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Geckos use millions of dry bristles on their toes to adhere to and rapidly run up walls and
across ceilings. This has inspired the successful development of dry adhesive materials
and their application to climbing robots. The tails of geckos also help realize adaptive and
robust climbing behavior. Existing climbing robots with gecko-inspired tails have
demonstrated improved locomotion performance. However, few studies have focused
on the role of a robot’s gecko-inspired tail when climbing a sloped surface and its effects on
the overall locomotion performance. Thus, this paper reviews and analyzes the roles of the
tails of geckos and robots in terms of their climbing performances and compares the
advantages and disadvantages of robots’ tails made of rigid and soft materials. This review
could assist roboticists decide whether a tail is required for their robots andwhichmaterials
and motion types to use for the tail in order to fulfill their desired functions and even allow
the robots to adapt to different environments and tasks.
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1 INTRODUCTION

Bio-inspired robotics uses nature as the inspiration for the design of robotic systems that perform
similar to biological systems (Allen (1999); Yang et al. (2018); Pfeifer et al. (2007)). Animal
locomotion (e.g., jumping, swimming, flying, crawling, walking, and climbing) has been studied
and translated into robotic design principles to create advanced robots capable of navigating in
different environments, similar to animals. For example, jumping robots (Armour et al. (2007); Mo
et al. (2019, 2020)), inspired by kangaroos, locusts, and frogs, and walking robots (Koh et al. (2010);
Manoonpong et al. (2021); Billeschou et al. (2020); Lee et al. (2020)), inspired by centipedes, insects,
and dogs, have been studied and developed for traversing uneven or rough terrain. Swimming robots
(Ryuh (2009); Ko et al. (2012); Ijspeert et al. (2007)), inspired by fish, jellyfish, and salamanders, have
been designed for underwater tasks. Flying robots (Phan et al. (2020); Wenfu et al. (2022); Ramezani
et al. (2016)), inspired by insects, birds, and bats, have been built for rescue operations, monitoring,
and goods delivery (Huang and Savkin (2018)). Crawling robots (Khan et al. (2022); Yamamoto et al.
(2018); Rozen-Levy et al. (2021)), inspired by inchworms and caterpillars, have been developed for
branch or pipe crawling. An increasing number of bio-inspired climbing robots have also been
proposed over the last few decades. These robots have wide application prospects in narrow space
exploration, as well as the inspection and maintenance of pressure vessels, oil tanks, and the glass
slabs of high-rise buildings (Dethe and Jaju (2014)).

For bio-inspired climbing robot development, the functional morphology and locomotion
behavior of geckos, in particular dry adhesion mechanisms (Autumn and Peattie (2002);
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Autumn et al. (2006a); Tian et al. (2006); Autumn and Gravish
(2008); Puthoff et al. (2010); Stark et al. (2012)) and gaits
(Autumn et al. (2005, 2006b); Dai et al. (2011); Schultz JT.
et al. (2021)), have been extensively studied. Hence, gecko-
inspired climbing robots (Menon et al. (2004); Unver et al.
(2006); Kim et al. (2008); Jusufi et al. (2008, 2010, 2011);
Estrada et al. (2014); Haomachai et al. (2021); Shao et al.
(2022)) and dry adhesive materials (Murphy et al. (2009);
Bartlett et al. (2012); Glick et al. (2018); Suthisomboon et al.

(2021)) have rapidly been developed. They can adapt to different
substrate surfaces (Kim et al. (2008)) and even carry 100x their
own weight (e.g., 9g climber (Hawkes et al. (2015))). However,
tailless gecko-inspired robots may still be unable to climb on
slippery, complex, or steep terrain. Moreover, no synthetic
adhesive material can fully capture the desirable properties of
a gecko’s foot to enable stable and efficient climbing (Cutkosky
(2015)). Adding gecko-inspired tails to robots can significantly
improve their climbing because tails play an important role in the

FIGURE 1 | A review of the various studies and models used to assess the role of tail in locomotion. (A)Gecko pressing the tail tip against the wall to avoid slipping
during climbing over a slippery gap (Siddall et al. (2021a)). (B) Gecko rotating the tail to achieve air-righting (Jusufi et al. (2008)). (C) The undulation of the tail assists
geckos race across the water (Nirody et al. (2018)). (D) RiSE with an active rigid tail as an emergency fifth limb to avoid pitch-back (inspired by panel 1A) (Jusufi et al.
(2008)). (E) RiSE with an active soft tail to assist the robot land on a tree (inspired by panel 1A) (Siddall et al. (2021a)). (F) Stickybot with a rotating tail to achieve air-
righting (inspired by panel 1B) (Jusufi et al. (2010)). (G) Salamandra robotica II, a salamander inspired amphibious robot with amodular rigid tail that could undulate to help
it swim (inspired by panel 1C) (Figure by A. Ijspeert, courtesy Biorobotics Laboratory, EPFL). (H) The slope climbing robot with a passive soft tail to assist in climbing
(Siddall et al. (2021b)). (I)Geckobot with an active rigid tail for avoiding pitch-back (Unver et al. (2006)). (J)Compliant fin ray wheg robot with an active soft tail for obstacle
crossing (Siddall et al. (2021b)). (K) Tankbot with a passive soft tail for completing plane transition (Unver and Sitti (2009)). (L) Stickybot I with an active tail for avoiding
pitch-back (Kim et al. (2007)). (M)Waalbot with a fixed rigid tail to avoid pitch-back (Murphy and Sitti (2007)). Note that the first-row animal figures (A,B,C) correspond to
the second-row robot figures (D,E,F,G). All figures are reproduced with permission from respective journals.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org July 2022 | Volume 10 | Article 9003892

Zang et al. Bio-Inspired Tails of Climbing Robots

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


locomotion of most mammals and vertebrates (Nabeshima et al.
(2019)). These improvements will be discussed in detail later (see
Section 2).

Tails usually function as a balancing mechanism, allowing the
animal to maintain balance under unstable conditions or to move
rapidly and efficiently over rough terrain (Walker et al. (1998);
Massaro et al. (2016)). The length of an adult salamander’s tail
can reach two-thirds of its body length, indicating the importance
of the tail for terrestrial locomotion and balance (Arntzen
(1994)). A salamander increases the lateral undulation
amplitude of its tail to increase the tail’s contact area and gain
thrust while walking on a slippery substrate (Karakasiliotis and
Ijspeert (2009)). Similarly, an adult gecko’s tail is almost half the
length of its body (Khan (2009); Siddall et al. (2021a); Brown et al.
(2010); Jusufi et al. (2010)). Pressing this long tail against a
substrate helps maintain balance on slippery and complex
terrain, especially on a vertical surface (Figure 1A). Moreover,
the morphological features of the tail can help the gecko climb on
smooth vertical surfaces, and keeled subcaudal scales can support
up to approximately five times body weight (Jusufi et al. (2012)).
Geckos can increase their locomotion velocity and maintain their
stability on horizontal and vertical surfaces by increasing the
lateral undulation amplitude and frequency of their bodies and
tails (Schultz J. T. et al. (2021); Wang et al. (2020)). Geckos’ tails
also allow them to effectively perform mid-air righting and
turning during gliding (Autumn et al. (2005); Jusufi et al.
(2008, 2010, 2011); Libby et al. (2012); Figure 1B). For
example, Siddall et al. (2021c) recently investigated the role of
tails in gliding locomotion using gecko experimental data with
mathematical and robotic models and showed that rapid, circular
tail rotations can control pitch and yawmotions in a vertical wind
tunnel. Moreover, the undulation of the tail also assists a gecko in
moving across water (Nirody et al. (2018); Figure 1C).

Lizards use their tails in several different ways (Libby et al.
(2012); Gillis et al. (2009)). For example, the red-headed African
Agama lizard can use its tail as an active stabilizing mechanism
(Libby et al. (2012)). It raises its tail to adjust the tilt of its body
and land successfully on a vertical surface when faced with a lack
of footing on a horizontal slippery surface. Based on biological
investigations, gecko/lizard-inspired tails were developed and
applied to climbing robots to improve their locomotion
performance (Menon et al. (2004); Unver et al. (2006); Kim
et al. (2008); Lee et al. (2012); Liu et al. (2012)). A tail could
provide a preload for a robot to reduce the required adhesive force
of its front feet and prevent pitch-back (Unver et al. (2006);
Menon et al. (2004); Estrada et al. (2014); Hawkes et al. (2011);
Unver and Sitti (2010)). A robot with a larger tail length to body
length ratio performs relatively well in terms of, e.g., obstacle
traversal (Siddall et al. (2021b)), fall arrest (Menon et al. (2004);
Estrada et al. (2014); Hawkes et al. (2011)), and mid-air righting
(Jusufi et al. (2008, 2010); Johnson et al. (2012); Libby et al.
(2016)). Some climbing robots can use their rigid tails as a
support to achieve plane transition (Murphy and Sitti (2007);
Murphy et al. (2011); Unver and Sitti (2010)). The
aforementioned shows that gecko tails play significant roles in
many locomotor scenarios, and many roboticists have applied
individual functions of the tail to robots. Therefore, this review

compares the advantages and disadvantages of different tail
designs, with a focus on different stiffnesses (rigid and soft)
and motion types (active, passive, and fixed).

2 CLIMBING ROBOTS WITH TAILS

Most studies have focused on developing artificial adhesive feet,
which include mechanical (gripping), pneumatic (suction cups),
magnetic (permanent magnet), and dry (elastomer adhesive)
adhesion (Arzt et al. (2003); Kim et al. (2008); Jiang and Xu
(2018); Gu et al. (2018); Schiller et al. (2019); Borijindakul et al.
(2021)). Therefore, most early climbing robots were tailless
(Kalouche et al. (2014); Haomachai et al. (2021);
Srisuchinnawong et al. (2021)). However, animals do not rely
solely on stickiness, because even the best adhesives might fail on
surfaces that are critically damaged or have a layer of dust, oil, or
water (Autumn et al. (2005)). Similarly, a climbing robot will
inevitably experience an unexpected slip that results in an
undesirable fall. Extensive research on gecko tails has revealed
that geckos hold their tails down to maintain balance when their
feet slip, preventing them from pitch-back (Autumn et al. (2005,
2006b); Jusufi et al. (2008)). Thus, a gecko-inspired tail has been
added to some climbing robots to improve their locomotion
performances (Figure 1), e.g., Geckobot (Unver et al. (2006)),
Waalbot (Murphy and Sitti (2007)), Waalbot II (Murphy et al.
(2011)), Tankbot-I (Unver and Sitti (2009)), Tankbot-IV (Unver
and Sitti (2010)), Stickybot I (Hawkes et al. (2011)), Slope
climbing robot (Siddall et al. (2021b)), and Mini-Whegs™ 7
(Daltorio et al. (2006)).

Tails can be classified into three classes according to the
stiffness of the material: high, medium, and low. A high-
stiffness tail cannot be deformed, whereas a medium-stiffness
tail can deform under an external force but cannot completely
comply or make full contact with the terrain. A low-stiffness tail is
soft and complies with the terrain. To compare the roles of soft
and rigid tails on robots for locomotion enhancement, we
consider medium- and low-stiffness tails to be soft and high-
stiffness tails to be rigid. Furthermore, the motion types of tails
can be divided into three categories: active, passive, and fixed. An
active tail indicates that the robot can control the tail movement
in the vertical and/or lateral direction via actuator(s). A passive
tail indicates that it can be moved or deformed by an external
force. A fixed rigid tail cannot move or deform. As listed in
Table 1, all of these tails improve the stability and maximum
climbing angle of the robot (Unver et al. (2006); Kim et al. (2008);
Hawkes et al. (2011); Lee et al. (2012)). The maximum climbing
angle is determined with respect to the horizontal plane. The
maximum slope for a slope-climbing robot with a tail length to
body length ratio of 0.5 increased to 75° from 45° (tailless
prototype) (Siddall et al. (2021b); Figure 1H). The maximum
for Mini-Whegs™ 7, which had a tail length to body length ratio
of 0.43, increased to 60° from 50° (tailless prototype), and further
to 90° when the tail length to body length ratio was increased to
0.74 (Daltorio et al. (2006)). Some of these developed robots could
complete plane transition after a tail was added. Tankbot-IV,
which had a rigid tail could complete plane transition from the
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TABLE 1 | Characteristics of gecko-inspired robots with a tail. Preload means that the load generated by the tail to prevent pitch-back. Lizard-like gait means that two diagonal pairs of legs switch between stance and swing
phases. Wheel gait means that all four “feet/wheels” are attached to the surface all the time (i.e., stance phase).

Robots Robot
Weight(g)

Tail
Stiffness

Tail
Length/
Body
Length

Tail
Motion

Avoid Pitch-back Plane
Transition

Adhsive
Type

at Feet/wheels

Climbing
Surface
Type

Body
Motion

Gait
PatternPreload Maximum

Climbing
Angle

Geckobot 100 High 0.34 Active (up/
down motion)

✓ 850 N/A Dry adhesive Smooth Fixed Lizard-like
gait

Waalbot 90 High 0.5 Fixed ✓ 900 Floor-to-wall Dry adhesive Smooth Fixed Wheel gait
Waalbot II 85 High 0.5 Fixed ✓ 1800 Floor-to-wall, wall-to-

wall, wall-to-ceiling
Dry adhesive Smooth Fixed Wheel gait

Tankbot-IV 150 High 0.67 Active (up/
down motion)

✓ 1800 Floor-to-wall, wall-to-
ceiling

Dry adhesive Smooth,
rough

Fixed Wheel gait

Tankbot-I 90 Medium 0.57 Passive ✓ 1800 Floor-to-wall Dry adhesive Smooth,
rough

Fixed Wheel gait

Stickybot-I 370 Medium 0.53 Active (up/
down motion)

✓ 900 N/A Dry adhesive Smooth,
rough

Fixed Lizard-like
gait

Slope
climbing robot

Tailless
605

N/A 0 N/A × 450 N/A Thermoplastic polyurethane (TPU)
elastomer with spines

Smooth,
rough

Fixed Wheel gait

Soft Tail Low 0.5 Passive ✓ 750 Floor-to-slope Thermoplastic polyurethane (TPU)
elastomer with spines

Smooth,
rough

Fixed Wheel gait

Mini-
Whegs TM7

Tailless
87

N/A 0 N/A × 500 N/A Dry adhesive Smooth Fixed Wheel gait
6.6 cm
long tail

High 0.43 Passive ✓ 600 N/A Dry adhesive Smooth Fixed Wheel gait

25 cm long
tail

High 0.74 Passive ✓ 900 N/A Dry adhesive Smooth Fixed Wheel gait
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floor to a wall and from a wall to the ceiling (Unver and Sitti
(2010)). However, although Tankbot-I had the same maximum
climbing angle (180°), it could only complete plane transition
from the floor to a wall (Unver and Sitti (2009); Figure 1K). In
addition to floor-to-wall and wall-to-ceiling plane transitions,
Waalbot II, which had a rigid tail, could also complete plane
transition from one wall to another wall (the walls were adjacent
to each other at the corner) (Murphy et al. (2011); Figure 1M).

2.1 Rigid Tail
The offset between a wall and load vector leads to a pitch-back
moment (Hawkes et al. (2011)), which causes the front feet of a
robot to detach from the wall, resulting in a pitch-back trend. This
mainly causes the falling of the climbing robot. However, if a tail
is added to a robot, it can generate a preload to transfer some of
the load from the rear feet to the front feet, preventing the pitch-
back and increasing the maximum slope for the robot (Estrada
et al. (2014)). Currently, the most commonly used materials for
robot tails are rigid, such as in Geckobot (Unver et al. (2006);
Figure 1I), RiSE (Jusufi et al. (2008); Figure 1D), and Waalbot
(Murphy and Sitti (2007); Figure 1M). A rigid tail lightly pressed
against a wall can create a counter-moment (Autumn et al.
(2005); Kim et al. (2008); Hawkes et al. (2011)), which helps
create a more even pressure distribution on the robot’s feet and
reduces the adhesion required by the front feet (Autumn et al.
(2005); Unver et al. (2006); Hawkes et al. (2011); Lee et al. (2012);
Estrada et al. (2014)).

RiSE can imitate a gecko’s posture by using its tail (like a
bicycle’s kickstand) to regain balance and avoid falling if pitch
back was unavoidable (Jusufi et al. (2008); Figure 1D). Tankbot-I
(Figure 1K) uses its rigid tail as a support when transiting
between vertical and horizontal surfaces (Autumn et al.
(2005); Lee et al. (2012); Kalouche et al. (2014)). The length of
the tail and angle between the tail and body are also important
parameters for a robot with a rigid tail to avoid pitch-back. If the
downward forces at the feet are equal and the front and rear feet
of the robot have the same friction coefficient, then the feet with a
lower normal force slide down or detach from the surface first,
and the other feet slide down or detach afterward (Unver et al.
(2006)). To prevent this and achieve stable climbing on a constant
slope, a certain tail angle should be determined to obtain an
additional torque (Lee et al. (2012)) to maintain equal normal
forces for the front and rear feet (Unver et al. (2006); Unver and
Sitti (2010)). Furthermore, the robot’s tail angle should be
adaptively changed to provide appropriate torques for different
slopes. Changing the angle of a rigid tail could also adjust the
robot’s center of gravity to achieve a stable posture. A longer tail
requires less adhesion to prevent the robot from falling (Menon
et al. (2004); Unver et al. (2006); Jusufi et al. (2008); Hawkes et al.
(2011); Estrada et al. (2014)). However, the weight of the robot
increases with the tail length; a longer tail requires more space to
turn, limiting the robot’s movement in small spaces (Murphy and
Sitti (2007); Unver and Sitti (2010)).

2.2 Soft Tail
A few climbing robots are gradually adopting soft tails which are
usually made of soft materials that can comply with the terrain

under a certain load. Typically, the motor-driven soft tail of a
slope-climbing robot (Figure 1H) progressively touches the
surface from the tip of the tail and generates a preload.
Compared to rigid structures, soft structures have higher
flexibility, safety, and adaptability, as well as incomparable
advantages in narrow space and unstructured environment
operations (Majidi (2014); Gu et al. (2018); Schiller et al.
(2019)). Furthermore, soft tail has a greater adhesion and a
larger effective contact area, facilitating the movement of
climbing robots on smooth vertical surfaces. It is also effective
in terms of dissipating energy from an impact, reducing damping
vibration, and counteracting discontinuous forces and motion
(Nguyen et al. (2019); Siddall et al. (2021a)). In contrast, a
(simple) active rigid tail can produce large inertial forces and
moments with a small rotation when the tail presses against a wall
(Saab et al. (2018); Unver et al. (2006)), leading to vibration and
even falling. The effect can be reduced by introducing additional
damping mechanisms.

Because of the undeformable nature of a rigid tail, the preload
process and the surface area contacting the wall is limited by the
wall. A soft tail continues to approach the wall until the entire tail
is pressed against and makes complete contact with it. Moreover,
its adaptability makes it inherently robust to environmental
uncertainties (Kim et al. (2013)). To verify the dual fallen tree
transition, Siddall et al. (2021b) used two obstacles with heights
equal to the height of the robot’s wheels and separation equal to
twice the length of the robot. Experiments showed that a fixed
rigid tail prevented the robot from pitching when climbing, and a
soft tail bent and allowed it to comply with obstacles (Siddall et al.
(2021b); Figure 1J). The compliance of a soft tail can also increase
the surface area contacting the wall, which is necessary to take
advantage of the morphological characteristics (such as keeled
subcaudal scales) of a gecko’s tail.

3 DISCUSSION

For climbing robots that rely on adhesive feet to move on vertical
surfaces (Menon et al. (2004); Unver et al. (2006); Kim et al.
(2008); Hawkes et al. (2011); Estrada et al. (2014); Kalouche et al.
(2014); Gu et al. (2018); Chen et al. (2019)), the counter-moment
generated when the tail contacts the wall can transfer the load
from the rear feet to the front feet and reduce the adhesion force
required for the front feet to prevent pitch-back (Unver et al.
(2006); Jusufi et al. (2008); Kim et al. (2008); Hawkes et al. (2011);
Lee et al. (2012); Estrada et al. (2014)). For example, Schultz J. T.
et al. (2021) presented a robot that could climb vertical slopes
using a rigid tail and claws for adhesion with a gecko-like gait. A
rigid tail can provide a large preload, but it can also generate
vibrations when the tail is pressed. A soft tail is more stable but it
can provide a limited preload. The tail length and Young’s
modulus are proportional to the robot’s ability to prevent
pitch-back (Menon et al. (2004); Unver et al. (2006); Estrada
et al. (2014)). For example, after equipping the robot with a
6.6 cm tail, the maximum slope that Mini-Whegs™ 7 could climb
increased from 50° to 60°, and it further improved to 90° when the
tail length was 25 cm (Daltorio et al. (2006); Table 1). However, a
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longer tail also indicates greater weight and greater space required
for turning. Thus, it is important to have a suitable tail length to
body length ratio (Saab et al. (2018)). According to Table 1, the
appropriate tail length to body length ratio ranges for active and
passive tails are [0.34, 0.67] and [0.43, 0.74], respectively, whereas
the best ratio for a fixed tail is 0.5. This implies that a passive tail
requires a longer length than an active one. Analysis using finite
element model (FEM) has revealed that the tail length and
Young’s modulus are inversely proportional to the adhesion
force required by the front feet (Menon et al. (2004)).A soft
tail has a greater adhesion and effective contact area and is more
adaptable to the environment (Heilmann and Rigney (1981)),
making it better at moving over slippery surfaces and complex
terrains (Daltorio et al. (2006)). However, a soft tail wears out
easily due to frictional adhesion. To avoid pitch-back and achieve
plane transition, a rigid tail can be used as a fifth limb and give a
point load with a large radius/lever arm, which helps the robot’s
front feet stick to the wall (Unver and Sitti (2009)). A soft tail, on
the other hand, can convert the ground reaction force (GRF) into
elastic deformation and provide an edge load (Siddall et al.
(2021b); Santiago et al. (2016)). The addition of a tail can
improve the lifting height of the abdomen of a gecko robot
during vertical movement, which allows the robot to move
over larger obstacles.

The motion type of the tail is another key factor for the
environmental adaptability of climbing robots. A fixed rigid tail is
suitable for tasks with a constant slope (Figure 1M), whereas a
passive tail and a fixed soft tail are more suitable for complex
terrain with gradient variations (Figure 1J). Conversely, an active
tail is more suitable for special tasks such as obstacle crossing and
air-righting by rotating the tail (Figure 1F). Accordingly,
considering different combinations of motion type (fixed,
active, and passive) and stiffness (soft and rigid) is essential in
robot tail design for robustness in various situations. The body
motion and gait pattern also influence the tail design. A robot
with a bendable body (Haomachai et al. (2021)) may need a soft
or lateral undulating tail to compensate for the body swing. A
robot with a lizard-like gait pattern (raising two legs at the same
time) (Shao et al. (2022)) can benefit from a tail that provides a
substantial preload or functions as additional support for stable
slope climbing.

The tail lateral undulation has a significant influence on a
gecko’s locomotion. The undulating tail could help geckos to run
across water by improving their stability and forward velocity
(Nirody et al. (2018)). Losing tail motion in geckos results in a
more sprawled posture for the loss compensation (Jagnandan and
Higham (2017)). However, only a few gecko-inspired robots with
undulating tails exist. Undulating tails are commonly used in
amphibious robots inspired by lizards and salamanders (Nirody
et al. (2018); Karakasiliotis and Ijspeert (2009); Kim et al. (2015);
Figure 1G). Typically, each robot implements a specific tail
function. Integrating multiple functions for a tail in a robot
remains a challenge. In future studies, gecko-tail imitation
should focus on the tail actuation system that more closely

model muscle mechanics (Xiong et al. (2014); Xiong and
Manoonpong (2021)) or hybrid rigid-soft structure/material.
For example, soft materials could be used to realize
adaptability and 3D dexterity, with rigid links or keels
integrated into these soft materials to achieve structural
stability (Schwaner et al. (2021)) and an adaptive bio-inspired
muscle model can be applied for active tail-joint compliance
control with online adaptation (Huerta et al. (2020)).

4 CONCLUSION

The tail of a climbing robot is important in terms of improving
the maximum climbing angles and avoiding slipping or pitch-
back (Jusufi et al. (2008); Kim et al. (2008); Chen et al. (2019)).
A longer tail requires less adhesion force for the front feet of
the robot to adhere to the substrate (Menon et al. (2004);
Unver et al. (2006); Hawkes et al. (2011)); however, the tail
length is limited by practical and aesthetic factors. Both rigid
and soft tails have advantages and disadvantages. A soft tail is
more robust and stable and can more effectively reduce the
required adhesion force, while providing a good preload in an
unstructured environment. In contrast, a rigid tail can better
adjust the robot’s center of gravity, provide a large preload, and
aid in plane transition, and it is less prone to wear. The weight
of the robot, substrate surface, and environment are the main
factors that should be considered when choosing the material
and motion type for a robot’s tail. Finally, adding a gecko-
inspired tail can help with self-righting and increase
locomotion performance in both horizontal and vertical
planes.
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