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The Hippo signaling pathway regu-
lates a number of cellular events, 

including the control of cell fates in pre-
implantation mouse embryos. The inner 
and outer cells of the embryo show high 
and low levels of Hippo signaling, respec-
tively. This position-dependent Hippo 
signaling promotes the specification of 
distinct cell fates. In a recent paper, we 
identified the molecular mechanism that 
controls Hippo signaling in preimplan-
tation embryos. The junction-associated 
scaffold protein angiomotin (Amot) 
plays a key role in this mechanism. At 
the adherens junctions of the inner cells, 
Amot activates the Hippo pathway by 
recruiting and activating the protein 
kinase large tumor suppressor (Lats). In 
contrast, Amot at the apical membrane 
of the outer cells suppresses Hippo sig-
naling by interacting with F-actin. The 
phosphorylation of Amot inhibits its 
interaction with F-actin and activates 
Hippo signaling. We propose that Amot 
acts as a molecular switch for the Hippo 
pathway and links F-actin with Lats 
activity.

Introduction

The Hippo pathway plays a central 
role in coordinated tissue formation and 
organogenesis.1-3 The components of the 
Hippo pathway were originally identi-
fied in the fruit f ly Drosophila melano-
gaster using a genetic screen designed to 
identify genes that regulate cell prolifera-
tion.4 Over the course of the last decade, 
studies in Drosophila and mammals have 

revealed an evolutionarily conserved core 
Hippo pathway and divergent upstream 
inputs (Fig. 1A). The core Hippo pathway 
involves mammalian STE20-like protein 
kinase 1/2 (Mst1/2), serine/threonine 
kinases homologous to Drosophila Hippo 
and their cofactor Salvador 1 (Sav1), 
second messenger serine/threonine 
kinases Lats1/2 and their cofactor Mps1 
binder (Mob1), and transcriptional co-
activators Yes-associated protein (Yap1) 
and transcriptional coactivator with 
PDZ binding motif (Taz)/WW domain 
containing transcription regulator 1 
(Wwtr1) that interact with TEA domain 
family transcription factors (Tead1–4) 
in the nucleus.1 Upon activation of the 
Hippo pathway, Lats1/2 phosphorylates 
Yap (herein referring to Yap1 and Taz/
Wwtr1 collectively). Phosphorylated Yap 
(p-Yap) is retained in the cytoplasm by 
interacting with 14–3-3 protein and is 
degraded by the ubiquitin-proteasome 
system.5-8 Thus, the activation of the 
Hippo pathway results in a loss of the 
Tead-Yap complex in the nucleus and the 
repression of the target genes. In con-
trast, lack of Hippo signaling allows Yap 
to accumulate in the nucleus, leading to 
the expression of target genes. In this 
commentary, we outline the findings of 
our recent paper9 that examined the role 
of the junction-associated scaffold pro-
tein angiomotin (Amot) in preimplan-
tation mouse embryos. Together with 
additional data, we propose a model by 
which Amot plays a central role in both 
the activation of the Hippo pathway at 
adherens junctions (AJs) and its apical 
F-actin-mediated suppression.
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The Role of the Hippo Pathway 
in Preimplantation Cell Fate 

Specification

During mouse development, the 
first cell fate specification event takes 
place between the morula and blastocyst 
stage, prior to the implantation of the 
embryo into the uterus (preimplantation) 

(Fig. 2A). The morula is an aggregate of 
16–32 cells. The outer cells of the morula 
acquire apicobasal polarity and differen-
tiate into a cyst-like epithelial tissue in 
the blastocyst called the trophectoderm 
(TE). The TE is required for implanta-
tion and subsequently forms the placental 
tissues. The inner cells are nonpolar cells 
that form the inner cell mass (ICM), an 

aggregate of cells attached to one side of 
the TE. The ICM gives rise to the embryo 
proper and several extraembryonic tissues.

The specification of TE and ICM cell 
fates is regulated by the Hippo pathway 
(Fig. 2B).9,10 In the outer cells, Hippo 
signaling is quiescent, allowing Yap 
to accumulate in the nucleus. Nuclear 
Yap complexes with Tead4, converting 
it into a transcriptional activator. The 
Tead4-Yap complex activates the expres-
sion of TE-specific transcription factors, 
including Cdx2 and Gata3, promoting 
TE differentiation.10-15 In the inner cells, 
Hippo signaling is active, inhibiting the 
nuclear accumulation of Yap. The absence 
of nuclear Yap renders Tead4 inactive, 
thereby preventing the expression of 
TE-specific transcription factors. Likely 
through an autoactivation mechanism,16 
this allows the high-level expression of 
pluripotency-related transcription factors 
Oct3/4, Nanog, and Sox2, which pro-
mote the differentiation of cells into the 
ICM.10,15,17

The Requirement of Amot Family 
Proteins in Hippo Signaling

Amot is a junction-associated scaf-
fold protein involved in Hippo signaling. 
Amot plays a key role in the regulation of 
the mammalian Hippo pathway at AJs 
but is absent in Drosophila. This fact may 
reflect a difference in the organization of 
the intercellular junctions of these spe-
cies. Amot contains three PY motifs in the 
N-terminal region, a coiled-coil domain 
in the central region, and a PDZ-binding 
motif at the C-terminus (Fig. 1B). There 
are two Amot-related proteins, Amotl1 
and Amotl2.18 The domain structure is 
largely conserved among the Amot family 
of proteins. Through these domains and 
motifs, Amot interacts with many proteins 
involved in cell polarity19 and junction for-
mation,19,20 and with the Hippo pathway 
components Merlin,21 Kibra,9 Lats,9,22 
and Yap.23-25 In addition, the N-terminal 
region of Amot exhibits an F-actin bind-
ing/bundling activity.26

Amot is localized throughout the 
plasma membrane at the AJs (junctional 
Amot) and restricted to the apical domain, 
including tight junctions (apical Amot), 

Figure 1. Schematic representation of the Hippo pathway. (A) input from divergent upstream path-
ways activates the core Hippo pathway. activated Lats kinase phosphorylates Yap, leading to its 
cytoplasmic retention and degradation. without nuclear Yap, the expression of tead target genes 
is suppressed. in contrast, when Hippo signaling is inactive, Yap enters the nucleus, complexes 
with tead, and activates the transcription of target genes. (B) the domain structures of amot fam-
ily proteins and amot-interacting proteins. the numbers at the right of each scheme indicate the 
numbers of amino acid residues of the proteins. amot has two isoforms: p130 (amot130) and p80 
(amot80). amot80 lacks an N-terminal domain. the N-terminal domain of amot 130 contains three 
PY motifs. Yap interacts with the first two PY motifs,23-25,50 and Kibra interacts with the third PY 
motif.9 the third PY motif is not present in amotl2. the amot N-terminal domain also interacts 
with F-actin. a Lats phosphorylation site (asterisk, S176) is present within the essential region of 
the amot F-actin binding domain.34 Merlin interacts with the coiled-coil domain of amot.21 the 
interaction of amot with Lats requires both the N-terminal and coiled-coil domains, but the exact 
interaction motifs remain unknown.9,22
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in the nonpolar inner and polarized outer 
cells, respectively (Fig. 2C). In preimplan-
tation embryos, Amot is required for the 
activation of the Hippo pathway in the 
inner cells (Fig. 2B). In Amot mutant (KO) 
embryos, the inner cells show reduced 
Hippo signaling, leading to the nuclear 
accumulation of Yap and the induction 
of TE genes.9 However, the mutant phe-
notype subsides after the blastocyst stage 
(> 32 cells), allowing the mutant embryos 
to develop until postimplantation stages.27 
To attenuate Hippo signaling completely, 
a simultaneous knockdown of Amotl2 in 
Amot KO embryos is required, indicat-
ing a redundant role of Amotl2 in Hippo 
signaling.9,17 Amotl2 is not expressed in 
the inner cells of wildtype embryos; thus, 
we initially assumed that Amotl2 was not 
involved in the activation of Hippo in the 
inner cells. However, Amotl2 is ectopi-
cally induced in the inner cells of Amot 
KO embryos.9 Because Tead4 was found 
to bind in close proximity to the Amotl2 
gene in a chromatin immunoprecipitation 

followed by high-throughput sequencing 
(ChIP-seq) analysis of trophoblast stem 
cells,14 we predict that the impairment of 
Hippo signaling in the inner cells of Amot 
KO embryos allows nuclear accumula-
tion of Yap, which in turn complexes with 
Tead4 and induces Amotl2 expression.

The role of Amot appears to be con-
text dependent. Although a recent study 
showed that Amot functions as a tran-
scriptional cofactor of Tead-Yap in the 
nuclei of adult liver cells and HEK293 
cells,28 it does not play such a role in pre-
implantation embryos. In the absence of 
Amot, embryos express the Tead4 target 
gene Cdx2 and form TE.

Activation of Hippo Signaling by 
Phosphorylated Junctional Amot

The cell adhesion molecules of the 
AJ are cadherins. Homodimerization of 
E-cadherin reportedly activates the Hippo 
pathway in cultured cells.29 The primary 

cell adhesion molecule in preimplantation 
embryos, E-cadherin, is involved in the 
activation of the Hippo pathway.9,10,30 The 
cytoplasmic domain of E-cadherin inter-
acts with the adaptor proteins α-, β-, and 
p120-catenin. α-Catenin interacts with a 
FERM domain-containing Hippo com-
ponent, Merlin (encoded by Nf2),31 which 
interacts with Amot.21 Probably through 
these interactions, Amot interacts with 
the E-cadherin/catenin complex.9 Indeed, 
Merlin is also essential for the activation 
of the Hippo pathway in preimplanta-
tion embryos.32 In the inner cells, both 
Merlin and Amot are present at the AJs, 
permitting Hippo signaling to occur. The 
conserved serine residue at position 176 
of mouse Amot (S176; corresponding to 
S175 in human AMOT) is phosphorylated 
by Lats.9,33-35 In preimplantation embryos, 
phosphorylated Amot (p-Amot) is present 
exclusively at the AJs (Fig. 3B). The phos-
phomimetic form of mouse Amot (Amot-
S176E) shows increased interaction with 
Lats2 and constitutively activates Hippo 

Figure 2. Differential Hippo signaling specifies distinct cell fates in the preimplantion mouse embryo. (A) at the morula stage, mouse embryos consist 
of inner and outer cells. the outer cells are specified to become the trophectoderm (tE), whereas the inner cells are specified to become the inner cell 
mass (iCM) at the blastocyst stage. (B) in the inner cells, cell adhesion activates Hippo signaling in an amot-dependent manner, allowing the inner cells 
to express iCM-specific transcription factors and adopt iCM fate. in the outer cells, Hippo signaling is suppressed by cell polarity, which specifies the 
outer cells to become the tE. (C) the distribution of amot (shown in red) in normal and polarity-disrupted embryos.
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signaling, indicating that the phosphory-
lation of Amot is a key mechanism that 
switches on the Hippo pathway (Fig. 3B).

Cell Polarity Controls Hippo 
Signaling Through Amot

Although AJs are present in both the 
inner and outer cells, the outer cells show 
a significantly lower level of Hippo signal-
ing than the inner cells. Differences in cell 
polarization play a role in establishing this 
difference. As described previously, only 
the outer cells have apicobasal cell polar-
ity, and this polarization is regulated by 
the Par-aPKC system.9,36-38 Disruption of 
cell polarity by the knockdown of parti-
tioning defective 6 β (Pard6b) results in the 
aberrant activation of Hippo signaling, a 
reduction in Cdx2 expression in the outer 
cells, and the disruption of TE epitheliali-
zation at a later stage.9,36 The disruption of 

cell polarity by inhibiting other Par-aPKC 
regulators also results in the aberrant acti-
vation of Hippo signaling in the outer 
cells.9

The distribution of Amot is one of the 
key mechanisms that links cell polarity 
with Hippo signaling in preimplanta-
tion embryos. In the outer cells of wild-
type embryos, Amot is restricted to the 
apical domain and is not present in the 
basolateral AJs (Fig. 2C); however, in 
embryos with disrupted polarity, Amot 
is present in all domains of the plasma 
membrane, including the AJs of the outer 
cells (Fig. 2C). Formation of the Amot–
Merlin complex at AJs activates the Hippo 
pathway in the outer cells of the polarity-
disrupted embryos. Therefore, Hippo 
signaling in wildtype outer cells is nor-
mally attenuated by cell polarity factors 
that sequester Amot from the basolateral 
AJs (Fig. 3B). The mechanism by which 
cell polarity controls Amot distribution in 

preimplantation embryos remains to be 
elucidated. This may involve the interac-
tion of Amot with Par3.19 Amot is a tight 
junction (TJ) component in epithelial 
cells, and it largely colocalizes with the TJ 
protein ZO-1 in both the outer and non-
polar inner cells of the embryo.9 Therefore, 
it is also possible that Amot is regulated in 
parallel to or through its interaction with 
ZO-1.

Inhibition of Hippo Signaling 
by Non-Phosphorylated Apical 

Amot

In our current model, the Amot–
Merlin complex at AJs recruits and acti-
vates Lats. This model is consistent with 
other Hippo signaling models, which also 
propose that Lats is activated at the plasma 
membrane.39,40 Amot and Merlin are not 
only present at the AJs of the inner cells, 

Figure 3. the molecular basis of differential Hippo signaling in preimplantation embryos. (A) Amot KO enhances Hippo signaling in the outer cells as 
shown by an increased level of phosphorylated Yap (p-Yap). the inner cells are encircled by dashed lines in the left panels. the graph shows the mean 
level of p-Yap in the outer cells of wildtype (wt) (n = 4) and Amot KO (n = 5) embryos. Error bars show the standard error of the mean. these data sug-
gest that Hippo signaling is inhibited at the apical membrane. (B) a model of Hippo pathway regulation in preimplantation embryos. in the inner cells, 
phosphorylated amot makes an active complex with Merlin–Lats at the aJs, activating Hippo signaling. in the outer cells, (1) cell polarity factors seques-
ter amot from the basolateral aJs, thereby attenuating E-cadherin-mediated Hippo signaling. (2) Nonphosphorylated apical amot makes an inactive 
complex with Merlin–Lats, which binds cortical F-actin, suppressing Lats activity.
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but also at the apical membranes of the 
outer cells and, notably, Lats is also found 
at the apical membrane.32 Colocalization 
of these molecules at the apical mem-
brane is puzzling, because nearly no 
Hippo signaling is elicited in the outer 
cells despite the colocalization of these 
proteins. Interestingly, the outer cells of 
Amot KO embryos show increased Hippo 
signaling relative to wildtype embryos 
(Fig. 3A).9 The knockdown of Amotl2 in 
Amot KO embryos results in the loss of 
Hippo signaling, suggesting that the sig-
naling in Amot KO embryos is mediated 
by Amolt2.9,17 These results suggest that 
in wildtype embryos, apical Amot inhibits 
Hippo signaling induced by Amotl2. This 
is opposite to the role of junctional Amot. 
Unlike junctional Amot, apical Amot is 
not phosphorylated, raising the possibil-
ity that the function of Amot in Hippo 
signaling depends on its phosphorylation 
state.9

Perspective: The Role of Amot 
Phosphorylation in F-Actin-

Mediated Lats Inhibition

Amot has an F-actin binding domain 
in its N-terminal region, and the phos-
phorylation of S176 inhibits its actin bind-
ing activity.9,33-35 A nonphosphorylatable 
form of Amot (Amot-S176A) binds to 
F-actin, whereas a phosphomimetic Amot 
(Amot-S176E) does not. F-actin is known 
to inhibit Lats activity.41-44 Because Amot 
interacts with both Lats and F-actin and 
both interactions are regulated by phos-
phorylation of Amot on S176, we would 
propose a model where Amot phosphory-
lation acts as a molecular switch of Lats 
activity (Fig. 3B).

Amot forms a complex with Merlin–
Lats at both the AJs of the inner cells 
and the apical domain of the outer cells. 
Activity of the Amot–Merlin–Lats com-
plex is regulated by the phosphorylation 
status of Amot. In the outer cells, the 
nonphosphorylated-Amot (np-Amot)–
Merlin–Lats complex localizes to the 
apical domain. Through the interaction 
of np-Amot with F-actin, the complex is 
localized to the apical cortex. In the np-
Amot complex, Lats is inactive. In the 
inner cells, the p-Amot–Merlin–Lats 

complex does not bind to cortical F-actin 
and, instead, it localizes to the AJs through 
its interaction with the E-cadherin/
catenin complex. Lats is active in this form 
of the complex. Although the mechanism 
by which phosphorylated Amot controls 
Lats activity remains to be elucidated, it 
is likely that the phosphorylation status 
alters the conformation of Amot and/or 
the protein–protein interactions within 
the complex to activate/inactivate Lats. 
Supporting this notion, phosphorylation 
enhances the interaction between Amot 
and Lats.9 It is also possible that F-actin 
and/or F-actin-interacting proteins have 
Lats inhibitory activities and the binding 
of np-Amot to F-actin recruits and inacti-
vates Lats.

Conclusions

Although growing evidence highlights 
the importance of F-actin in the regulation 
of the Hippo pathway, the mechanism of 
F-actin-mediated regulation of the Hippo 
pathway remains elusive. In this regard, 
the discovery of phosphorylation-depen-
dent regulation of Amot-F-actin binding 
should contribute significantly toward our 
understanding of this mechanism. The 
regulation of the Hippo pathway by cell 
polarity also requires further investiga-
tion, as cell polarity regulates the Hippo 
pathway in a context-dependent manner. 
In preimplantation embryos, cell polarity 
suppresses Hippo signaling, whereas the 
disruption of cell polarity in Drosophila 
and cultured mammalian epithelial cells 
inactivates Hippo signaling.45-49 The role 
of Amot in epithelial cells is also context-
dependent. Apical Amot in the outer cells 
of preimplantation embryos promotes the 
accumulation of nuclear Yap by suppress-
ing Hippo signaling, whereas Amot in cul-
tured epithelial cells inhibits the nuclear 
accumulation of Yap by tethering Yap to 
TJs.23-25 Because Amot phosphorylation is 
a key event for both Hippo pathway acti-
vation and the direct interaction of Amot 
and Yap,9,34 the regulatory mechanism of 
Amot phosphorylation should be further 
investigated to clarify the opposing con-
text-dependent activities of Amot. Amot 
plays pivotal roles in junction formation, 
actin polymerization, cell polarity, and the 

Hippo pathway. Therefore, elucidating 
the functions of Amot will improve our 
understanding of the integration of cell 
adhesion, cell morphology, and the Hippo 
pathway.
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