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Sheep (Ovis aries) is one of the important livestock with diverse phenotypic traits. However,
little is known about the molecular mechanism of diverse phenotypic traits in domestic
sheep. Using the genome-wide high-density SNP data (600K) in 253 samples from 13
populations, we conducted the tests of selective sweeps (i.e., pairwise FST and XP-CLR)
associated with several important phenotypic traits (e.g., tail types, horn morphology,
prolificacy, coat pigmentation, ear size, milk production, meat production, body size and
wool fineness). We identified strong selective signatures in previously reported (e.g., T,
RXFP2, BMPR1B, TYRP1, MSRB3, TF, CEBPA, GPR21 and HOXC8) and novel genes
associated with the traits, such as CERS6, BTG1, RYR3, SLC6A4, NNAT and OGT for fat
deposition in the tails, FOXO4 for fertility, PTCH1 and EMX2 for ear size, and RMI1 and
SCD5 for body size. Further gene annotation analysis showed that these genes were
identified to be the most probable genes accounting for the diverse phenotypic traits. Our
results provide novel insights into the genetic mechanisms underlying the traits and also
new genetic markers for genetic improvement in sheep and other livestock.
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INTRODUCTION

Sheep (Ovis aries) is an excellent model species for investigating the genetic basis of diverse
phenotypic traits under the effects of genetic drift, natural and artificial selection factors (Cao
et al., 2020). Following domestication, as many as 1,400 breeds have been developed in sheep (Scherf,
2000). In particular, human-imposed selection has affected the species greatly over the past hundreds
of years, and, thus, diverse phenotypic traits have been formed in different breeds, such as fat-
rumped sheep (Kazakh Edilbai), thin-tailed sheep (Celle Black), Polled (Merino), high prolificacy
sheep (Hu) and dairy sheep (Lacaune) (Wei et al., 2015; see Table 1).

The recent availability of genome-wide SNPs gave a new momentum to identify the genetic
variants underlying phenotypic traits (Kijas et al., 2012; Xu and Li 2017; Gui et al., 2020;
Abousoliman et al., 2021; Zhou et al., 2021). Previous studies have identified a number of
candidate genes or variants associated with meat, growth, milk, wool, reproduction, horns and
tails in sheep, most of which have employed the low-density SNPs (50K) (see the review in Xu and Li,
2017) or whole-genome sequences (Li et al., 2020). However, to date, little is known regarding the
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TABLE 1 | Summary information of 13 breeds of domestic sheep.

Breed origin Breed name Code No. of
samples

Sex Phenotypic characteristics Geographic origins

Latitude (°N) Longitude (°E)

China Celle Black Sheep CLS 15 Female Short thin-tailed and black or gray coat color 34.02 82.66
China Tan sheep TAN 15 Female White coat color and seasonal reproductive 37.75 106.41
China Hu sheep HUS 15 Female High prolificacy 32.44 120.25
Kazakhstan Kazakh Edilbai KAZ 9 Female Fat-rumped and a wide and deep body 52.32 77.03
Afghanistan Jill Wagner sheep WGJ 11 Male/Female Exceptionally large and floppy ears 37.13 79.93
Scotland Shetland SHL 11 Male/Female Medium length legs and finely boned 51.17 4.20
Australia Merino MER 36 Male Two horns −25.27 133.78
Australia Polled Merino PME 19 Male Hornlessness −25.27 133.78
France Meat Lacaune LAM 34 Female Meat type 43.97 2.99
France Dairy Lacaune LAC 36 Female Dairy type 43.97 2.99
Germany East Friesian sheep EFR 22 Female Dairy type 49.82 15.47
Russia Caucasian CAU 15 Female Delicate wool 45.71 42.88
Italy Altamurana ALT 15 Female Semi-fine wool 41.12 16.87

FIGURE 1 | Images of domestic sheep (A) Kazakh Edilbai sheep (B) Celle Black sheep (C) Polled Merino (D) Merino (E) Hu sheep (F) Tan sheep (G) Caucasian
sheep (H) Altamurana sheep (I) Jill Wagner sheep (J)Meat Lacaune (K) Dairy Lacaune (L) Shetland (M) East Friesian sheep. Photo credits are showed in supplementary
table 2.
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molecular mechanism of diverse phenotypic traits in sheep, such
as dairy and horn traits within breeds. Here, we applied genome-
wide selective scans to detect critical genes associated with the
phenotypic traits based on the Ovine Infinium HD BeadChip.

MATERIALS AND METHODS

Genotypic and Phenotypic Data
We collected 253 individuals from 13 domestic sheep populations
with typical phenotypic traits to investigate the genetic variants
under long-term artificial selection (Figure 1 and Table 1; Kijas
et al., 2014; Xu et al., 2017; Zhao et al., 2017; Gao et al., 2018; Xu
et al., 2018; Rochus et al., 2018; Cao et al., 2020). Whole genome
SNP datasets (Ovine Infinium HD SNP BeadChip) of these
individuals were obtained from previous studies (Xu et al.,
2017; Zhao et al., 2017; Gao et al., 2018; Xu et al., 2018) and
divided into 9 pairs populations (Table 2). We performed two
different selection methods, the pairwise FST (Weir and
Cockerham, 1984) and the cross-population composite
likelihood ratio (XP-CLR) test (Chen et al., 2010). The
identification of common signatures by the different
algorithms and assumptions might be seen as good reliability
of the results while reducing the likelihood of false positives.

SNP Data Quality Control
We implemented strict quality control of the SNP dataset using
the PLINK v.1.09 software (Purcell et al., 2007). We removed
individuals and SNPs that met any of the following criteria: 1)
SNPs without chromosomal or physical locations; 2) SNPs with
>0.02 missing data; 3) individuals with a genotyping rate <0.95; 4)
minor allele frequency (MAF) < 0.05; and 5) the p-value of
Fisher’s exact test for Hardy-Weinberg equilibrium (HWE) <
0.00001. Consequently, the final data after filtering contained
various sets of SNPs and individuals in the comparison tests, such
as 506,350 SNPs and 24 individuals (9 Kazakh Edilbai sheep vs 15
Celle Black Sheep) for the trait of tail shape, 485,747 SNPs and 55
individuals (36Merino sheep vs 19 PolledMerino sheep) for horn
morphology, 514,795 SNPs and 30 individuals (15 Hu sheep vs 15
Tan sheep) for fertility, 509,580 SNPs and 30 individuals (15 Celle
Black Sheep vs 15 Tan sheep) for coat-color pigmentation,
529,338 SNPs and 30 individuals (15 Caucasian sheep vs 15
Altamurana sheep) for wool fineness, 519,650 SNPs and 20
individuals (11 Jill Wagner sheep vs 9 Kazakh Edilbai sheep)

for ear size, 483,150 SNPs and 70 individuals (34 Meat Lacaune
sheep vs 36 Dairy Lacaune sheep) for meat production, 528,576
SNPs and 20 individuals (9 Kazakh Edilbai sheep vs 11 Shetland
sheep) for body size, 471,257 SNPs and 31 individuals (16 East
Friesian sheep vs 15 Caucasian sheep) for milk production
(Supplementary Table S1).

Genomic Selection Signals Analysis
To identify the genomic signatures of selection between pairwise
populations of contrasting these phenotypes in domestic sheep,
we calculated the FST values (Weir and Cockerham, 1984) for
each SNP using the program Genepop v4.2 (Rousset, 2008). We
took the top 0.02% of the empirical distribution of FST as the
putative selective signals. Further, we calculated the XP-CLR
scores for the 200 bp intervals along the chromosomes using
the parameters (“-w1 0.005200 2000-p 0 0.95”). For each
chromosome, we averaged the XP-CLR scores per window
across non-overlapping 10 kb windows. We selected the top
0.05% of these windows as the putative selective regions.

RESULTS AND DISCUSSION

We implemented selection screening in 9 pairs of populations:
KAZ and CLS for tail types, PME and MER for presence or
absence of horn, HUS and TAN for fertility, CLS and TAN for
coat colors, ALT and CAU for wool fineness, WGJ and KAZ for
ear size, LAC and LAM for meat types, KAZ and SHL for body
size and EFR and CAU for milk production. We detected
significant common signals located within or neighboring
both novel and previously reported functional genes. A total
of 36 genes were shared between the two selection scan metrics
(Table 2). For example, seven genes (CERS6, BTG1, RYR3, T,
SLC6A4, NNAT and OGT) (Figure 2 and Supplementary
Tables 3, 4) were identified to be associated with different
tail shapes (i.e., fat-tailed vs thin-tailed) (Joo and Yun, 2011;
Tsai et al., 2013; Ruan et al., 2014; Xiao et al., 2016; Dias et al.,
2016; Turner et al., 2018; Zhi et al., 2018). In the horned vs
polled sheep, the well-known horn morphology-associated gene
RXFP2 has been implicated as a strong candidate gene that
explains the presence or absence of horn in sheep (Figure 3 and
Supplementary Tables S5, 6; Hu et al., 2019). In the high
prolificacy vs low prolificacy breeds, the gene BMPR1B could
be involved in the variation in litter size of females

TABLE 2 | Putative genes under selection based on pairwise FST and XP-CLR.

Traits Populations Functional genes

Tail shapes Kazakh Edilbai sheep vs Celle Black sheep CERS6, BTG1, RYR3, T, SLC6A4, NNAT, OGT
Horn morphology Merino sheep vs Polled Merino sheep RXFP2
Fertility Hu sheep vs Tan sheep BMPR1B, FOXO4
Coat-color pigmentation Celle Black sheep vs Tan sheep TYRP1, KIT
Wool fineness Caucasian sheep vs Altamurana sheep HOXC8, HOXC12, HOXC13, MSI2, DSG1
Ear size Jill Wagner sheep vs Kazakh Edilbai sheep PTCH1, MSRB3, EMX2
Meat production Meat Lacaune sheep vs Dairy Lacaune sheep CEBPA, CEBPG, DLX3, DLX4, GBAS, NSMAF, PDE3A, PEPD, SDCBP, TNRC6A, UTRN
Body size Kazakh Edilbai sheep vs Shetland sheep RMI1, GPR21, SCD5, CADM1
Milk fat yield East Friesian sheep vs Caucasian sheep TF
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(Supplementary Figure S1 and Supplementary Tables S7, 8;
Rossetti et al., 2017). In addition, the two genes TYRP1 and KIT
had been directly implicated in the mechanism of coat-colour
pigmentation in the white vs non-white coat-colour breeds
(Supplementary Figure S2 and Supplementary Tables S9,
10; Vage et al., 2003). The five genes MSI2, DSG1, HOXC8,
HOXC12 and HOXC13 were crucial regulators for wool fineness
in the fine-wool vs semi-fine wool sheep (Supplementary
Figure S3 and Supplementary Tables S11, 12; Awgulewitsch,
2003). The genes MSRB3, PTCH1 and EMX2 were functionally
associated with ear size in the large and floppy vs normal ears
sheep (Supplementary Figure S4 and Supplementary Tables
S13, 14; Rhodes et al., 2003; Wei et al., 2015; Shin et al., 2017).
The eleven genes (CEBPA, CEBPG, DLX3, DLX4, GBAS,
NSMAF, PDE3A, PEPD, SDCBP, TNRC6A and UTRN) had
been reported to be involved in regulating meat production
such as intramuscular fat, drip loss, marbling score, meat
traceability and longissimus muscle in the meat-type vs non-
meat-type sheep (Supplementary Figure S5 and

Supplementary Tables S15, 16; Lobbert et al., 1996;
Nonneman et al., 2013; Ayuso et al., 2015). The genes RMI1,
GPR21, SCD5 and CADM1 might play important roles in
regulating embryo development, body weight, lipid
metabolism and energy homeostasis involved in differences
in body size (Supplementary Figure S6 and Supplementary
Tables S17, 18; Guo et al., 2013). The gene TF was associated
with milk production in the dairy-type vs non-dairy-type sheep
(Supplementary Figure S7 and Supplementary Tables S19, 20;
Ju et al., 2011).

In particular, we detected novel genes with functions
associated with specific traits in sheep, such as CERS6, BTG1,
NNAT and OGT for fat deposition in the tail of sheep, FOXO4
for fertility, PTCH1 and EMX2 for ear size, and SCD5 for body
size. As a negative regulator of β-oxidation, the expression of
CERS6 was significantly increased in subcutaneous fat of obese
subjects with type 2 diabetes (Raichur et al., 2019). The BTG1
gene plays a key role in intramuscular fat deposition by
regulating adipose-derived stem cell differentiation to

FIGURE 2 |Manhattan plots of (A) pairwise FST and (B) XP-CLR selection tests with tail shapes in the comparison of Kazakh Edilbai (KAZ) and Celle Black Sheep
(CLS) populations. The top 0.02% of the empirical distribution of FST and 0.05% of the XP-CLR scores are indicated by dotted lines, respectively.
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osteocytes and myocytes (Moisa et al., 2015). The gene NNAT,
as an endoplasmic reticulum proteolipid implicated in the
intracellular signalling, is associated with severe obesity (Scott
et al., 2013). The gene OGT is an important determinant of fatty
acid synthesis in the mouse liver, which plays a critical role in fat
deposition (Guinez et al., 2011; Kos et al., 2009). The FOXO4
gene has an important role in the activity of corpus luteum that
is linked to folliculogenesis (Pisarska et al., 2009). The PTCH1
gene plays a critical role in the microcephaly, developmental
delay, short stature, and facial dysmorphism by stimulating
sonic hedgehog homolog (SHH) pathway (Derwinska et al.,
2009). The EMX2 gene is highly expressed in mouse inner ear,
with the role of activating early hair cell development (Holley
et al., 2010). The SCD5 gene is linked to the regulator of sterol
regulatory element-binding proteins involved in the
development of body size (Baeza et al., 2013). Taken
together, the apparent differences in the phenotypic traits

among the breeds might be explained by diverse regulation
mechanisms.

Noteworthy, we did not detect previously reported important
functional genes associated with specific traits, for example,
PDGFD and BMP15, which are associated with fat deposition in
the tails of sheep (Li et al., 2020) and litter size (Xu et al., 2018),
respectively. The main reason could be complex genetic
mechanisms of phenotypic traits, for example, fertility was
regulated by different major functional genes BMP15,
NCOA1 and NF1 for Wadi, Icelandic and Finnsheep,
respectively (Xu et al., 2018). In addition, we identified
candidate functional genes different from those identified in
earlier investigations, which could be due to that the power for
general linear models to detect such associations will be weak
when treating quantitative traits given the small sample size (Xu
et al., 2018). Furthermore, these breeds could have been
subjected to selection on specific traits (e.g., body weight)

FIGURE 3 |Manhattan plots of (A) pairwise FST and (B) XP-CLRwith hornmorphology in the comparison of PolledMerino (PME) andMerino (MER) breeds. The top
0.02% of the empirical distribution of FST and 0.05% of the XP-CLR scores are indicated by dotted lines, respectively.
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through environmental variables such as climate, diet and
diseases. However, we did not obtain detailed information for
these variables in our data analysis. Thus, these variables were
not taken into account in our data analysis, which would be
essential for future study.

In conclusion, we detected some novel and previously
reported functional genes associated with particular
phenotypic traits under strong and long-term artificial
selection. Nevertheless, associations between these genes
detected in two tests and the specific traits should be
worthy of further exploration in future investigations.
These findings contribute to understanding of the genomic
consequences of artificial selection in the genomes of
domestic sheep.
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