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Indole-3-propionic acid regulates lateral
root development by targeting auxin
signaling in Arabidopsis

Yue Sun,1,2 Zhisen Yang,1,2 Caoli Zhang,1,2 Jing Xia,1,2 Yawen Li,1 Xin Liu,1,* Linfeng Sun,1,* and Shutang Tan1,3,*
SUMMARY

Indole-3-propionic acid (IPA) is known to be a microbe-derived compound with a similar structure to the
phytohormone auxin (indole-3-acetic acid, IAA). Previous studies reported that IPA exhibited auxin-like
bioactivities in plants. However, the underlying molecular mechanism is not totally understood. Here,
we revealed that IPA modulated lateral root (LR) development via auxin signaling in the model plant Ara-
bidopsis thaliana. Genetic analysis indicated that deficiency of the TIR1/AFB-Aux/IAA-ARF auxin signaling
pathway abolished the effects of IPA on regulating LR development. Further biochemical, transcriptomic
profiling and cell biological analyses revealed that IPA directly bound to the TIR1/AFB-Aux/IAA corecep-
tor complex and thus activated downstream gene expression. Therefore, our work revealed that IPA is a
potential signaling molecule that modulates plant growth and development by targeting the TIR1/AFB-
Aux/IAA-mediated auxin signaling pathway, providing potential insights into root growth regulation in
plants.

INTRODUCTION

Auxin is an essential phytohormone involved in almost every aspect of plant growth and development.1–3 Our current understanding of the

molecular mechanisms underlying auxin biosynthesis, metabolism, transport, and signaling has advanced through decades of genetic

studies.3–5 The major natural form of auxin is indole-3-acetic acid (IAA), whose biosynthesis is mainly catalyzed by the TRYPTOPHAN

AMINOTRANSFERASE OF ARABIDOPSIS (TAA1)/TRYPTOPHAN AMINOTRANSFERASE-RELATED PROTEIN (TAR) and YUCCA (YUC) en-

zymes in plants.6,7 Additionally, microbes can synthesize IAA, which is a key link between plants andmicrobes in ecosystems.Microbe-derived

IAA can promote the growth of infected plant tissues, subsequently benefiting their own growth.8

A key feature of auxin is its polar transport across cells, namely polar auxin transport (PAT), which is ensured by plasma membrane (PM)-

localized PIN-FORMED (PIN) exporters9–13 and AUXIN1 (AUX1)/LIKE AUXIN1 (LAX) importers.14,15 Genetic data suggest that ATP-binding

cassette subfamily B/multidrug resistance/phosphoglycoprotein (ABCB/MDR/PGP) ABCB1 and ABCB19 are also involved in PAT in Arabi-

dopsis.16–18 However, recent studies suggest that brassinosteroids but not auxins are the substrates of ABCB19.19 Moreover, both auxin

biosynthesis and transport contribute to the establishment and maintenance of maxima, minima, and auxin gradients, which are required

for auxin-mediated growth and patterning processes in plants.2,3,5,7

For auxin signaling, the TRANSPORT INHIBITOR RESPONSE1 (TIR1)/AUXIN SIGNALING F-BOXs (AFBs)-AUXIN/INDOLE-3-ACETIC ACID

(Aux/IAA) coreceptor-based transcriptional pathway has been well established by genetic and biochemical studies: IAA recruits transcrip-

tional repressors Aux/IAA proteins to the TIR1/AFB F-box E3 ligases, which lead to their ubiquitination for subsequent degradation via

the 26S proteasome, thus releasing downstream AUXIN RESPONSE FACTOR (ARF) transcription factors to regulate the expression of thou-

sands of genes.5,20,21 Our current understanding of the TIR1/AFB-Aux/IAA-mediated auxin pathway has also been improved by state-of-the-

art live imaging and structural biological research.22–24 Notably, TIR1/AFB auxin receptors, in addition to their roles as E3 ligases, were

recently reported to also have an AMP cyclase activity needed for downstream transcriptional regulation.25 Recent studies have also revealed

that the PM-resident AUXIN BINDING PROTEIN1 (ABP1)/ABP1-LIKE PROTEINS (ABLs) and TRANSMEMBRANE KINASEs (TMKs) play crucial

roles in auxin-induced apoplastic pH regulation, ROP (for Rho-related GTPases from plants) GTPase activation, and downstream protein

phosphorylation events,24,26–30 and thus related rapid growth regulation. Moreover, unlike other TIR1/AFB members functioning at the nu-

cleus, AFB1 resides at the cytoplasm and regulates the fast root growth inhibition, which might be involved in root gravitropism.31–35
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Figure 1. IPA exhibited auxinic activity in modulating root growth and development in Arabidopsis

(A and C) IPA treatment promoted LR formation. Representative images (A) and quantified lateral root numbers (C) of Col-0 plants. n = 40, 47, and 55,

respectively. DMSO was used as the solvent control. Scale bars, 1 cm. Seven-day-old Col-0 plants were subsequently transferred to MS media supplemented

with gradient concentrations of IPA for an additional 5 days. The emerged lateral roots were directly counted. Dots represent individual values, and lines

indicate the mean G SD. Different letters represent significant differences; p < 0.05; one-way ANOVA with Tukey’s multiple comparison test.

(B) Representative images of lateral roots are shown. Scale bars, 5 mm. See also Figures S1–S4.
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Indole-3-propionic acid (IPA) is a tryptophanmetabolism-derived indole compound that is widely produced by various gut and soil micro-

organisms, including Clostridium and Peptostreptococcus.36–38 Hormones or hormone-like compounds produced by rhizosphere soil micro-

organisms, such as IAA, are crucial for the growth and development ofmicroorganisms andplants and for the coordination ofmicroorganisms

andplants.3–5 Although IPA, ametabolite derived fromgutmicrobes, has beenwidely studied for its ability to prevent and treatmetabolic and

neurological diseases in humans,39,40 the effect of IPA on plants has not been fully elucidated. Previous studies reported that IPA inhibited

root growth but seemingly independently of the TIR1 receptor.41–44 Therefore, in this study, we explored the biological functions and under-

lying molecular mechanisms of IPA in plants and found that IPA regulates lateral root (LR) development via targeting the nuclear TIR1/AFB-

Aux/IAA auxin signaling pathway.
RESULTS

IPA exhibited auxinic activity in modulating root growth and development in plants

To investigate the physiological effects of IPA, we explored the root phenotype of the model plant Arabidopsis thaliana grown onMurashige

and Skoog (MS) plates supplemented with different concentrations of IPA. The results showed that 12-day-old Arabidopsis plants exhibited

more LRs as well asmore root hairs under constant treatment with IPA than the DMSO control (Figures S1A–S1D), resembling those observed

under IAA treatment. Notably, when the concentration exceeded 10 mM, IPA strongly inhibited root growth and LR formation (Figures S1A–

S1C). The plant hormone auxin regulatesmany growth and developmental processes, including root growth, lateral organ development, and

root hair formation.3,5,21,33 Auxin is known to promote LR formation and root hair growth. Next, to avoid the interference of inhibited root

growth with LR formation, we transferred 7-day-old plants from normal MS plates to IPA for additional 5 days and found that IPA had a similar

effect as IAA on promoting LR formation (Figures 1A–1C). Further physiological experiments with tobacco (Nicotiana benthamiana) revealed

that similar phenotypes, i.e., inhibition of primary root elongation, promotion of LR formation, and root hair growth, were observed

(Figures S2 and S3). To further confirm the effects of IPA on LR initiation, we treated LR primordia-probed reporters, including PIN1::PIN1-

GFP45 and ARF19::NLS-GFP46 seedlings, with gradient concentrations of IPA and found that they formedmore LR primordia under IPA treat-

ment than the DMSO control (Figure S4A–S4F).

Taken together, these results indicate that IPA has an auxin-like activity in plants, including promotive effects on LR formation and root hair

elongation. Additionally, IPA inhibited primary root elongation; however, this effect might not be mediated by the auxin signaling pathway,

which will be described in the following, and this is consistent with the findings of previous reports.41–44
IPA activated the transcriptional auxin signaling pathway in Arabidopsis

Based on the aforementioned physiological effects of IPA, we speculated that IPA might be involved in the auxin pathway to regulate these

physiological processes. To further explore the underlying molecular mechanisms, we assessed a series of auxin-responsive fluorescent re-

porters, including the DR5v2-ntdTomato;DR5-n3GFP dual reporter line,47 which monitors the output of the TIR1/AFBs-Aux/IAAs-ARFs auxin

signaling pathway. The DR5 signal significantly increased after IPA treatment, resembling the effect of IAA (Figures 2A and 2B), suggesting an
2 iScience 27, 110363, July 19, 2024
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Figure 2. IPA activated the transcriptional auxin signaling pathway in Arabidopsis

(A and B) IPA application improved the auxin-responsive pattern of DR5v2-ntdTomato;DR5-n3GFP. Representative images (A) and quantified fluorescence

intensity (B) of GFP on the root tip side. n = 10, 10, 10, 10. Four-day-old DR5v2-ntdTomato;DR5-n3GFP plants grown on normal MS plates were transferred

to DMSO/IPA-containing plates for 24 h.

(C andD) DII-Venus responds rapidly to the auxin IPA. Representative images (C) and quantified fluorescence intensity (D) of Venus on the root tip side. n= 12, 11,

12, and 11, respectively. Four-day-old DII-Venus plants grown on normal plates were treated with DMSO/IPA-containing liquid for 30 min.

(E and F) mDII-Venus patients did not respond to IPA treatment. Representative images (E) and quantified fluorescence intensity (F) of Venus on the root tip side.

n = 8, 8, 9, and 12, respectively. Four-day-old mDII-Venus seedlings grown on normal plates were treated with DMSO/IPA-containing liquid for 30 min. In (A),

(C) and (E), root tips were imaged via confocal laser scanning microscopy (CLSM) for the GFP and tdTomato channels (A) and the Venus channel (C and E).

403. Scale bars, 20 mm. In (B), (D), and (F), the dots represent individual values, and the lines indicate the means G SDs. Different letters represent significant

differences; p < 0.05; one-way ANOVA with Tukey’s multiple comparison test. See also Figure S5.
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activation of auxin signaling. Similar GFP-derived florescence activation was also observed for the tranditional DR5rev::GFP reporter48

(Figures S5A and S5B), together suggesting that IPA activates the nuclear transcriptional auxin pathway.

We further used theDII-Venus reporter line,49 which can reveal the rapid effect of the TIR1/AFB signaling pathway, to validate whether IPA

functions via the canonical auxin pathway. DII-Venus is rapidly degraded following auxin perception via the TIR1/AFB pathway without the

need for transcriptional activation.49 The results showed that IPA treatment promoted the degradation of DII-Venus within 30 min, as rapidly

as IAA did (Figures 2C–2F). Supported by these DR5- and DII-based observations, we hypothesize that IPA might activate endogenous auxin

signaling through the nuclear TIR1/AFB-Aux/IAA-ARF pathway.

High concentrations of IPA showed strong inhibitory effects on root growth as well as interference with root gravitropism. We speculate

that IPA treatment may also interfere with the transport or signaling of endogenous auxins. To further test this hypothesis, we used the

DR5v2-ntdTomato;DR5-n3GFP47 reporter (the GFP channel) to perform a root gravitropic response assay. The results showed that there

was an increase in the DR5 signal at the lower side of the root tips in response to gravistimulation under 90� reorientation (Figure S5C).

However, IPA treatment impaired this asymmetric DR5 redistribution (Figures S5C and S5D). Moreover, IPA inhibited the root bending

under gravistimulation over time (Figures S5E and S5F). These results together suggest that IPA activates auxin signaling while also inter-

fering with endogenous auxin signaling and/or transport, which might be due to the competition between IPA and endogenous IAA for

auxin receptors or transporters.
iScience 27, 110363, July 19, 2024 3
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IPA remodeled TIR1/AFBs-dependent transcriptome in Arabidopsis

To further investigate which pathway IPA might be involved in these effects, we carried out RNA sequencing (RNA-seq) profiling of 7-day-old

Arabidopsis Col-0 and tir1-1 afb2-333 plants treated with IPA, IAA, or the solvent control DMSO, respectively. The results showed that IPA

remodeled the global transcriptome in plants in a similar manner as IAA did, inducing the expression of numerous Aux/IAAs, GH3s

(GRETCHENHAGEN3s), LBDs (LATERALORGANBOUNDARIESDOMAINs), PINs,AUX1/LAXs, and other auxin-responsive genes (Figures 3,

S6, and S7). Notably, multiple genes involved in LR formation, such asARF19, LBD29, PUCHI,WOX11 (WUSCHEL-RELATEDHOMEOBOX11),

PIN1,AUX1/LAXs, andGH3, were also induced by IPA (Figures S6 and S7; Tables S1, S2, S3, and S4), consistently with the promotive effects of

IPA on LR formation.

Venn diagrams revealed unique and shared sets of IPA-modulated DEGs (differentially expressed genes) and IAA-modulated DEGs be-

tween Col-0 and tir1-1 afb2-3 (Figures 3C, 3D, and S7). GeneOntology (GO) enrichment bubble diagrams and volcano plot diagrams showed

that IPA treatment remodeled the expression of numerous genes in the auxin pathway (Figures 3A, 3B, and S6). Notably, IPA activated the

expression ofmore genes than IAA did (Figures 3C, 3D, and S7A–S7D), suggesting potential distinct molecularmechanisms between IPA and

IAA or possible dose effects. This difference might also account for the inhibitory effects of IPA on root growth, which seems not to be totally

mediated by TIR1/AFBs-AUX/IAAs-ARFs, as reported previously.41–44

Furthermore, the Venn diagram containedmore up-DEGs or down-DEGs in Col-0 than in tir1-1 afb2-3 after IPA treatment (Figures 3C, 3D,

and S7A–S7D), as did the heatmap (Figure S7E). This confirmed that tir1-1 afb2-3 is less sensitive to IPA than is Col-0 in terms of the transcrip-

tional auxin signaling pathway.

By performing quantitative reverse-transcription PCR (RT-qPCR) analysis, the relative expression levels of three known auxin-induced

genes, namely,GH3.3,GH3.5,50,51 and LBD29,52 were confirmed to be upregulated by IPA inArabidopsis seedlings (Figures 3E–3G). Detailed

analysis with different concentrations of IPA revealed that the induction of these auxin-responsive genes by IPA was dose dependent, and the

most effective concentrations of IPA and IAA are not the same for different genes (Figure S8). Taken together, these results demonstrated that

IPA is involved in the nuclear TIR1/AFB-AUX/IAA-ARF auxin signaling, modulating plant LR formation.
IPA regulated LR development via the TIR1/AFB-Aux/IAA receptor complex

Next, we tested the IPA sensitivity of the TIR1/AFB-Aux/IAA-ARF-related mutants by growing the mutants in MS media supplemented with

IPA (Figures S9–S21). In terms of the effects on LR induction, the auxin-insensitive tir1-153–55 mutants also exhibitedmarkedly lower sensitivity

to IPA than theCol-0 plants did (Figures S9A and S9B). Consistently, furthermicroscopic analysis with theDR5rev::GFP auxin reporter revealed

that the tir1-1mutation indeed decreased the sensitivity to IPA (Figures S10A and S10B), confirming the crucial roles of TIR1 in IPA perception.

However, the primary root elongation of tir1-1 was still sensitive to IPA (Figures S11A and S11B), suggesting that potentially different molec-

ular mechanisms underlie the inhibition of primary root growth by IPA and IAA. Further physiological experiments with higher-order mutants

revealed that the tir1-1 afb2-3 and tir1-1 afb2-1 afb3-1mutants were also less sensitive to IPA thanCol-0 in terms of LR formation (Figures 4 and

S12) but not in primary root inhibition (Figure S13). The arf7 arf19mutant,56 which is defective in auxin-controlled LR initiation, also exhibited

similar insensitivity to LR induction to IPA (Figure S17). However, the primary root elongation of arf7 arf19was not inhibited by IPA (Figure S18).

Interestingly, similar results were observed for the afb5-5 and afb4 afb5 mutants, which were less sensitive to IPA during LR induction

(Figures S14–S16), suggesting the potential functional redundancy of TIR1 andAFBs in IPA perception. Additionally, the afb1-3 single mutant

did not exhibit any changes in its sensitivity to IPA in these aforementioned tested phenotypes (Figures S19 and S20). Moreover, besides LRs,

IPA also induced root hair growth in a TIR1/AFBs-dependent manner (Figure S21). Therefore, these results indicate that IPA regulates LR

development and root hair growth via a set of TIR1/AFB receptors.
IPA directly targeted the TIR1/AFB-Aux/IAA receptor complex

Genetic and biochemical studies have well established the TIR1/AFB-AUX/IAA-ARF-mediated canonical auxin signaling pathway.5,20,21 To

address whether IPA interacts with TIR1/AFB coreceptors, a yeast two-hybrid assay was performed with TIR1 and IAA7 as a representative

auxin coreceptor pair. Results showed that IPA promoted the interaction between TIR1 and IAA7 in yeast cells, thoughwith a lower promotive

effect than the same concentrations of IAA (Figure 5A). Next, we expressed and purified the TIR1 protein in complex with the ASK1 and IAA7

proteins and carried out a surface plasmon resonance (SPR) assay. Injection of the TIR1-ASK1 complex protein with either IPA or IAA indeed

enhanced the interaction between TIR1 and IAA7, although IPA had a lower efficiency than IAA (Figure 5B), suggesting that IPAmight bind to

the TIR1-IAA7 coreceptors. Together with the cell biological and RNA-seq results, our data indicate that IPA could directly target to the TIR1/

AFB-AUX/IAA auxin coreceptors in plants.

Overall, these aforementioned data support that IPA directly binds to the TIR1/AFB-Aux/IAA receptor complex and modulates plant root

growth and development through TIR1/AFBs-mediated auxin signaling. Additionally, based on this feature, high concentrations of IPAmight

also modulate the endogenous auxin distribution by interfering with signaling or the transport of endogenous IAAs.
DISCUSSION

IPA is a tryptophan metabolism-derived indole compound produced by gut and soil microbes.36,37 Our work revealed that IPA exhibits an

auxinic activity in Arabidopsis seedlings primarily by modulating LR growth and development (Figure 6). Genetic and biochemical data indi-

cate that IPA targets the TIR1/AFB-Aux/IAA pathway and thus regulates downstream gene transcription (Figure 6). These lines of evidence
4 iScience 27, 110363, July 19, 2024
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Figure 3. IPA treatment triggered global transcriptional changes, including auxin-responsive genes, in Arabidopsis seedlings

(A and B) GO enrichment analysis of a schematic representation of the RNA-seq data of 7-day-old Col-0 and tir1-1 afb2-3 seedlings grown vertically onMSmedia

and treated with 5 mM IPA, 1 mM IAA, or DMSO (as the mock control) for 3 h. Differentially expressed mRNAs in Col-0 seedlings treated with IPA (A) and IAA

(B) versus those treated with DMSO. The X axis label represents the enrichment ratio, and the Y axis label represents the pathway. The size and color of the

bubble represent the number of DEGs enriched in the pathway and enrichment significance, respectively.

(C and D) There were more upregulated DEGs or downregulated DEGs in Col-0 than in tir1-1 afb2-3 after IPA treatment. Venn diagram of schematic

representation of RNA sequencing data of 7-day-old Col-0 and tir1-1 afb2-3 seedlings grown vertically on MS media and treated with 5 mM IPA, 1 mM IAA, or

DMSO (as the mock control) for 3 h. Venn diagram showing the overlap of nondifferentially expressed genes (NDEGs) in the transcriptional data and DEGs.

Each colored circle represents a different dataset, and areas of overlap indicate shared DEGs. (p value <0.05 and absolute log2 (fold change) > 0) in the

translational data. (C) Venn diagram showing the overlap of upregulated NDEGs and DEGs in the transcriptional data of Col-0 or tir1-1 afb2-3 after seedlings

were treated with IPA for 3 h versus those treated with IAA. (D) Venn diagram showing the overlap of downregulated NDEGs and DEGs in the transcriptional

data of Col-0 or tir1-1 afb2-3 after seedlings were treated with IPA for 3 h versus those treated with IAA.

(E–G) RT-qPCR analysis showing the relative expression levels of three known auxin-induced genes (GH3.3,GH3.5, and LBD29) in seedlings. Col-0 (gray) or tir1-1

afb2-3 (green) cells weremock infected or treated with DMSO, 5 mM IPA, or 1 mM IAA for 4 h. Dots represent individual values, and lines indicate themeansG SDs.

p < 0.05; one-way ANOVA with Tukey’s multiple comparison test. The normalized mean value of DMSO-treated WT cells was set at 1. See also Figures S6–S8,

Tables S1, S2, S3, and S4.
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Figure 4. The induction of lateral root formation by IPA treatment was decreased in tir1-1 afb2-3

(A and B) tir1-1 afb2-3 is less sensitive to IPA in terms of its ability to induce lateral root formation. Representative images (A) and quantified lateral root numbers

(B) of tir1-1 afb2-3. Seven-day-old Col-0 or tir1-1 afb2-3 were subsequently transferred to MS media supplemented with gradient concentrations of IPA for an

additional 5 days. DMSO was used as the solvent control. The emerged lateral roots were directly counted. Scale bar, 1 cm n = 26, 30, 22, 31, 26, and 19

replicates for Col-0 seedlings and n = 32, 33, 27, 35, 27, and 26 replicates for tir1-1 afb2-3 seedlings under the indicated treatments. Dots represent

individual values, and lines indicate the mean G SD. Different letters represent significant differences; p < 0.05; one-way ANOVA with Tukey’s multiple

comparison test. See also Figures S9–S21.
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suggest that IPA may function as an interkingdom signaling molecule, coordinating the growth of different species, whose role in the natural

ecosystem, however, requires further investigation. Although IAA participates in interspecies communication itself, our work potentially adds

an additional layer to this signaling framework. Notably, although IPA and IAA have similar physiological effects on both primary root elon-

gation and LR formation, the molecular mechanisms underlying primary root growth inhibition are likely distinct.41–44 Further investigations

might advance our understanding of the role of IPA in plant growth regulation.

In the soil, both IAA and IPA are synthesized by various rhizosphere microorganisms and are subsequently released into the environ-

ment.36,37 The bioactivities of these compounds in plant cells involve interkingdom signaling between microbes and plants. Our work also

suggested thatmicrobe-derived IPA canmodulate plant root growth and development. Themolecularmechanism throughwhich IPA targets

the TIR1/AFB-Aux/IAA pathway also represents a potential genetic approach for future agricultural use.

Limitations of the study

While the current study has well established the molecular mechanisms of IPA targeting TIR1-IAA7 to regulate LR development and root hair

growth, we cannot exclude that there could be other mechanisms underlying this process. Additionally, the interactions between microbes

and plants are always complex in the nature, making it challenging to evaluate how much this IPA-TIR1-Aux/IAA pathway is involved.
6 iScience 27, 110363, July 19, 2024
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Figure 5. IPA-dependent TIR1–IAA7 interactions

(A) Yeast two-hybrid experiments revealed the promotive effect of IPA on the interaction between TIR1 with IAA7. Diploids containing LexA DBD-TIR1 and AD-

IAA7 were generated and spotted in selectivemedium containing IAA or IPA. Activation of the expression of LacZ reporter gene evidenced IPA-induced TIR1 and

IAA7 interactions 4 days after spotting. A control strain, containing the plasmids pB42AD-SV40 and pLexA-p53, was used as a positive control.

(B) SPR analysis of IPA and auxin-dependent TIR1-IAA7 interactions. The interactions and dissociations of compounds at different concentrations, including the

DMSO control, 50 mM tryptophan, 50 mM IAA, 50 mM IPA, 500 mM tryptophan, 500 mM IAA, and 500 mM IPA, were tested between TIR1 and IAA7. The compounds

were mixed with TIR1 in solution before injection. RU, resonance units.
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Figure 6. A hypothetical model for IPA and the auxin signaling pathway

Physiological effects of IPA on plants. TIR1/AFB receptors directly bind and sense IPA. In addition, IPA modulates plant growth and development through the

canonical TIR1/AFB-Aux/IAA-ARF auxin signaling pathway.
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SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2024.110363.
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M.J., Medvecká, E., Platre, M.P., Busch, W.,
Fendrych, M., and Estelle, M. (2023). The
AFB1 auxin receptor controls the cytoplasmic
auxin response pathway in Arabidopsis
thaliana. Mol. Plant 16, 1120–1130. https://
doi.org/10.1016/j.molp.2023.06.008.

35. Chen, H., Li, L., Zou, M., Qi, L., and Friml, J.
(2023). Distinct functions of TIR1 and AFB1
receptors in auxin signaling. Mol. Plant 16,
1117–1119. https://doi.org/10.1016/j.molp.
2023.06.007.

36. Dodd, D., Spitzer, M.H., Van Treuren, W.,
Merrill, B.D., Hryckowian, A.J., Higginbottom,
S.K., Le, A., Cowan, T.M., Nolan, G.P.,
Fischbach, M.A., and Sonnenburg, J.L. (2017).
A gut bacterial pathway metabolizes
aromatic amino acids into nine circulating
metabolites. Nature 551, 648–652. https://
doi.org/10.1038/nature24661.

37. Ruth, E., Richards, L., and Schafer, P. (2021).
Hormones as go-betweens in plant
iScience 27, 110363, July 19, 2024 9

https://doi.org/10.1016/j.cell.2009.03.001
https://doi.org/10.1016/j.cell.2009.03.001
https://doi.org/10.1016/j.molp.2020.11.004
https://doi.org/10.1016/j.molp.2020.11.004
https://doi.org/10.1101/cshperspect.a039859
https://doi.org/10.1101/cshperspect.a039859
https://doi.org/10.1111/jipb.13225
https://doi.org/10.15252/embj.2022113018
https://doi.org/10.15252/embj.2022113018
https://doi.org/10.1146/annurev-arplant-042817-040226
https://doi.org/10.1146/annurev-arplant-042817-040226
https://doi.org/10.1016/j.devcel.2018.09.022
https://doi.org/10.1016/j.devcel.2018.09.022
https://doi.org/10.1371/journal.ppat.1003026
https://doi.org/10.1371/journal.ppat.1003026
https://doi.org/10.1038/s41586-022-05143-9
https://doi.org/10.1038/s41586-022-05143-9
https://doi.org/10.1038/s41586-022-05142-w
https://doi.org/10.1038/s41586-022-05142-w
https://doi.org/10.1038/s41586-022-05142-w
https://doi.org/10.1038/s41586-022-05142-w
https://doi.org/10.1126/science.1123542
https://doi.org/10.1126/science.1123542
https://doi.org/10.1016/j.xplc.2023.100632
https://doi.org/10.1016/j.xplc.2023.100632
https://doi.org/10.1101/gad.210501.2648
https://doi.org/10.1101/gad.210501.2648
https://doi.org/10.1105/tpc.112.097766
https://doi.org/10.1105/tpc.112.097766
https://doi.org/10.1111/j.1365-313X.2010.04137.x
https://doi.org/10.1111/j.1365-313X.2010.04137.x
https://doi.org/10.1038/emboj.2012.120
https://doi.org/10.1038/emboj.2012.120
https://doi.org/10.1111/j.1365-313X.2008.03668.x
https://doi.org/10.1111/j.1365-313X.2008.03668.x
https://doi.org/10.1126/science.adj4591
https://doi.org/10.1126/science.adj4591
https://doi.org/10.1101/cshperspect.a005546
https://doi.org/10.1101/cshperspect.a005546
https://doi.org/10.1146/annurev.cellbio.23.090506.123214
https://doi.org/10.1146/annurev.cellbio.23.090506.123214
https://doi.org/10.7554/eLife.19048
https://doi.org/10.1038/s41477-018-0190-1
https://doi.org/10.1038/s41586-021-04037-6
https://doi.org/10.1038/s41586-021-04037-6
https://doi.org/10.1038/s41586-021-04037-6
https://doi.org/10.1038/s41586-021-04037-6
https://doi.org/10.1038/s41586-021-03976-4
https://doi.org/10.1038/s41586-021-03976-4
https://doi.org/10.1073/pnas.1110682108
https://doi.org/10.1073/pnas.1110682108
https://doi.org/10.1016/j.cell.2023.11.021
https://doi.org/10.1016/j.cell.2023.11.021
https://doi.org/10.1016/j.cell.2023.10.017
https://doi.org/10.1038/s41586-022-05187-x
https://doi.org/10.1038/s41586-022-05187-x
https://doi.org/10.7554/eLife.85193
https://doi.org/10.7554/eLife.85193
https://doi.org/10.1038/s41477-021-00969-z
https://doi.org/10.1101/529248
https://doi.org/10.1101/529248
https://doi.org/10.1016/j.molp.2023.06.008
https://doi.org/10.1016/j.molp.2023.06.008
https://doi.org/10.1016/j.molp.2023.06.007
https://doi.org/10.1016/j.molp.2023.06.007
https://doi.org/10.1038/nature24661
https://doi.org/10.1038/nature24661


ll
OPEN ACCESS

iScience
Article
microbiome assembly. Plant J. 105, 518–541.
https://doi.org/10.1111/tpj.15135.

38. Wlodarska, M., Luo, C., Kolde, R.,
d’Hennezel, E., Annand, J.W., Heim, C.E.,
Wlodarska, M., Luo, C., Kolde, R., Creasey,
E.A., and Krastel, P. (2017). Indoleacrylic Acid
Produced by Commensal
Peptostreptococcus Species Suppresses
Inflammation. Cell Host Microbe 22, 25–
37.e6. https://doi.org/10.1016/j.chom.2017.
06.007.

39. Sehgal, R., de Mello, V.D., Männistö, V.,
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and virus strains

Escherichia coli strain DH5a Vazyme Cat# C502-02

E. coli strain BL21 (DE3) Vazyme Cat# C504-02

E. coli strain DH10Bac Invitrogen Cat# 10361012

Chemicals, peptides, and recombinant proteins

Murashige & Skoog Basal Medium including vitamins Duchefa Biochemie Cat# M0222.0050

Plant Agar Duchefa Biochemie Cat# P1001.1000

Indole 3-acetic acid (IAA) Duchefa Biochemie Cat# I0901.0025

3-Indolepropionic acid (IPA) Sigma-Aldrich Cat# 220027

Dimethyl sulfoxide (DMSO) Sigma-Aldrich Cat# D4540

L-Tryptophan Sigma-Aldrich Cat# T0254

Cellfectin II Reagent Thermo Fisher Scientific Cat# 10362100

Flag peptide Sigma Aldrich Cat# F3290

Flag-TIR1 recombinant protein this paper N/A

63His-IAA7 recombinant protein this paper N/A

63His-ASK1 recombinant protein this paper N/A

Yeast Nitrogen Base W/O Amino Acids Coolaber Cat# PM2070

YPDA Medium Coolaber Cat# PM2011

D-Glucose, anhydrous biosharp Cat# BS099

Do Summplement-His/-Trp/-Ura Takara Cat# 630424

D- (+)-Raffinose Coolaber Cat# CR9421

D- (+)-Galactose Coolaber Cat# CG5481

Na2HPO4,12H2O SCR� Cat# 10020318

NaH2PO4,2H2O SCR� Cat# 20040718

FastDigest EcoRI NEB BioLabs Cat# R0101S

ClonExpress II One Step Cloning Kit Vazyme Cat# C112-02

Critical commercial assays

Trelief RNAprep FastPure Tissue & Cell Kit Tsingke Cat# TSP413

PrimeScript RT Master Mix (Perfect Real Time) Takara Cat# RR036A

2 3 Q3 SYBR qPCR Master Mix (Universal) Tolobio Cat# 22204

Series S Sensor Chip CM5 Cytiva Cat# 10343441

Ni-NTA agarose Qiagen Cat# 30250

anti-Flag M2 affinity gel Sigma-Aldrich Cat# A2220

Superdex 200 Increase 10/300 GL column Cytiva Cat# 28990944

Deposited data

RNAseq data this paper SRA: PRJNA1117596

Experimental models: Cell lines

Sf-9 insect cell Gibco Cat# 11496015

Experimental models: Organisms/strains

Arabidopsis thaliana: wild-type (Col-0) N/A N/A

A. thaliana: tir1-1 Ruegger et al.57 N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

A. thaliana: afb1-3 Cecchetti et al.33,58 N/A

A. thaliana: tir1-1 afb2-3 Ruegger et al.57 N/A

A. thaliana: tir1-1 afb2-1 afb3-1 Cecchetti et al.33,58 N/A

A. thaliana: afb5-5 Prigge et al.33,59 N/A

A. thaliana: afb4 afb5 Prigge et al.33,59 N/A

A. thaliana: arf7 arf19 Okushima et al.60 N/A

A. thaliana: DR5rev::GFP Friml et al.48 N/A

A. thaliana: DR5v2-tdTomato; DR5-n3GFP Liao et al.47 N/A

A. thaliana: DII-Venus Brunoud et al.49 N/A

A. thaliana: mDII-Venus Brunoud et al.49 N/A

A. thaliana: PIN1::PIN1-GFP Benková et al.45 N/A

A. thaliana: ARF19::NLS-GFP (pARF19-n3GFP) Rademacher et al.46 N/A

EGY48 Estojak et al.61

Oligonucleotides

Primer for RT-qPCR: GH3.3 Forward Primer:

CATCACAGAGTTCCTCACAAGC

this paper N/A

Primer for RT-qPCR: GH3.3 Reverse primer:

GTCGGTCCATGTCTTCATCA

this paper N/A

Primer for RT-qPCR: GH3.5 Forward Primer:

CATCTCTGAGTTCCTCACAAGC

this paper N/A

Primer for RT-qPCR: GH3.5 Reverse primer:

CCTCTTCGATTGTTGGCATT

this paper N/A

Primer for RT-qPCR: IAA5 Forward primer:

TGAAGGAAAGTGAATGTGTACCAA

this paper N/A

Primer for RT-qPCR: IAA5 Reverse primer:

GCACGATCCAAGGAACATTT

this paper N/A

Primer for RT-qPCR: IAA19 Forward primer:

TGGTGACAACTGCGAATACGTTAC

this paper N/A

Primer for RT-qPCR: IAA19 Reverse primer:

CGTCTACTCCTCTAGGCTGCAG

this paper N/A

Primer for RT-qPCR: LBD29 Forward primer:

GCTAGGCTTCAAGATCCCATC

this paper N/A

Primer for RT-qPCR: LBD29 Reverse primer:

TGTGCTGCTTGTTGCTTTAGA

this paper N/A

Primer for RT-qPCR: ACTIN7 Forward primer:

CCGGTATTGTGCTCGATTCTG

this paper N/A

Primer for RT-qPCR: ACTIN7 Reverse primer:

TTCCCGTTCTGCGGTAGTGG

this paper N/A

Primer for homologous recombination of pLexA

and TIR1-Forward primer: AACGGCGACTGGC

TGATGCAGAAGCGAATAGCC

this paper N/A

Primer for homologous recombination of pLexA and

TIR1-Reverse primer: GCTTGGCTGCAGGTCGATTAT

AATCCGTTAGTAGTAATGATTTGCC

this paper N/A

Primer for homologous recombination of pB42AD

and IAA7-Forward primer: GATTATGCCTCTCCC

ATGATCGGCCAACTTATGAACC

this paper N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Primer for homologous recombination of pB42AD and

IAA7-Reverse primer: AGAAGTCCAAAGCTTTCAAGA

TCTGTTCTTGCAGTACTTCTCCAT

this paper N/A

Primer for homologous recombination of pLexA and

p53-Forward primer: AACGGCGACTG

GCTGATGCCTGTCACCGAGACCC

this paper N/A

Primer for homologous recombination of pLexA and

p53-Reverse primer: TTGGCTGCAGGTC

GATCAGTCTGAGTCAGGCCCCA

this paper N/A

Primer for homologous recombination of pB42AD

and SV40-Forward primer: GATTATGCCTC

TCCCATGGGAACTGATGAATGGGAGC

this paper N/A

Primer for homologous recombination of pB42AD

and SV40-Reverse primer: AGAAGTCCAAA

GCTTTATGTTTCAGGTTCAGGGGGAG

this paper N/A

Primer for pFastBac-Flag-TIR1, Forward

primer: GATGACGATGACAAGCATATGCA

GAAGCGAATAGCCTTG

this paper N/A

Primer for pFastBac-Flag-TIR1, Reverse primer: GTACCGC

ATGCCTCGACCTCGAGTTATAATCCGTTAGTAG

this paper N/A

Primer for pET-15d-63His-IAA7, Forward primer:

GAAGTTGATGCACATATGATCGGCCAACTTATG

this paper N/A

Primer for pET-15d-63His-IAA7, Reverse primer:

AGCAGCCGGATCCTCGAGTCAAGATCTGTTCTTGCAG

this paper N/A

Primer for pFastBac-63His-ASK1, Forward

primer: GATGCTGGCAGCGGCCAT

ATGTCTGCGAAGAAGATTGTG

this paper N/A

Primer for pFastBac-63His-ASK1, Reverse

primer: GTACCGCATGCCTCGACCTC

GAGTCATTCAAAAGCCCATTG

this paper N/A

Recombinant DNA

Plasmid pFastBac-Flag-TIR1 this paper N/A

Plasmid pET-15d-63His-IAA7 this paper N/A

Plasmid pFastBac-63His-ASK1 this paper N/A

Plasmid pLexA-TIR1 this paper N/A

Plasmid pB42AD-IAA7 this paper N/A

Plasmid pLexA-p53 this paper N/A

Plasmid pLexA-SV40 this paper N/A

Plasmid p8op-lacZ Estojak et al.61 N/A

pFastBac1 Invitrogen Cat# 10359-016

pET15D Novagen N/A

Software and algorithms

ImageJ Schneider et al.62 https://imagej.nih.gov/ij/

Fiji Schindelin et al.63 https://fiji.sc/

ZEN ZEISS https://www.zeiss.com.cn/

GraphPad Prism 8.3.0 (538) Graphpad Software, USA https://www.graphpad.com/

scientific-software/prism/

Biacore T200 Evaluation Software Version 3.0 Cytiva N/A

Origin 2023 OriginLab https://www.originlab.com/
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, (sttan@ustc.

edu.cn).
Materials availability

This study did not generate new unique reagents and the materials generated in this study are available from the corresponding author.
Data and code availability

� RNA-seq data have been deposited at NCBI and are publicly available as of the date of publication. Accession numbers are listed in the

key resources table.

� This study did not report any original code.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Plant materials and growth conditions

The Arabidopsis thaliana (L.) mutants and transgenic plants were all in the Columbia-0 (Col-0) ecotype background. The marker lines

DII-Venus,49 mDII-Venus,49 DR5v2-ntdTomato;DR5-n3GFP47, DR5rev::GFP,48 PIN1::PIN1-GFP,45 and ARF19::NLS-GFP (pARF19-n3GFP)46

were reported previously. The tir1-1,57 arf7 arf19,60 tir1-1 afb2-3,57,64 tir1-1 afb2-1 afb3-1,58 afb1-3,58 afb5-5,33,59 and afb4 afb533,59 mutants

in the Col-0 background were also reported previously, and Col-0 was used as a control.

For phenotyping of seedlings or pharmacological experiments, surface-sterilized seeds were sown on solid Murashige and Skoog (MS)

media [0.53 MS media supplemented with 1% (w/v) sucrose and 0.8% (w/v) phytoagar; MES buffer, pH 5.9]; stratified at 4�C for 2 days;

and subsequently grown vertically in a growth chamber at 21�C with a 16-h light/8-h dark photoperiod. For microscopic analysis, four-day-

old plants from different reporter lines were transferred to MS media supplemented with gradient concentrations of IPA for 24 or 48 h as

indicated.
METHOD DETAILS

Pharmacological treatments

For long-term growth assays, Arabidopsis seeds were sown on vertical plates with MS media supplemented with the indicated chemicals,

including 3-indolepropionic acid (Sigma, 220027) and dimethyl sulfoxide (DMSO; Sigma, D4540) as themock control. After 2 d of stratification,

the plants were transferred to a growth chamber as described in the ‘‘Plant material and growth conditions’’ session, the length of the roots

was measured, and the phenotype of the roots was observed after an additional 7 or 12 days of growth. For lateral root induction assays, 7-d-

old plants were grown on MS media and subsequently transferred to 0.53MS media supplemented with various concentrations of the test

compounds as described in the figure legends. After 5 days, the number of lateral roots was counted. For the observation of DR5v2-

ntdTomato;DR5-n3GFP and DR5rev::GFP, 4-d-old plants were subsequently transferred to 0.53MS solid media supplemented with gradient

concentrations of IPA, after which GFP and ntdTomato fluorescence at the root tip regions was observed. For DII-Venus and mDII-Venus

observation, 4-d-old plants were subsequently transferred to 0.53MS liquid media supplemented with gradient concentrations of IPA or

DMSO, after which the Venus fluorescence at the root tip regions was observed. For PIN1::PIN1-GFP and ARF19::NLS-GFP observation,

6-d-old plants were transferred to 0.53MS solid media supplemented with gradient concentrations of IPA, after which GFP fluorescence

at the primordium regions was observed.
Imaging by confocal laser scanning microscopy (CLSM)

Fluorescence imaging of the reporter lines was performed using a Zeiss LSM980 confocal laser scanning microscope with a GaAsP detector

(Zeiss, Germany). The default settings (smart mode) were used for imaging proteins tagged with GFP (excitation, 488 nm; emission, 495–

545 nm), tdTomato (excitation, 561 nm; emission, 571–630 nm), or Venus (excitation, 514 nm; emission, 524–580 nm). All of the images

were obtained at 8-bit depth with 23 line averaging.
Image analysis and morphological analysis

For observation of the seedling root phenotype, photographs were taken using a camera (Sony A6000with amacro lens), and the primary root

length or root tip angles were subsequently analyzedwith the ImageJ software. The lateral root numbers were counted directly. The root hairs

were observed using the NIS-Elements program with a stereomicroscope (Nikon SMZ18). For observation of fluorescence in the roots, all the

images were obtained using a laser-scanning confocal microscope (Zeiss LSM980) as described above, and the fluorescence intensity was

measured using ImageJ.
14 iScience 27, 110363, July 19, 2024
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RNA-seq analysis

For RNA-seq analysis, 7-d-oldArabidopsisplants were treatedwith 1 mM IAA, 5 mM IPAor DMSO for 3 h. Each RNA samplewas prepared from

a pool of Col-0 or tir1-1 afb2-3 plants (200 mg) treated with the tested compounds. Three independent RNA samples for each condition were

used for the following analyses, and 1 mg of each RNA sample was used for library preparation. RNA extraction, library preparation and RNA-

seq were performed by BGI using an BGISEQ platform resulting in approximately 44 million reads per sample. Raw RNA-seq reads were

subjected to quality checking and trimming to remove adaptor sequences, contamination and low-quality reads. The trimmed reads of

each sample were aligned to the publicly available reference genome of Arabidopsis (TAIR10, https://support.illumina.com/sequencing/

sequencing_software/igenome.html) using HISAT2 version 2.0.4 on default parameters. Data analyses were performed with the Dr.Tom plat-

form of BGI.

RT-qPCR analysis

Reverse transcription-quantitative PCR (RT-qPCR) was used to examine the transcript levels ofGH3.3, GH3.5, IAA5, IAA19 and LBD29 in Col-0

plants treatedwith 1 mM IAA, 5 mM IPAorDMSO, respectively;ACTIN7 (AT5G09810) was used as an internal reference. In detail, total RNAwas

extracted from the indicated tissues using Trelief RNAprep FastPure Tissue & Cell Kit (Tsingke, TSP413), and DNase was added to digest the

genomic DNA. Then, 1 mg of the RNA sample was reversely transcribed (Takara, RR036A). The resulting cDNA of the corresponding genes

and ACTIN7 was analyzed using SYBR qPCR Master Mix (Tolobio, 22204) with a Bio-Rad CFX Connect Real-Time System. The relative tran-

script level of the examined genes was normalized to the expression of ACTIN7 and was calculated by setting the WT or a certain tissue as 1,

and the data are presented as the mean G SD. from three biological replicates.

Yeast two-hybrid (Y2H) assays

By homologous recombination, TIR1 and IAA7 coding sequences were cloned into the Y2H bait vector pLexA and to the prey vector pB42AD,

respectively, after amplifying using the following primer pairs: TIR1, AACGGCGACTGGCTGATGCAGAAGCGAATAGCC andGCTTGGCTG

CAGGTCGATTATAATCCGTTAGTAGTAATGATTTGCC; IAA7, GATTATGCCTCTCCCATGATCGGCCAACTTATGAACC and AGAAGTCC

AAAGCTTTCAAGATCTGTTCTTGCAGTACTTCTCCAT. Bait and pray constructs were co-transformed into Saccharomyces cerevisiae strain

EGY48 containing a p8opLacZ vector and transformants were selected on SD plates supplemented with –Ura/–His/–Trp dropout solution.61

To test the interaction between TIR1 and IAA7 proteins, transformed yeast colonies were plated on SD-galactose/raffinose inducingmedium

containing –Ura/–His/–Trp dropout supplement, 80 mg/mL X-Gal, and various concentrations of compounds, indicated in corresponding fig-

ures. Plates were incubated for 3–4 days at 30�C. A control strain, containing the plasmids pB42AD-SV40 and pLexA-p53, was used as a pos-

itive control.

Protein expression and purification of IAA7

The full-length Arabidopsis thaliana IAA7 was cloned and inserted into the pET-15d vector (Invitrogen) with six histidine residues in the

N-terminus. The plasmid was introduced into BL21 (DE3) competent cells (Invitrogen). IAA7 expression was induced by adding 0.2 mM

IPTG and culturing at 37�C for 4 h. The bacteria were collected by centrifugation, and the pellet was suspended in lysis buffer containing

25mMTris-HCl (pH8.0), 150mMNaCl, and1mMphenylmethylsulfonyl fluoride (PMSF) anddisruptedby sonication. The cell extractwas centri-

fuged at 42,000 3 g for 1 h, and the supernatant was loaded onto Ni-NTA resin (Qiagen). The resin was washed three times with buffer con-

taining 25 mM Tris-HCl (pH 8.0), 150 mM NaCl and 25 mM imidazole. Then, the protein was eluted with 25 mM Tris-HCl (pH 8.0) and

250mM imidazole. IAA7was further purifiedby a Source 15S cationexchangecolumn (Cytiva). Thepeak fractionswere collected for SPRassays.

Protein expression and purification of TIR1

The full-length CDS of Arabidopsis thaliana TIR1 was cloned and inserted into the pFastBac vector (Invitrogen) with a flag tag at the

N-terminus. The full-length CDS of Arabidopsis thaliana ASK1 was cloned and inserted into the pFastBac vector with a six-histidine tag in

the N-terminus. The recombinant virus was generated by Sf9 insect cells (Invitrogen). Sf9 cells were transfected with P2 virus containing

TIR1 and ASK1 at a ratio of 1:1. The cells were collected by centrifugation, and the pellet was resuspended in lysis buffer containing

25 mM Tris-HCl (pH 7.4), 150 mM NaCl, and 1 mM PMSF. The cells were disrupted by sonication, and the cell extract was centrifuged at

42,000 3 g for 1 h. The supernatant was incubated with anti-FLAG M2 affinity gel (Sigma Aldrich) at 4�C for 30 min. The resin was washed

three times with buffer containing 25 mM Tris-HCl (pH 7.4) and 150 mM NaCl. The protein was eluted with 25 mM Tris-HCl (pH 7.4),

150 mM NaCl and 200 mg/mL Flag peptide. The TIR1-ASK1 protein was further purified with a Superdex 200 Increase column (Cytiva). The

peak fractions were collected for SPR assays.

Surface plasmon resonance (SPR) analysis

SPR measurements were performed using Biacore T200 systems (Biacore GE Healthcare Biosciences). IAA7 protein was immobilized onto a

Series S CM5 sensor chip (Cytiva) with 9,454 resonance units (RU). The purified TIR1-ASK1 proteins were administered at a concentration of

20 mg/mL, and various concentrations of IAA (Duchefa Biochemie), IPA (Sigma Aldrich), or tryptophan (Sigma Aldrich) were injected over the

chip at a flow rate of 30 mL/min in HBS-EP buffer containing 20mMHEPES (pH 7.4), 150mMNaCl, 3mMEDTA, 0.05% (w/v) P20 and 5%DMSO.

The data were analyzed with Biacore T200 Evaluation Software Version 3.0 (Biacore GE Healthcare Biosciences).
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Accession numbers

Publishedsequencedata fromthisarticle canbe found in theArabidopsisGenome InitiativeorenBank/EMBLdatabases.Theaccessionnumbers

used are as follows: NPH4/ARF7 (AT5G20730), ARF19 (AT1G19220), AXR2/IAA7 (AT3G23050), TIR1 (AT3G62980), AFB1 (AT4G03190), AFB2

(AT3G26810), AFB3 (AT1G12820), AFB4 (AT4G24390), and AFB5 (AT5G49980).
QUANTIFICATION AND STATISTICAL ANALYSIS

Most of the experiments were repeated at least three times independently, each yielding similar results. For measurements of primary root

length and root tip angles, photographs or scans were analyzed with the ImageJ program (https://imagej.nih.gov/ij/download.html)62 or Fiji

(https://fiji.sc/).63 The fluorescence intensity of the CLSM images was quantified by Fiji (https://fiji.sc/).63 Data visualization and statistical anal-

ysis weremostly performedwithGraphPad Prism 8. For the bending curvatures of the root tips, polar graphswere generatedwithOrigin 2023.

n and p values are indicated in the figures and legends, respectively.
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