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Microcystin-leucine arginine (MC-LR) is a potent tumor initiator that can induce malignant
cell transformation. Cellular mechanical characteristics are pivotal parameters that are
closely related to cell invasion. The aim of this study is to determine the effect of MC-LR on
mechanical parameters, microfilament, and cell invasion in DU145 and WPMY cells.
Firstly, 10 mM MC-LR was selected as the appropriate concentration via cell viability
assay. Subsequently, after MC-LR treatment, the cellular deformability and viscoelastic
parameters were tested using the micropipette aspiration technique. The results showed
that MC-LR increased the cellular deformability, reduced the cellular viscoelastic
parameter values, and caused the cells to become softer. Furthermore, microfilament
and microfilament-associated proteins were examined by immunofluorescence and
Western blot, respectively. Our results showed that MC-LR induced microfilament
reorganization and increased the expression of p-VASP and p-ezrin. Finally, the impact
of MC-LR on cell invasion was evaluated. The results revealed that MC-LR promoted cell
invasion. Taken together, our results suggested that mechanical changes and
microfilament reorganization were involved in MC-LR-promoted cell invasion in DU145
and WPMY cells. Our data provide novel information to explain the toxicological
mechanism of MC-LR.

Keywords: microcystin-LR, mechanical parameters, invasion, microfilament, microfilament-associated protein
INTRODUCTION

Microcystins (MCs) are a group of cyclic heptapeptide toxins produced by freshwater cyanobacteria
(Rastogi et al., 2014), among which microcystin-leucine arginine (MC-LR) is the most abundant
and toxic congener (Li Y. et al., 2016). TheWorld Health Organization (WHO) has recommended 1
µg/L as the upper limit of MC-LR in drinking water (Wang et al., 2010). In fact, the concentration of
MC-LR in the drinking water has exceeded this recommend value in many countries (Backer et al.,
2010; Duong et al., 2014; Chun et al., 2018). Current studies show that MC-LR induces cytotoxicity
in.org February 2020 | Volume 11 | Article 891
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in different ways. In detail, it has been shown that MC-LR can
inhibit serine/threonine protein phosphatases (PPs) by
interactions with their catalytic subunits, then affecting the
cellular homeostasis (Zhou et al., 2015; Liu et al., 2016). Also,
MC-LR can induce oxidative stress by increasing the reactive
oxygen species (ROS) or decreasing the glutathione (GSH).
Subsequently, oxidative stress caused by MC-LR might induce
mitochondrial permeability transition and apoptosis (Ma et al.,
2016; Ma et al., 2018; Wu et al., 2019). In addition, previous
studies indicated that MC-LR is a potent tumor initiator (Zhao
et al., 2016; Zhu et al., 2018), which could induce malignant cell
transformation. For example, Liu et al. reported that MC-LR
promoted proliferation and inhibited apoptosis in normal
human liver cells (HL7702) (Liu et al., 2016). The study of
Wang et al. showed that MC-LR induced cytoskeleton
reorganization, resulting in increased cell migration in human
laryngeal epithelial cells (Hep-2) (Wang et al., 2017). However,
the effect of MC-LR on prostate cancer (PCa) cells and normal
prostate cells has yet been studied.

Cellular mechanical characteristics are pivotal parameters
that can reveal the properties of cells, such as their
proliferation, migration, and invasion (Yin-Quan et al., 2014).
It has been reported that the viscoelasticity of cancer cells
decreased significantly and was closely related to their
metastasis and invasion (Rother et al., 2014; Runge et al., 2014;
Nguyen et al., 2016). To date, the effect of MC-LR on cellular
mechanical properties is unknown. In addition, microfilaments
are the main components of the cytoskeleton in the cytoplasm.
Many studies have suggested that MC-LR can cause
microfilament changes in different cells (Meng et al., 2011;
Zeng et al., 2015; Wang et al., 2017). However, the influence of
MC-LR on microfilaments is still poorly documented in PCa
cells and normal prostate cells.

The aim of this study is to determine the effect of MC-LR on
mechanical parameters, microfilament, and phenotype in PCa
cells and normal prostate cells. To do this, we incubated PCa cells
(DU145) and normal prostate cells (WPMY) with 10 mMMC-LR
and then tested the cellular deformability and viscoelastic
parameters by the micropipette aspiration technique.
Frontiers in Pharmacology | www.frontiersin.org 2
Subsequently, the changes of microfilament and microfilament-
associated proteins were examined by immunofluorescence and
Western blot, respectively. Moreover, invasion assay was
conducted to assess the role of MC-LR in cell invasion.
MATERIALS AND METHODS

Cell Culture and Treatment
DU145 and WPMY cells were obtained from the Chinese
Academy of Sciences Cell Bank (Shanghai, China) and
cultured in Dulbecco’s modified Eagle’s medium (DMEM;
Invitrogen, Shanghai, China) supplemented with 10% fetal
bovine serum (FBS; Gibco, Shanghai, China). After 24 h of
incubation, cells were treated with MC-LR (Express
Technology, Beijing, China) for another 24 h. The control cells
were cultured in medium without MC-LR.

CCK-8 Assay
DU145 and WPMY cells were seeded in 96-well plates,
respectively. After treatment with different concentrations of
MC-LR (0.1 mM, 0.5 mM, 1 mM, 2 mM, 5 mM, 10 mM, 20 mM,
and 40 mM) for 24 h, relative cell viability was detected by the
CCK-8 kit (Beyotime, Shanghai, China) according to the
manufacturer’s instructions (Wang et al., 2017).

Micropipette Aspiration Test and the
Mechanical Behavior of Cells
The mechanical behaviors of cells were represented by the
deformability and viscoelastic parameters, which were
investigated using the micropipette aspiration technique
combined with the Kelvin standard linear viscoelastic solid
model (Xie et al., 2019) (Figure 1). A single-cell suspension was
prepared for the micropipette aspiration test by micromanipulator
(Olympus, Japan). A single spherical cell was captured and
deformed by the negative pressure in the micropipette, and then
part of the cell was aspirated into the micropipette. This process
was viewed and recorded with an inversion microscope
FIGURE 1 | The micropipette aspiration technique and the mechanical behavior of cells. (A) A certain negative pressure (ranging from 294 Pa to 441 Pa) induced
cell deformation with time, and then, part of the cell was aspirated into the micropipette. Images of this process were recorded, and the aspirated length L was
measured. (B) Schematic representation of the Kelvin standard linear viscoelastic solid model: in the model, the cell was assumed to be a homogeneous viscoelastic
spherical solid; k1, k2, and m are the viscoelastic parameters, L is the aspirated length, and Dp is the negative pressure.
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(Olympus, Japan) combined with image software. The recorded
images of the micropipette aspiration test were used to measure
the aspirated length of cells (Figure 1A), and then the
relationships of time and aspirated length were obtained and
fitted to calculate the cellular viscoelastic parameter values.

The cell was assumed to be a homogeneous viscoelastic
spherical solid, and then the cellular viscoelastic parameters E0
(the instantaneous modulus), E∞ (the equilibrium modulus
associated with long-term equilibrium), and m (the apparent
viscosity) were calculated by applying the Kelvin standard linear
viscoelastic solid model (Figure 1B) based on the relationships of
time-aspirated length, as our (Xie et al., 2019) and others’ (Zhang
et al., 2008) previous studies have described. The values of the
cellular viscoelastic parameters (E0, E∞, and m) were calculated
according to the following equation:

L(t) = 3aDp
pE∞

� 1+ k1
k1+k2

− 1
� �

exp − t
t

� �h i

m = t �k1�k2
k1+k2

,E0 =
3
2 (k1 + k2), E∞ = 3

2 k1

Immunofluorescence
After 24-h treatment with MC-LR, immunofluorescence was
performed to detect microfilament changes in DU145 and
WPMY cells as previously described (Huang et al., 2018).
Briefly, the cells were fixed using 4% formaldehyde for 15 min
and then washed by phosphate-buffered saline (PBS).
Subsequently, phalloidin (Beyotime, Shanghai, China) and
DAPI (Santa Cruz, Dallas, USA) were added and then
incubated for 60 min. The images were captured using an
Olympus laser-scanning confocal microscope.

Western Blot
Based on a previous study (You et al., 2017), the process ofWestern
blot was slightly modified. After SDS-PAGE, the protein was
Frontiers in Pharmacology | www.frontiersin.org 3
transferred to PVDF membranes (Beyotime, Shanghai, China)
and incubated with anti-VASP (CST, Boston, USA, 1:1000
dilution), anti-ezrin (CST, Boston, USA, 1:1000 dilution), anti-p-
VASP (Ser157, CST, Boston, USA, 1:1000 dilution), anti-p-ezrin
(Thr567, CST, Boston, USA, 1:1000 dilution), and anti-b-actin
(Beyotime, Shanghai, China, 1:1000 dilution) at 4°C overnight.
After incubating with secondary antibody (Proteintech, Wuhan,
China, 1:2000 dilution), the bands were analyzed using the
enhanced chemiluminescence reaction kit (ECL; Beyotime,
Shanghai, China).

Invasion Assay
Invasion assay was carried out using the method previously
described (Yan et al., 2018). DU145 and WPMY cells were
seeded into transwell chambers (Sigma-Aldrich, St. Louis, USA),
respectively. Meanwhile, serum-free DMEM with 10 mM MCLR
was added to the upper chamber, and DMEM containing 10% FBS
was added to the lower chamber. After incubating for 24 h, the
cells that passed through the membranes were stained with 0.5%
crystal violet solution and counted under the microscope.

Statistical Analysis
Statistical analyses were performed with SPSS 19.0 software.
Independent sample t-test was used to determine the
differences between groups. All experiments were performed in
triplicate. Data are shown as mean ± SD, and P < 0.05 was
considered to be significantly different.
RESULTS

Screening of MC-LR Concentration
To select the appropriate concentration of MC-LR, a CCK-8 kit
was used to detect the relative cell viability. As shown in Figure 2,
FIGURE 2 | Screening of MC-LR concentration. DU145 cells and WPMY cells were seeded in 96-well plates, respectively. After incubation with different
concentrations of MC-LR for 24 h, relative cell viability was detected with the CCK-8 kit. The results are representative of three independent experiments. *P < 0.05.
Error bars indicate SD.
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no change was observed in the relative cell viability of DU145
and WPMY cells between the control group and the MC-LR
treated group with concentrations of 0.1-10 mM. However, the
relative cell viability decreased at an MC-LR concentration of 20
mM and more so at 40 mM. Therefore, 10 mM MC-LR was
selected for further study.

MC-LR Caused Mechanical Behavior
Changes in DU145 and WPMY Cells
The relationships between time and the aspirated length of the
cells were plotted as curves, and the time–aspirated length curves
at a negative pressure of 392 Pa are shown in Figure 3A. Under
the negative pressure, the cell was deformed; meanwhile, part of
the cell was aspirated into the micropipette, and the deformation
rate decreased with time until it was no longer aspirated into the
micropipette within 50-60 sec. The time–aspirated length curves
of the cells reflected the cellular deformability. As shown in
Figure 3A, MC-LR treated cells exhibited higher deformability
than MC-LR untreated cells. These results suggested that MC-LR
increased the deformability of the cells. In addition, DU145 cells
showed higher deformability than WPMY cells, and DU145 cells
without MC-LR treatment even still exhibited higher
deformability than WPMY cells treated with MC-LR.

Figures 3B–D show comparisons of the cellular viscoelastic
parameters (E0, E∞, and m), respectively. The viscoelastic
parameter values (E0, E∞, and m) of MC-LR treated cells were
significantly lower than those of the untreated cells (P < 0.05).
Frontiers in Pharmacology | www.frontiersin.org 4
Additionally, the viscoelastic parameter values (E0, E∞, and m) of
DU145 cells were lower than those of WPMY cells (P < 0.05).
These results indicated that the prostate carcinoma cells were
softer than normal prostate cells and that MC-LR induced the
cells to become much softer. Previous research indicated that
cellular mechanical behavior is correlated with microfilament
changes. Hence, we investigated the microfi lament
arrangement further.

MC-LR Induced Microfilament
Reorganization in DU145 Cells
and WPMY Cells
Changes of microfilament were detected in DU145 and WPMY
cells after MC-LR treatment. As shown in Figure 4,
microfilament was evenly distributed in the inner side of the
cell membranes in the control group; by contrast, in the MC-LR
treated group, microfilament appeared to gather to the cell
surface and concentrated to form bundles. Notably, the above
results were observed in both DU145 and WPMY cells. These
data suggested that MC-LR induced microfi lament
reorganization in both DU145 and WPMY cells.

MC-LR Increased the Phosphorylation
Level of Microfilament-Associated
Proteins in DU145 and WPMY Cells
To further elucidate the mechanism of microfilament
rearrangement, the expression and phosphorylation of
FIGURE 3 | MC-LR caused mechanical behavior changes in DU145 cells and WPMY cells. (A) Curves of aspirated lengths L with time at a constant negative
pressure of 392 Pa. (B–D) Comparison of the cellular viscoelastic parameters (E0, E∞, and m). The viscoelastic parameter values were calculated by applying the
curves of the aspirated lengths and the Kelvin standard linear viscoelastic solid model. The results are representative of three independent experiments. *P < 0.05.
Error bars indicate SD.
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microfilament-associated proteins were detected by Western
blot. Firstly, the expression of microfilament-associated
proteins (VASP and ezrin) was tested in DU145 and WPMY
cells after MC-LR treatment. As shown in Figure 5A, no
significant change was observed in the expression of VASP and
ezrin, which implied that microfilament reorganization had no
relationship with the expression of microfilament-associated
proteins. Subsequently, the phosphorylation level of
microfilament-associated proteins was further assessed. The
results showed that the expression of p-VASP (Ser157) and p-
ezrin (Thr567) was significantly higher in the MC-LR treatment
group than in the untreated group (P < 0.05, Figure 5B). These
results demonstrated that MC-LR increased the phosphorylation
level of microfilament-associated proteins in DU145 and
WPMY cells.

MC-LR Promoted Cell Invasion in DU145
and WPMY Cells
It has been reported that MC-LR has potential carcinogenicity;
therefore, transwell assay was performed to determine the effect of
MC-LR on cell invasion. The results revealed that the invasion
Frontiers in Pharmacology | www.frontiersin.org 5
ability of the MC-LR treatment group was substantially reinforced
compared with the untreated group in DU145 and WPMY cells
(P < 0.05, Figure 6). Thus, these data demonstrated that MC-LR
promoted cell invasion in both DU145 and WPMY cells.
DISCUSSION

In the present study, we investigated the influence of MC-LR on
mechanical parameters, microfilament, and cell invasion in
DU145 and WPMY cells. DU145 and WPMY cells were
treated with 10 mM MC-LR, and then the cellular
deformability and viscoelastic parameters were tested by the
micropipette aspiration technique. The results showed that MC-
LR increased the cellular deformability, reduced the cellular
viscoelastic parameter values, and caused the cells to become
softer. Moreover, the immunofluorescence of microfilament was
performed, and then Western blot of microfilament-associated
proteins was carried out. The results demonstrated that MC-LR
induced microfilament reorganization and increased the
phosphorylation level of microfilament-associated proteins.
FIGURE 4 | MC-LR induced microfilament reorganization in DU145 cells and WPMY cells. DU145 cells and WPMY cells were incubated using 10 mM MC-LR for 24 h,
and then immunofluorescence was performed to label microfilament (green) and nuclei (blue), respectively. The results are representative of three independent experiments.
February 2020 | Volume 11 | Article 89

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Zhang et al. Mechanical Changes in MCLR-Promoted Cell Invasion
Finally, the effect of MC-LR on cell invasion was examined. The
results revealed that MC-LR promoted cell invasion. Collectively,
our results suggested that mechanical changes and microfilament
reorganization were involved in MC-LR-promoted cell invasion
in DU145 and WPMY cells.

Since the effect of MC-LR on DU145 andWPMY cells has not
been reported, the appropriate concentration of MC-LR was
Frontiers in Pharmacology | www.frontiersin.org 6
screened. The results showed that MC-LR did not affect the
relative cell viability of DU145 andWPMY cells at concentrations
of 0.1–10 mM. Consistent with our results, Wang et al. treated
Hep-2 cells with 0.5–10 mM MC-LR for 24 h. Their results
suggested that the relative cell viability remained unchanged in
the treated group compared with the untreated group (Wang
et al., 2017). Also, MC-LR at 10 mM was used in several other
FIGURE 5 | MC-LR increased the phosphorylation level of microfilament-associated proteins in DU145 cells and WPMY cells. DU145 cells and WPMY cells were
incubated with 10 mM MC-LR for 24 h, and then Western blot was carried out to detect the expression and phosphorylation of VASP and ezrin. The results are
representative of three independent experiments. * P < 0.05. Error bars indicate SD.
FIGURE 6 | MC-LR promoted cell invasion in DU145 cells and WPMY cells. DU145 cells and WPMY cells were treated with 10 mM MC-LR for 24 h. The invasion
ability was determined by transwell assay. The results are representative of three independent experiments. * P < 0.05. Error bars indicate SD.
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studies (Zeng et al., 2015; Liu et al., 2016; Wang et al., 2017).
Therefore, 10 mM MC-LR was selected for the subsequent
experiments to obtain a more obvious effect in this study.

Micropipette aspiration is a useful technique for detecting the
viscoelasticity of cells, such as colon cancer cells (Taranejoo et al.,
2016), scleral fibroblasts (Wang and Chen, 2012), and
chondrocytes (Zhang et al., 2008). Therefore, in the present
study, the micropipette aspiration technique was used to
investigate the effect of MC-LR on the mechanical properties of
DU145 and WPMY cells. The results showed that MC-LR
increased the deformability of the cells, reduced the cellular
viscoelastic parameter values, and caused the cells to become
softer. Additionally, DU145 cells showed higher deformability
and weaker viscoelastic behavior than WPMY cells, respectively.
Previous studies indicated that mechanical properties are the key
parameters that are correlated with metastasis and invasion of
cancer cells (Rother et al., 2014; Runge et al., 2014; Nguyen et al.,
2016). Specifically, Wang et al. reported that the viscoelastic
characteristics of breast cancer cells were substantially decreased,
and the cancer cells became softer and more fluid than normal
cells (Wang et al., 2016). Xie et al. analyzed different cancer cell
lines, including human skin cancer cells (A2058), lung cancer cells
(MSTO-211H), and hepatocellular carcinoma cells (Hep G2), and
their results suggested that all cancer cells exhibited higher
deformability and weaker viscoelastic behavior than the normal
cells, respectively (Xie et al., 2019). Based on our results and others’
studies, we speculated that MC-LR could induce cells to alter their
structures and functions and become softer, easier to deform, and
potentially easier to metastasize. To our knowledge, this is the first
time that the influence of MC-LR on cellular mechanical
properties has been investigated, providing novel information to
explain the carcinogenic mechanism of MC-LR.

Previous research reported that cellular mechanical behavior
was associated with microfilament changes. As a result, cellular
microfilament arrangement was further tested in this study. The
results of immunofluorescence showed that MC-LR induced
microfilament reorganization, leading to microfilament
distribution on the cell surface and aggregation into bundles in
DU145 and WPMY cells. Consistent with our study, Zeng et al.
found that MC-LR caused aggregation of microfilament around the
cell periphery in HL7702 cells (Zeng et al., 2015). In addition,Wang
et al. observed that microfilaments were reconstructed, gathering at
the cell edge and forming bundles, in MC-LR-treated Hep-2 cells
(Wang et al., 2017). Other studies also demonstrated that MC-LR
could cause microfilament reorganization in human liver cancer
cells (SMMC-7721) (Wang et al., 2014) and neuroendocrine cells
(PC12) (Meng et al., 2011). Additionally, it has been reported that
cellular mechanical behavior is closely related to the components of
the cytoskeleton, such as microfilament and microtubule (Chen
et al., 2013; Pachenari et al., 2014). Further studies suggested that
chemical drugs could cause cytoskeleton reorganization and then
induce mechanical changes (Seyedpour et al., 2015; Li M. et al.,
2016). Therefore, our results indicated that MC-LR could induce
mechanical changes by microfilament reorganization in DU145
and WPMY cells.

Several studies have suggested that microfilament-associated
proteins play key roles in maintaining the structure of
Frontiers in Pharmacology | www.frontiersin.org 7
microfilament (Wang et al., 2017). Therefore, microfilament-
associated proteins need to be further investigated. Several
relevant studies have been documented. For example, Zeng
et al. reported that MC-LR induced hyperphosphorylation of
VASP and ezrin in HL7702 cells but had no significant effect on
their expression level (Zeng et al., 2015). The study of Wang et al.
showed that the expression of p-VASP was up-regulated
remarkably in SMMC-7721 cells treated with MC-LR (Wang
et al., 2014). In addition, other studies found that ezrin and
VASP were regulated by phosphorylation in MC-LR-treated
cells, which could lead to microfilament rearrangement
(Neisch and Fehon, 2011; Thomson et al., 2011; Zhou et al.,
2015). Likewise, we detected the expression and phosphorylation
of microfilament-associated proteins, and the results confirmed
that the expression of p-VASP and p-ezrin was significantly
upregulated in MC-LR treatment cells. However, the expression
of VASP and ezrin remained unchanged. It is well known that
VASP and ezrin are important microfilament-associated
proteins, belonging to Ena/VASP family of adaptor proteins
(Yu et al., 2015) and the ERM (Ezrin/Radixin/Moesin) protein
family (Mcclatchey, 2014), respectively. Previous studies have
demonstrated that the phosphorylation changes in VASP and
ezrin induced microfilament rearrangement (Zhou et al., 2015;
Wang et al., 2017). As a result, the MC-LR-induced increase in
the phosphorylation level of microfilament-associated proteins
that we found in our study could contribute to microfilament
reorganization in DU145 and WPMY cells.

It has been reported that MC-LR can promote cell migration
and metastasis (Pengfei et al., 2013; Wang et al., 2017). In more
detail, Wang et al. showed that MC-LR accelerated Hep-2 cell
migration (Wang et al., 2017). Xu et al. reported that MC-LR
promoted MDA-MB-435 cell invasion and metastasis via the PI3-
K/AKT signaling pathway (Pengfei et al., 2013). In this study, we
found that MC-LR promoted cell invasion in DU145 and WPMY
cells. Previous studies indicated that mechanical properties are
correlated with the metastasis and invasion of cancer cells (Rother
et al., 2014; Runge et al., 2014; Nguyen et al., 2016). In addition,
many studies also suggested that microfilaments were functionally
associated with cell invasion (Moon and Wynshaw-Boris, 2013;
Du et al., 2015; Wang et al., 2017). In the present study, we
demonstrated that MC-LR induced cellular mechanical changes
and microfilament reorganization and promoted cell invasion.
Based on our results and previous studies, we speculate that
MC-LR promoted cell invasion by microfilament reorganization
and mechanical changes in DU145 and WPMY cells. Relevant
further studies will be performed to elucidate the molecular
mechanism of MC-LR-promoted cell invasion.
CONCLUSION

In conclusion, we demonstrated that mechanical changes and
microfilament reorganization were involved in MC-LR-
promoted cell invasion in DU145 and WPMY cells. Our
results provided novel and useful information to explain the
toxicological mechanism of MC-LR.
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