm, epigenetics, m6A RNA methylation, immune

microenvironment, immunity

Introduction

Intracranial aneurysm (IA) is a major contributor to non-

traumatic subarachnoid hemorrhage, which poses a significant

burden on global health (1). It is associated with a destructive

central nervous system, a high rate of in-hospital mortality

(45%) (2, 3), disability (30%), and incidence of long-term

cognitive impairment (50%) among survivors (4, 5). According

to previous studies, unruptured IA may exist in ∼3% of the

US population (6, 7) and 6–7% of the Chinese population

(8). Available treatment modalities for IA include surgical

clamping and various endovascular treatment options (e.g.,

endovascular coils, bypasses, and endovascular devices) (9).

However, the choice of treatment modality and the timing of

treatment initiation for IA in different conditions (ruptured or

unruptured) remains controversial (10). In addition, the main

treatments are invasive procedures that may cause a variety of

Abbreviations: CDF, cumulative distribution function; DCA, decision curve

analysis; DEGs, di�erentially expressed genes; GEO, Gene Expression

Omnibus; GO, Gene Ontology; GSVA, gene set variation analysis;

HLA, human leukocyte antigen; HNRNPC, HNRNP family of nuclear

inhomogeneous proteins; IA, intracranial aneurysm; IFN, interferon;

IGFBP2, insulin-like growth factor binding protein 2; KEGG, Kyoto

Encyclopedia of Genes and Genomes; m1A, N1-methyladenosine; m5C,

5-methylcytosine; m6A, N6-methyladenosine; MAVS, mitochondrial

antiviral signaling protein; NS5A, non-structural 5A; PPI, protein-protein

interaction; RF, random forest; ROC, receiver operating characteristic;

SIRT1, sirtuin 1; ssGSEA, single-sample gene set enrichment analysis;

STAT3, signal transducer and activator of transcription 3; SVM, support

vector machine; UIA, unruptured IA; WGCNA, weighted gene co-

expression network analysis.

complications. Therefore, effective management of unruptured

IA (UIA) and treatment of IA remains a major clinical challenge.

Improving our comprehension of the pathogenesis of IA is

thus imperative to facilitate effective treatment strategies for

this disease.

Previous research reports have demonstrated that

inflammatory and immunological responses, hemodynamic

stress, and extracellular matrix disintegration play a role in the

etiology and rupture of IA (11, 12). Inflammation is emerging

as a key component of IA pathophysiology (13). A high

degree of inflammatory cell infiltration, including mast cells,

is associated with human aneurysm rupture (14). Therefore,

immunomodulation of aneurysm rupture prevention and

IAs by modulating inflammation is considered a potential

treatment for UIAs (15). Despite numerous investigations to

clarify the molecular processes underlying IA rupture, only

a few have performed gene expression profiling of the vessel

wall tissue and post-clamping aneurysms in patients with

IA to determine possible targets underlying the IA rupture

mechanism. Hence, there is a need to find new biomarkers for

the early clinical prognosis of patients with IA and to explore

potential mechanisms of IA progression to develop novel

treatment methods.

IA exhibits extensive genetic and phenotypic heterogeneity,

characterized by epigenetic alterations. Epigenetics includes

DNA methylation and reversible modifications of proteins

(histones), such as acetylation, which can independently

regulate gene expression outside of the DNA sequence (16).

DNA methylation can contribute to heterochromatin formation

and gene silencing, while histone acetylation is commonly

thought to relax the chromatin structure and thus promote

gene transcription (17). The functions of histone methylation
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are more diverse, with both transcriptional activation and

repression (18). Conventionally, RNAmodification was thought

to represent the third layer of epigenetics, controlling RNA

metabolism and processing (19). RNA alterations are present

in all living organisms, and over 150 different modifications

have been discovered, including N1-methyladenosine (m1A),

N6-methyladenosine (m6A), m7G (20), 2’-oxo-methylation,

5-methylcytosine (m5C), and ac4C RNA acetylation (21).

However, the internal alteration of RNA (known as m6A) is

thought to be the most conserved, frequent, and abundant

form (22). Ever since the discovery of RNA demethylases

and the institution of sequencing protocols for methylated

RNA, it has been recognized that the regulation of RNA

processing, transcription, splicing variation, translation, and

stability depend on methylation (23). The m6A modification

occurs mainly on the adenine in the RRACH sequence and is
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determined by the “Writer,” “Eraser,” and “Reader” complexes.

The encoder complex (Writer) is the methyltransferase

comprising METTL3, WTAP, ZC3H13, RBM15, RBM15B,

and CBLL1; while ALKBH5 and FTO act as demethylases

(Eraser) to reverse methylation; and m6A recognized by m6A-

binding proteins. m6A-binding proteins (Readers) are currently

identified as YTH structural domain proteins (YTHDC1,

YTHDC2, YTHDF1, YTHDF2, and YTHDF3), HNRNP family

of nuclear inhomogeneous proteins (HNRNPC), as well as

ELAVL1, IGFBP1, IGFBP2, IGFBP3, HNRNPA2B1, LRPPRC,

FMR1, and IGF2BP1 (24).

The encoder modulates the accumulation of the m6A

function, whereas the decoder modulates its depletion (25).

Encoders and decoders are essential for the maintenance of

a dynamic equilibrium of the levels of m6A in cells and

tissues. Post-transcriptional gene expressionmay be subjected to

certain influence by readers (m6A-binding proteins) in response

to the accumulation of m6A on natural RNA transcripts

upon transcription (26). It has recently been suggested that

the modulation of the m6A gene can be used to elucidate

the underlying mechanism of immunological regulation.

Depleted METTL3 expression attenuates the degrading of

RIPK2 and NOD1 mRNA via the actions of YTHDF1 and

YTHDF2, which upmodulates the NOD1 pathway thereby

increasing the lipopolysaccharide-elicited inflammatory process

in macrophages (27). It has also been shown that METTL3-

mediated m6A modification ensures antiviral immunity by

promoting mRNA stability and protein translation (28). In

addition, Zhou et al. showed that YTHDC1 deficiency leads

to M1 microglia polarization, increased inflammatory response,

and promotes microglial migration. Mechanistically, YTHDC1

maintains the stability of sirtuin 1 (SIRT1) mRNA, which

reduces the phosphorylation of signal transducer and activator

of transcription 3 (STAT3), and is crucial for the regulation

of microglial inflammatory responses (29). Despite growing

evidence for the regulatory role of m6A in immune response,

no research has focused on the role of m6A in the pathogenesis

of IA. Therefore, analyzing the immune alterations between

normal tissue (superficial temporal arteries) and IA samples,

as well as between different subtypes of IAs and alterations in

m6A modulator levels could provide unique insight into the

pathogenesis of IAs.

In this study, we investigated the patterns of m6Amodulator

modifications in IAs in a systematic manner. We discovered that

m6A modulators could well differentiate between normal tissue

and IA samples. A significant correlation was observed between

the infiltrating immune cell abundance and immune response

gene sets in IAs and m6A modulators, signifying a close-fitting

binding between immune modulators and m6A modulators.

We aggregated IA samples according to 22 m6A modulators

and identified three distinct m6Amodification patterns. Distinct

immunological profiles were detected in different isoforms,

and we performed a comparison of the biological roles of

these isoforms. These aforementioned studies suggest that

m6A modification patterns have a remarkable impact on the

immunological microenvironment of IAs.

Materials and methods

Data source and pre-processing of IA

We downloaded the following RNA-seq datasets from the

Gene Expression Omnibus (GEO) database (https://www.ncbi.

nlm.nih.gov/gds/): GSE13353 (30), GSE15629 (31), GSE26969

(32), GSE54083 (33), and GSE75436. These five gene sets

were used as the screening set, and the “sva” package

of R x64.4.0.3 was employed to de-batch the raw data

(Supplementary Figure S1) that included a total of 64 cases

of IA samples and 33 of normal samples. In addition, the

GSE122897 (34) dataset was downloaded as the validation

set, which included 44 cases of IA samples and 16 cases

of normal samples. The above samples were taken from the

same tissue type, and detailed clinical features of patients

and platform files are available in Supplementary File 1. In

addition, 22 m6A modulators were annotated in the final

normalized dataset according to the inclusion of m6A-

associated regulators from previous literature. These included

ALKBH5, ZC3H13, IGF2BP1, RBM15 RBM15B, HNRNPA2B1,

CBLL1, LRPPRC, FMR1, HNRNPC, IGFBP1, IGFBP2, IGFBP3,

YTHDC1, YTHDC2, YTHDF1, YTHDF2, YTHDF3, ELAVL1,

WTAP, FTO, andMETTL3.

Di�erences in m6A regulators between
di�erent samples and correlation analysis

The Wilcox test was performed for the purpose of assessing

differences in the expression level of m6A modulators between

normal and IA samples. Expression relationships between m6A

modulators were assessed by Spearman correlation analysis in

both whole and IA samples, focusing on the correlation between

erasers and writers.

Screening of core m6A regulators

We adopted the LASSO regression (10-fold) method to

remove redundant genes from 22 regulators; based on the

removal of redundant genes, both support vector machine

(SVM) and random forest (RF) models were constructed, and

the residuals were calculated to compare the advantages and

disadvantages of the two models. RF is a component-supervised

learning technique that might be regarded as an extension

of decision trees. The structural risk minimization concept of

statistical learning theory underlies the SVM method, which
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is a kind of supervised machine learning algorithm. Following

plotting each data point as a point in an n-dimensional space

(with n indicating the number of m6A modulators), an optimal

hyperplane is determined that can distinguish between the two

classes (normal and IA samples). After determining the optimal

machine learning model, the m6A regulators associated with the

occurrence of IA were identified by one-way logistic regression

with a threshold of P<0.05. The corresponding coefficients for

each interval of m6A regulators were subsequently calculated by

multi-factor logistic regression, before obtaining the final scores.

Identification and evaluation of
nomogram

The “rms” R package was used to plot column line plots

to construct a nomogram. A calibration curve, area under the

receiver operating characteristic (AUC of ROC) curve, clinical

impact curve, and risk decision curve analysis (DCA) were used

to assess the discriminatory performance of the scores.

Determination of the m6A modification
pattern

According to the expression levels of core m6A modulators,

we utilized an unsupervised cluster analysis technique to

determine various m6A modification patterns. To evaluate the

number of clusters and robustness, the consensus clustering

approach was employed. The k-means clustering method with

100 iterations (utilizing 80% of samples each time) was used to

ensure cluster stability. The clustering score of the cumulative

distribution function (CDF) curve was used to estimate the

optimum number of clusters. The reliability of consensus

clustering was verified by performing a PCA analysis.

Di�erences in immune characteristics
and correlation analysis

We conducted the single-sample gene set enrichment

analysis (ssGSEA) to predict the number of specific infiltrating

immune cells as well as the activity of specific immunological

responses. Based on the gene sets, we explored the status of

immune cells and immune-related pathways. By performing the

Kruskal-Wallis test, we made comparisons of the enrichment

scores of immune cells and immune-related pathways between

normal and IA samples. With the use of Spearman’s correlation

analysis, we evaluated the correlation between core m6A

modulators and human leukocyte antigen (HLA) expression,

immune cells, and immune response activity. In addition, the

same method was employed to compare the immunological

differences among various m6A modification patterns.

Analysis of the biological enrichment of
various m6A modification patterns

The gene set “c2.cp.kegg.v7.4.symbols” downloaded from

the MSigDB database was used to reflect changes in biological

signaling pathways. The expression matrix was converted into

a scoring matrix using the gene set variation analysis (GSVA)

algorithm and the scores of biological signaling pathways were

compared between different m6A patterns by the “limma” R

package with a threshold of P<0.05 for differential analysis.

Determination of di�erentially expressed
genes (DEGs) between di�erent m6A
patterns

The “limma” R package was employed for the purpose of

identifying DEGs between different m6A patterns, with the

screening criterion set at P<0.05. Additionally, Gene Ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

enrichment analyses were performed with the aid of the

“clusterProfiler” R package.

Weighted gene co-expression network
analysis (WGCNA)

Data from expressionmatrices composed of genes withm6A

modification patterns mediating differences were subjected to

an evaluation utilizing the “WGCNA” R package. A WGCNA

network was constructed and unsigned topological overlap

matrices were utilized to detect modules. The optimum soft

threshold was 8, the least number of genes in the module was

20, and the module truncation height was 0.2. The correlation of

the merged modules with different m6A modification patterns

was calculated using the Spearman method. Finally, the core

proteins within the module were defined as the top 10 genes

ranked following the MCC method in the protein–protein

interaction (PPI) network. Visualization was performed using

Cytoscape v3.7.1.

Results

Expression landscape of m6A modulators
among di�erent samples

Twenty-two m6A modulators were included in the

study, which included 2 erasers, 14 readers, and 6 writers.
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FIGURE 1

Landscape of gene and expression changes of m6A modulators in the intracranial aneurysm (IA). (A) Position of the CNV alteration of the m6A

modulators on 22 chromosomes from the GSE13353, GSE15629, GSE26969, GSE54083, and GSE75436 cohorts. (B) Overview of the

composition of m6A modulators as well as the protein–protein interactions (PPI) across 22 m6A RNA methylation modulators. (C,D) Relations

between the expression levels of 22 m6A modulators in all samples and intracranial aneurysm samples. The two scatter plots indicate the two

most correlated m6A modulators: ALKBH5 and RBM15B. (E) Heatmap of remarkable di�erences in the expression levels of 10 modulators in IA

and normal samples. (F) Box plot of the transcriptional state of the expression levels of 22 m6A modulators in IA and normal samples. The

symbols *, **, and *** indicates the value of p < 0.05, p < 0.01, and p < 0.001 respectively.

Figure 1A outlines the location of the m6A modulators on

the chromosome. The regulatory interactions among these

m6A modulators are expressed as a PPI network (Figure 1B)

with the writers intricately correlated with each other and

usually functioning as a complex. Subsequently, the correlated

expression of different regulators was explored in the whole

sample (Figure 1C) and in the IA sample (Figure 1D), where

the focus was on the correlation between erasers and writers. A

strong correlation was found between ALKBH5 and RBM15B

in each sample (r = 0.52, r = 0.47). In addition, the Wilcox

test showed remarkable differences in the expression levels

of 10 modulators in different samples (Figures 1E,F), such as

RBM15, RBM15B, YTHDF3, FMR1, LRPPRC, IGFBP1, IGFBP2,

ELAVL1, IGF2BP1, and ALKBH5.

m6A regulators as potential biomarkers
of IA

All of our data were normalized and genes with zero

expression in the sample (>90% samples) were removed

before inclusion in the machine learning model. To investigate

the contribution of m6A regulators to IA pathogenesis, we

conducted Lasso regression on 22 regulators for dimensionality

reduction and feature selection to exclude redundant genes

(Figures 2A,B), and 16 genes were finally used for subsequent

analysis. Subsequently, SVM (Figure 2C) and RF (Figure 2D)

models were developed to identify candidate m6A modulators

from the 18 modulators to anticipate the onset of the IA.

The residual box line plot (Figure 2E) shows that the RF

model had the smallest residuals. Therefore, the RF model

was chosen as the best fit. Following the determination of

the importance and order of genes, those with importance

scores <2 (total 9) were selected for screening by a one-

way logistic regression (Figure 2F). Considering it would be

difficult to use the black box (such as deep learning, RF,

etc.) alone for clinical applications, it is with this in mind

that we put logistic regression after machine learning. Finally,

significant genes were integrated into the multifactorial logistic

regression model and the final coefficients were determined

as follow: score = expression of IGFBP2 × 1.4389568 +

expression of LRPPRC × −2.6183281 + expression of IGF2BP1
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FIGURE 2

(A,B) Coe�cient profiles of intracranial aneurysm (IA)-associated m6A modulators using the least absolute shrinkage and selection operator

(Lasso). Cross-validation by 10-fold regression is used to fine-tune the parameter selection of Lasso. (C) Support vector machine (SVM) models.

(D) Error graph of the random forest (RF) models. (E) Box plots of residuals in SVM and RF. (F) Correlation between m6A regulators and IA was

explored utilizing univariate logistic regression, identifying nine m6A modulators associated with IA (P < 0.05). (G) Risk distribution for IAs and

normal samples, with IAs having a significantly elevated risk score as opposed to normal samples. The symbol *** indicates he value of p < 0.001.

× 2.7552530 + expression of ALKBH5 × −4.6602717 +

expression of ELAVL1 × −3.7870236 + expression of RBM15B

× −3.9206072 + expression of YTHDF3 × −0.9092704 +

expression of IGFBP1 × 0.5572252. The classifier consisted of

eight regulators, in which IA scores were much higher than

normal samples (Figure 2G). The ROC curve showed that the

classifier had good diagnostic performance in classifying normal

and IA samples (AUC=0.954; Supplementary Figure S2A).

The classifier also had good diagnostic performance in

the independent validation set GSE122897 (AUC=0.884;

Supplementary Figure S2B).

Construction of nomogram model

Utilizing eight m6A modulators as building blocks, a

nomogram was constructed (Figure 3A). The calibration curves

for both the training set and the independent validation set

illustrated that the predictions of the column line graph model

were correct (Figure 3B). Patients with IAs may gain more

benefit from choices made based on the column line graph

model, as evidenced by the fact that the red line in the DCA

curve remained above the gray line (Figure 3C). The clinical

impact curve showed significant predictive performance of the

column line graph model (Figure 3D).

m6A modulators are linked to immune
responses in IA

To examine the biological behavior between the

immunological microenvironment and m6A modulators,

we correlated the expression of the above eight core regulators

with infiltrating immune cells and immune-related pathways.

Differential analysis revealed differences between healthy

samples and IA samples in the abundance of infiltrating cells

in the immune microenvironment, immune function, and

HLA expression, with most of the natural killer immune cells

altered in IA samples relative to the normal samples, including

macrophages, activated T cells, etc. (Figure 4A). In addition,

significant activation of TYPE 1 inflammatory response pathway

was observed in IA samples, whereas a significant activation

of TYPE 2 inflammatory response pathway was observed in

normal samples, suggesting that this pathway is involved in

the inflammatory process (Figure 4B). HLA-DRA, HLA-DQB1,

HLA-DMB, and HLA-DMA were also significantly upregulated
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FIGURE 3

(A) Nomograms for estimating the risk scores of eight m6A modulators associated with intracranial aneurysm (IA). Each parameter was assigned

a score, and the sum was transformed to the least possible probability. (B) Calibration plots of the model concerning the agreement between

anticipated and actual IA in the training and testing cohorts. On the X-axis, the nomogram-anticipated IA is displayed, whereas the actual IA is

presented on the Y-axis. The diagonally dotted line denotes flawless calibration using an ideal model that exactly represents the observed

outcomes. The solid line denotes the real performance of the nomogram; a tight alignment of the dotted and solid lines indicates a more

accurate assessment of the true outcomes. Decision curves for two IA-specific risk predictive models (C). On the vertical axis, the net advantage

of standardization is depicted. The correlation between the risk criterion and the cost-benefit ratio is represented by the two horizontal axes.

The clinical impact curves of the models are displayed in (D).

in IA samples (Figure 4C). Correlation analysis revealed that

eight co-regulators were closely correlated with a variety of

immune cells in IA samples (Figure 5A). For example, the

abundance of LRPPRC macrophages had the strongest negative

correlation (r=−0.55) and IGFBP1 demonstrated the strongest

positive correlation with regulatory T cell abundance (r= 0.42).

In terms of immune function, we found that insulin-like growth

factor binding protein 2 (IGFBP2) exhibited the strongest

negative correlation with T-cell costimulatory pathway (r =

−0.49) and IGFBP1 exhibited the strongest positive correlation

with HLA (r= 0.27) (Figure 5B). In addition, LRPPRC exhibited

the strongest positive and negative correlation with ALKBH5

and HLA-G, respectively (Supplementary Figure S3). The above

results demonstrate that the core m6A modulator performs a

fundamental role in the IA immunological microenvironment.

Modification patterns mediated by m6A
modulators in IA

According to the expression levels of modulators, we

conducted an unsupervised consistent clustering analysis of

63 IA samples (Figures 6A–C). We identified three different

m6A modification isoforms, and PCA analysis showed that

patients with IA could be classified into three clusters according

to m6A modulators (Figure 6D). The expression of some

m6A modulators was significantly different among different

modification patterns (Figures 6E,F).

Immune microenvironment and
biological functional characteristics in
distinct m6A modification patterns

To determine the variations in immunological

microenvironmental characteristics between these distinct

m6A modification patterns, differences between infiltrating

immune cells and immune function were assessed. Compared

with patterns B and C, pattern A had higher activated T cells

and activated natural killer cells (Figure 7A). Concerning

the immune response, pattern A had a more active immune

response (Figure 7B). In addition, the expression of different

HLAs also differed between the modification patterns

(Figure 7C). The above findings additionally demonstrate
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FIGURE 4

(A) Di�erences in the abundance of 23 infiltrating immunocytes. (B) Di�erences in the activity of 13 immune response gene sets in IA and

normal subtypes. (C) Di�erences in the expression of 18 HLA genes between IA and normal subsets. The symbols *, **, and *** indicates the

value of p < 0.05, p < 0.01, and p < 0.001 respectively.
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FIGURE 5

Correlation between immunocytes infiltration, immunological response gene-sets, and m6A modulators. (A) Correlation between each

dysregulated m6A modulator and dysregulated immunological microenvironment infiltration cell type is illustrated by the square plot. The

IGFBP1-regulatory T-cell pair has the highest positive correlation between immunocyte and m6A modulator. LRPPRC–macrophage pair has the

most negative correlation between immunocyte and m6A modulator. (B) Correlation between each dysregulated m6A modulator and

dysregulated immunological response gene set using a square plot. Intracranial aneurysms (IAs) had the highest positive correlation between

IGFBP1 and HLA, suggesting elevated expression level of IGFBP1 and highly active HLA in IA. IGFBP2–T cell co-stimulation pair has the strongest

negative correlation. The symbols *, **, and *** indicates the value of p < 0.05, p < 0.01, and p < 0.001 respectively.

Frontiers inNeurology 10 frontiersin.org

https://doi.org/10.3389/fneur.2022.889141
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Maimaiti et al. 10.3389/fneur.2022.889141

FIGURE 6

Unsupervised clustering of 22 distinct m6A modulators. Three di�erent m6A modification patterns in the intracranial aneurysm. (A) Cumulative

distribution function (CDF) for consensus clustering for k = 2–9. (B) Relative change in the area under the CDF curve for k=2–9. (C) Matrix of

co-occurrence percentages for cerebral aneurysm samples visualized as a heatmap. (D) Principal component analysis was used to analyze the

transcriptome profiles of three m6A subtypes. A striking divergence in the transcriptome across the various modification patterns can be seen.

(E) Unsupervised clustering of 22 m6A regulators in the three modification patterns. (F) State of expression of 22 distinct m6A modulators in

each of the three m6A subsets. The symbols *, **, and *** indicates the value of p < 0.05, p < 0.01, and p < 0.001 respectively.

that m6A modification plays an important modulatory role in

the formation of different immunological microenvironments

in IA.

Biological properties of di�erent m6A
modification patterns

To examine the biological responses in the three m6A

modification patterns, we compared their respective KEGG

pathways and performed a GSVA enrichment analysis to

investigate the status of biological pathway activation. The

tight junction was significantly enriched in model A compared

to model B (Figure 8A). The Notch signaling pathway was

significantly enriched in model A compared to model C

(Figure 8B). The p53 signaling pathway was significantly

enriched in pattern C compared to pattern B (Figure 8C). In

addition, a total of 1,062 DEGs with different modification

patterns were identified (Figure 9A; Supplementary File 2),

and subsequent GO enrichment analysis revealed their

involvement in processes, such as muscular system processes,

regulation of ion transport, various cation homeostasis, and

TRAIL-activated apoptotic signaling pathways (Figure 9B).

These results were consistent with IAs in which dysfunction

is known, indicating the reliability of our results. In addition,

in the KEGG analysis, the screened DEGs were significantly

associated with the pentose phosphate pathway, AMPK

signaling pathway, DNA replication, neuroactive ligand–

receptor interaction, p53 signaling pathway, regulation

of actin cytoskeleton, arrhythmogenic right ventricular

cardiomyopathy, and other pathways (Figure 9C). We further

identified gene–gene modules associated with different

m6A modifications in the 1,062 DEGs using the WGCNA

method (Figures 9D–F). A total of four gene modules were

identified with distinct modification patterns matching

their associated genes (Figure 9G), with brown modules

linked to subtype A (r = 0.47), gray modules linked to

subtype B (r = −0.86), and red modules linked to subtype C

(r= 0.66).

Characterization of coregulatory proteins
with di�erent m6A modification patterns

The ppi networks of the brown, gray, and red modules

were constructed in the STRING database, and the MCC

values of each protein were calculated in Cytoscape.

Among them, we found that subtype A may be primarily
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FIGURE 7

Diverse aspects of the immunological microenvironment associated with various m6A modification patterns. (A) Di�erences in the abundance

of each immunological microenvironment infiltrating immunocyte in three di�erent m6A modification patterns. (B) Di�erences in the activity

between each immune response gene in three m6A modification patterns. (C) Di�erences in the expression level of each HLA gene across three

m6A modification patterns. The symbols *, **, and *** indicates the value of p < 0.05, p < 0.01, and p < 0.001 respectively.

Frontiers inNeurology 12 frontiersin.org

https://doi.org/10.3389/fneur.2022.889141
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Maimaiti et al. 10.3389/fneur.2022.889141

FIGURE 8

Underpinned biological functional features of three m6A modification sequences. (A–C) Di�erences in the KEGG pathway enrichment scores

for m6A modification (A) patterns A and B; (B) patterns A and C; and (C) patterns B and C.

regulated by LCK, CD3D, CD2, CD27, CD3E, ZAP70,

PTPN11, PIK3CG, TRIM25, and P4HB (Figure 10A);

subtype B by HIST1H4A, TP53BP1, RAB1B, MRPL11,

RPLP0, MRPS12, TFB2M, ZNRD1, NEDD8, and DVL1

(Figure 10B); and subtype C by FN1, ELN, CTGF, LTBP2,

COL5A2, VCAN, POSTN, TIMP2, HSPA4, and ELAVL1

(Figure 10C).

Discussion

Epigenetic alterations in DNA have been extensively

investigated in many diseases, contributing to the development

of various treatment approaches, such as histone deacetylase

inhibitors, DNA methyltransferases, and immunomodulatory

therapies (35, 36). m6A is the most common form of mRNA
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FIGURE 9

Determination and functional analysis of genes associated with the m6A phenotype in IA. (A) Venn diagram of 1,062 genes associated with the

m6A phenotype. (B) Assessment of GO-BP, CC, and MF functional enrichment of the biological features of genes associated with the m6A

phenotype. (C) KEGG enrichment analysis of immune genes associated with the m6A phenotype to elucidate the correlation between m6A

modulators and immunological modulation. (D) Clustering of samples according to the expression data from all samples. WGCNA analyzed the

top 25% of variation genes, excluding outlier data. (E) The scale-free ft-index, as well as the mean connectivity, were analyzed for a range of

soft-thresholding powers. (F) Gene dendrogram generated using hierarchical clustering based on average linkage. The color row below the

dendrogram indicates the module allocation established by the Dynamic Tree Cut, which identified four modules. (G) Heatmap of the

correlation between module eigengenes and m6A modification patterns.

FIGURE 10

PPI networks for hub proteins in brown module-related to A subtype (A), gray module-related to B subtype (B), and blue module-related to C

subtype (C).
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modifications in eukaryotes and functionally regulates the

eukaryotic transcriptome (37), which affects mRNA splicing,

export, localization, translation, and stability (38). There has

been a large amount of evidence to support the view that

m6A methylation modifications perform an instrumental role

in the onset and progression of a variety of illnesses, including

malignant tumors (39). Nevertheless, there is a scarcity of

studies on m6A methylation in IA. Our research was the

first to probe into the involvement of m6A modulators in

IA with the aim to discover a correlation between m6A

methylation modifications and immunological features. We

observed that the expression of m6A modulators differed

significantly between normal and IA tissues in nearly half of all

tissues. We identified anm6A regulator gene signature (IGFBP2,

LRPPRC, IGF2BP1, ALKBH5, ELAVL1, RBM15B, YTHDF3,

IGFBP1) after using Lasso regression, machine learning (SVM

and RF), and univariate and multivariate logistic regression.

The IA and normal samples were easily distinguished based

on the differences in m6A methylation modification patterns

between them.

Of the 23 m6A regulator genes identified in the present

research, the m6A regulator gene signature was the most crucial,

due to its substantial fold-changes and significance in the

multivariate analysis. In addition, numerousm6A regulators had

protein interactions or expression correlations, demonstrating a

regulatory network of m6A modifications. Second, we explored

the correlation between m6A modulators and immunological

features of IAs, which included infiltrating immune cells, HLA

gene expression, and immune response gene sets.We discovered

that most of the m6A modulators were intimately associated

with these immunological features, suggesting an integral

function ofm6Amodifications in themodulation of the immune

microenvironment in IAs. Macrophage abundance exhibited the

strongest negative correlation with LRPPRC, and regulatory T-

cell abundance exhibited the strongest positive correlation with

IGFBP1. In terms of immune function, IGFBP2 exhibited the

strongest negative correlation with the T-cell co-stimulatory

pathway and IGFBP1 exhibited the strongest positive correlation

with HLAs. In addition, LRPPRC and ALKBH5 exhibited the

strongest positive and negative correlations, respectively, with

HLA-G, and played a crucial role in IA homeostasis.

Previous studies have shown that recombinant IGFBP1 and

PYY primary human CD4T cells are, respectively, characterized

by their blocking and induction of immune activation (40).

It was also shown that the inflammation-related cytokines

IGFBP1 and RANTES diminished the megakaryocytic potential

of hematopoietic stem cells after transplantation in patients

with prolonged isolated thrombocytopenia. Among them,

IGFBP1 was found to be regulated upon activation, and

its expression and secretion by normal T cells significantly

inhibited the proliferation of hematopoietic stem cells as well

as the differentiation of megakaryocytes in vitro (41). In

addition, patients with severe and moderate Alzheimer’s disease

demonstrated a progressive elevation in the expression levels of

IGFBP1 protein in their blood profile (42). However, there were

no relevant reports for LRPPRC and macrophages. We utilized

m6A modulator expression profiles to conduct unsupervised

clustering of IA samples. This resulted in the identification

of three subtypes with different m6A modification patterns—

each with its specific immunological profile. In contrast with

patterns B or C, the pattern A modification had a higher

number of invading immune cells and active immunological

responses. The distinct immunological feature of each subtype

also validated the feasibility of our classification method of the

immunological phenotypes of the variousm6Amodulators. This

immune subtyping technique may aid in the comprehension

of fundamental processes of immune modulation, allowing

for the development of more accurate treatment approaches.

Thus, IA can be subtyped at the molecular or immunological

level rather than merely at the phenotypic level. In recent

research, this technique was utilized to identify two unique

m6A modification patterns in low-grade gliomas, contributing

to a better comprehension of the tumor microenvironment,

whichmay aid in establishingmore efficient immunotherapeutic

treatments in the future (43). For IA, Chen et al. constructed

co-expression networks using the WGCNA approach for

ruptured and unruptured IA samples, examined gene modules,

and screened genes regulating IA rupture, concluding that

inflammatory and immunological responses may perform a

crucial role in IA rupture (44). Interestingly, Song et al.

demonstrated the imbalance of Th17/Treg in patients with IA,

and the frequencies of Th17 cells were positively correlated

with the severity of IA-induced spontaneous subarachnoid

hemorrhage (45).

We identified m6A modulator-associated genes and

modification patterns, as well as revealed their biological

functions to explain the pathogenesis of IAs from the

perspective of m6A modification. In addition, from the

perspective of functional pathways, tight junctions were

enriched in model A as opposed to model B. The Notch

signaling pathway was remarkably enriched in model A as

opposed to model C. The p53 signaling pathway was remarkably

enriched in model C as opposed to model B. Finally, eight

m6A methylation modification markers were identified:

IGFBP2, IGFBP1, IGF2BP2, YTHDF3, ALKBH5, RBM15B,

LRPPRC, and ELAVL1. Altogether, IGFBP2, IGFBP1, and

IGF2BP2 were overexpressed in IA samples, while YTHDF3,

ALKBH5, RBM15B, and LRPPRC were overexpressed in

normal samples. When comparing IA and normal samples,

there were no differences in the expression levels of ELAVL1.

IGFBP2 is a protein-coding gene linked to diseases such as

insulin-like growth factor I and malignant ovarian cysts.

Its associated pathways include myofascial relaxation and

contraction pathway and IGF-1 receptor signaling (46). The

elevated expression level of this gene has been shown to

accelerate the progression of numerous malignancies and may
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be used to anticipate the possibility of patient recovery (47).

Recently, it has been shown that IGFBP2 induces selective

polarization of pancreatic ductal adenocarcinoma macrophages

via the STAT3 pathway, which leads to the macrophage-based

immunosuppressive microenvironment in PDAC and thus

promotes tumor progression (48). It has also been shown that

increased levels of IGFBP2mRNA can anticipate an unfavorable

survival status in patients with glioblastoma (49). In addition,

in malignant melanoma, IGFBP2 modulates PD-L1 levels

via the mechanism of activating the EGFR-STAT3 signaling

pathway (50). On the other hand, IGFBP1 is a protein-coding

gene similar to IGFBP2. It has been shown that IGFBP1, a

downstream protein of Jagged1, is related to the severity of

coronary atherosclerosis among elderly patients, and aging-

linked expression elevation in circulating IGFBP1 might be

an adaptive response to counteract HCAEC aging via the Akt

signaling pathway (51). Deng et al. showed that IGF2BP2 can

bind to mRNA in an m6A-dependent manner and thus has the

potential to become a new diagnostic and therapeutic target for

patients with Alzheimer’s disease (52). It has also been shown

that SUMOylation of IGF2BP2 promotes angiogenic mimicry

in gliomas by regulating the OIP5-AS1/miR-495-3p axis (53). In

addition, YTHDF3, ALKBH5, RBM15B, LRPPRC, and ELAVL1

are all involved in m6A RNA methylation modifications (54).

It has been shown that YTHDF3 acts as a negative modulator

of antiviral immunity by promoting the translation of FOXO3

mRNA within equilibrium settings, thus providing deeper

comprehension of the role of RNA-binding protein–RNA

interaction networks in the maintenance of host antiviral

immunological function and prevention of inflammatory

responses in a balanced manner (55). Meanwhile, in reaction to

positive single-stranded RNA virus infection, YTHDF3 acted as

a positive modulator of antiviral JAK/STAT signaling, allowing

Type I interferon (IFN)-mediated gene regulation programs to

unfold in infected cells, suggesting that they are key response

regulators in innate antiviral immune responses (56). Li et al.

showed that ALKBH5 modulates the anti-PD-1 therapeutic

response by regulating lactate in the tumor microenvironment

and inhibiting immune cell accumulation (57). It was also

shown that during HCV infection, the HCV non-structural

5A (NS5A) contributes to the suppression of the innate

immune pathway by using LRPPRC to inhibit the ability of the

mitochondrial antiviral signaling protein (MAVS) to regulate

antiviral signaling (58). The above studies suggest that m6A

indicators could be associated with immunological diseases

and inflammatory responses, further demonstrating that

m6A modulators could modulate immunological properties.

Currently, studies on IA have focused on hemodynamics (59)

and clinical therapeutic advances (60). In contrast, studies on

the epigenetic modifications during IA are rare, with those on

m6A RNA methylation modifications almost non-existent. We

were the first to identify the function of m6A modulators in IA

to explore their correlation with immunological features. The

comprehensive findings of the present research show that m6A

methylation modification introduces a unique research area in

the study of the pathophysiology of IA.

There are certain limitations to the present research. First,

we were unable to acquire additional clinical data for each

patient, including age, Hunt-Hess grade, sex, treatment, as well

as prognosis information, for longitudinal analysis. Therefore,

we were unable to correlate m6A patterns, grading, and

other clinical parameters for all samples. Second, even though

we attempted to add as many samples as feasible in the

GEO database that fit our criteria, the sample size remained

constrained. Future research with larger sample sizes is needed.

The specific m6A sites also should be illuminated by MeRIP-

seq and MeRIP-qPCR to further identify the target genes

of m6A regulators that were important for the intracranial

aneurysms process. However, we are not qualified to obtain

patient samples, which is why we have to use public data. In

addition, some of the identified m6A regulators showed minor

variation in expression between IA and normal samples; hence,

more samples are needed for experimental validation. External

datasets and tests, on the other hand, confirmed the excellent

prediction accuracy of the m6A modulator gene characteristics

that we identified. In addition, the correlation between the eight

m6A markers we identified from the GEO datasets and IA.

m6A methylation is thought to be critical in the onset and

progression of IA, and we have shown compelling evidence to

support this hypothesis.

In conclusion, we conducted a thorough investigation into

the significance of m6A methylation among patients with

IA, constructed an m6A regulator profile that distinguishes

IA from normal tissue based on an eight-gene signature,

and identified three distinct m6A isoforms according to

22 m6A modulators. The eight m6A regulators identified

can be potential prognostic biomarkers for the treatment

of IA. In addition, the three different m6A isoforms of IA

showed remarkable differences in m6A regulator expression,

the immunological microenvironment, and bio-functional

pathways. These associations between immunological profiles

andm6A isoforms provide insight into the development of novel

targeted immunotherapies.
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