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High-content behavioral profiling reveals
neuronal genetic network modulating
Drosophila larval locomotor program
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Abstract

Background: Two key questions in understanding the genetic control of behaviors are: what genes are involved
and how these genes interact. To answer these questions at a systems level, we conducted high-content profiling
of Drosophila larval locomotor behaviors for over 100 genotypes.

Results: We studied 69 genes whose C. elegans orthologs were neuronal signalling genes with significant
locomotor phenotypes, and conducted RNAi with ubiquitous, pan-neuronal, or motor-neuronal Gal4 drivers.
Inactivation of 42 genes, including the nicotinic acetylcholine receptors nAChRα1 and nAChRα3, in the neurons
caused significant movement defects. Bioinformatic analysis suggested 81 interactions among these genes based
on phenotypic pattern similarities. Comparing the worm and fly data sets, we found that these genes were highly
conserved in having neuronal expressions and locomotor phenotypes. However, the genetic interactions were not
conserved for ubiquitous profiles, and may be mildly conserved for the neuronal profiles. Unexpectedly, our data
also revealed a possible motor-neuronal control of body size, because inactivation of Rdl and Gαo in the motor
neurons reduced the larval body size. Overall, these data established a framework for further exploring the genetic
control of Drosophila larval locomotion.

Conclusions: High content, quantitative phenotyping of larval locomotor behaviours provides a framework for
system-level understanding of the gene networks underlying such behaviours.

Keywords: High-content phenotypic profiling, Genetic interaction network, Larval locomotion, Behaviour,
Drosophila melanogaster

Background
A key challenge in neurobiology is to connect behaviors
to neurons to genes. The fruitfly Drosophila melanoga-
ster larva is a powerful model for research in this area.
Quantitative studies of the larval locomotor behaviors,
such as [1–6], have enabled many discoveries linking
genes, neurons, and phenotypes. Recent technologies in
high-throughput phenotyping have advanced research in
this area from a single gene level to a systems level. For
example, a multi-larvae tracking system [7], in combin-
ation with optogenetics and a vast collection of Gal4
drivers, have enabled discovery of the neuronal circuits
regulating behaviors such as peristaltic crawling [8] and
decision-making in response to a mechano-stimulus [9].

Connecting behaviors to gene networks remains
largely unexplored at the systems level even for this rela-
tively simple animal. To understand the gene networks,
one must reveal which genes are involved (nodes), and
how they interact (edges). The major challenge is how to
map genetic interactions. One method to reveal genetic
interactions is epistasis analysis [10], which compares
double and single mutant phenotypes to identify enhan-
cing and suppressing effects. In Drosophila, this method
requires genetic crosses to generate double mutants, and
is thus not practical for large-scale mapping of many
genes. In such cases, high-content profiling becomes an
effective method in mapping genetic interactions. Genes
with similar phenotypic profiles are considered interact-
ing. In animals, high-content profiling was successfully
applied to discover gene interaction networks regulating* Correspondence: weiwei.zhong@rice.edu
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C. elegans embryogenesis [11], gonad architecture [12],
and locomotor behaviors [13, 14].
We have recently developed the imaging system

MaggotTracker to analyse multiple parameters of Dros-
ophila larval locomotor behaviors [15]. MaggotTracker
tracks a single animal at a high resolution and measures
over 20 parameters, enabling high-content profiling of
Drosophila phenotypes.
Here we present high-content larval locomotor pro-

files for 69 genes using the MaggotTracker. These
profiles revealed 42 genes whose inactivation in the
neurons caused significant movement defects, and 81
genetic interactions among these genes. As we focused
on Drosophila genes whose C. elegans orthologs are
locomotor genes, this data set also revealed that while
many genes are conserved in their involvement in loco-
motor behaviors and neuronal expression, the genetic
interactions were conserved to a much lesser degree.
Finally, our data suggested a motor-neuronal control of
body length, as inactivation of Rdl and Gαo in motor
neurons caused reduced larval size.

Methods
Animals
Fly strains were obtained from the Bloomington Dros-
ophila Stock Center (IN). All stocks were maintained on
cornmeal agar following the Bloomington food recipe
(0.8% yeast, 0.93% soy flour, 6.79% yellow cornmeal,
0.8% agar, 7.1% Karo light corn syrup, and 0.45% propio-
nic acid). Animals were cultured at room temperature
(~22 °C) for regular stock maintenance. All RNAi strains
are listed in Additional file 1: Table S1. The Gal4 strains
used in this study were D42-Gal4 [16], elav-Gal4 [17],
dilp2-Gal4 [18], tub-Gal4 (Bloomington #5138), and da-
Gal4 (#108252) which was provided by the Drosophila
Genetic Resource Center.

Genetic crosses
Males from the UAS-dsRNA strain and virgin females
from the Gal4 driver strain were crossed. A strain
expressing UAS-dsRNA for mCherry RNAi (stock #
35785) was used as control. For RNAi strains in which
the CyO balancer was present in the stock, the CyO was
replaced with CyORoi, and males with smooth eyes
(lacking the balancer) were used in the cross. The stock
number and RNAi gene for these balanced strains are
#38966, CanA-14F; #44014, Syb; #44538, CG1909;
#44539, robo3; #51049, nAChRα7; #53296, unc-104.
Two RNAi stocks (#28574, RSG7; #36746, CG31140)

carried the TM3 balancer. In crosses involving these two
strains, larvae were recovered after tracking, placed in a
24 well plate containing cornmeal agar (1 larva per well)
and left at 20 °C until they became adult flies. Then each
fly was inspected to determine if it carried the balancer.

Videos of the larvae that later showed the stubble
phenotype (carrying the TM3 balancer) were discarded.
The default culture temperature for genetic crosses

was 25 °C. That is, while parental strains were main-
tained at room temperature (~22 °C), genetic crosses,
which included placing males and females from two
different parental strains together, and subsequent larval
growth, were kept at 25 °C. If RNAi caused lethality,
crosses were kept at 20 °C. For crosses using the tub-
Gal4 driver, if 20 °C still caused lethality, then da-Gal4
driver was used. Similarly, da-Gal4 driver was tested
at 25 °C first and reduced to 20 °C if there was lethal-
ity. At least 3 independent crosses were conducted for
each strain. Animals from these crosses were pooled
prior to analysis.

Behavioral assay
Animals were tracked using the MaggotTracker as
described [15]. Briefly, animals were placed at 20 °C for
at least 12 h before third instar wandering larvae were
collected using a paintbrush. Animals were examined
under a dissecting scope to determine the gender and
confirm the absence of food. A larva was then placed on
a 10 cm Petri dish plate containing 1.5% agar, and left
on the plate for at least 30 s so that they could acclimate
to the media. The animal was then tracked for 4 min
using the computer-controlled system. At least 10 males
and 10 females were tracked for each genotype. At least
10 control animals (5 males and 5 females) were tracked
in every tracking session.

Statistical analysis
Mutant parameter values were normalized by the mean
values of control animals tested in the same experiment.
Mutant locomotive profiles were compared with control
ones using the Student’s t-test. Benjamini-Hochberg pro-
cedure [19] was applied to correct multiple comparisons
to control the false discovery rate (FDR) below 1%.

Clustering and network visualization
Gene Cluster 3.0 [20] was used to perform hierarchical clus-
tering with centroid linkage. Java TreeView [21] was used to
display the clusters. Network visualization was performed
using the software GUESS (graphexploration.cond.org).

A strategy for high-content phenotyping of larval
locomotor behaviors
A research pipeline was designed to conduct high-
content profiling of larval locomotive behaviors for
various mutants (Fig. 1a). We have developed an im-
aging system, MaggotTracker [15], to automatically
track a single fruit fly larva, take a video, and extract
20+ parameters from the video measuring different
aspects of larval crawling. Each third instar larva was
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tracked for 4 min. 10+ males and 10+ females were
tracked for each genotype so that possible sexual
dimorphism would be detected.
The phenotypic profiles contained 10 parameters

(Table 1) that were selected because they were inde-
pendent and had similarly low variance [15]. As the
parameters were in different units, a normalization
process was conducted. Values from mutants were divided
by mean values from wild-type animals tracked on the
same date to obtain normalized values. This normalization
step also reduced day-to-day environmental variations
[15]. In the normalized profiles, 1 indicates wild-type value

for all parameters; <1 and >1 indicate lower and higher
than wild-type value, respectively.

Results
High-content behavioral profiles of neuronal signalling
genes
To select candidate genes for testing, we took advantage of
a previous high-content phenotyping study of C. elegans
locomotor behaviors. We have previously screened 227
worm neuronal signalling genes that had homozygous-
viable mutants, and found 87 genes with significant lo-
comotor defects [14]. We mapped the D. melanogaster
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Fig. 1 A strategy to conduct high-content profiling of larval locomotor behaviors. a Third instar larvae of different genotypes were analyzed using
the MaggotTracker imaging system. Each larva was tracked and recorded for 4 min. Parameters were extracted from the videos. Mutant values
were divided by control values to obtain normalized values. A heatmap was used to display normalized mutant parameter values, with blue,
black, yellow indicating mutant values <, =, > 1, respectively. The same color scale was used for all figures. b Gαo neuronal RNAi produced similar
phenotypes using UAS-RNAi strains from two stock centers. PCC, Pearson Correlation Coefficient. c Histograms of Z scores from parameter values
of all genotypes (All) and parameter values that were considered significantly different than wild-type values (Above cutoff). SD, Standard
deviation. Z scores measure how much a mutant value deviate from the wild-type value in SDs

Table 1 Parameters of the locomotor profiles

Parameter Unit Definition of Parameter

Time Striding % Percentage of time when the larva is striding (continuous peristaltic movement).

Stride Count counts/min Total number of strides.

Stride Duration sec Time duration of one stride.

Stride Distance mm Distance traveled by the center point of the animal during one stride.

Speed Striding mm/s Speed of the center point of the body when the animal is striding.

Contraction Rate mm/s The rate of body length change during the contraction phase of a stride.

Extension Rate mm/s The rate of body length change during the extension phase of a stride.

Distance mm/min Total distance traveled by the center point.

Run Count counts/min Total number of runs. A run is defined as a period when the animal is striding continuously.

Time Inside % Percentage of time the animal is inside the plastic ring that was placed on the outer rim of the
agar plate to prevent the animal from crawling to the edge.
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orthologs of these 87 genes. Among the orthologs, 69 genes
have RNAi strains available at the Bloomington stock
center (Additional file 1: Table S1). These genes became
our candidate genes.
We crossed the UAS-RNAi strains [22] with several

GAL4 driver strains to inactivate the gene function in
different tissues. A ubiquitous tub-Gal4 driver was used
to detect gene function in the entire larvae. If the RNAi
resulted in larval lethality, then a weaker ubiquitous
driver da-GAL4 was used instead. All genes were also
inactivated in the neurons using a pan-neuronal elav-
GAL4 driver. Selected genes were inactivated using
additional GAL4 drivers. For example, for genes that
showed strong locomotor phenotypes upon neuronal
inactivation, a motor-neuron specific D42-GAL4 driver
was used to examine whether these genes function in
the motor neurons.
Using the imaging system MaggotTracker (Fig. 1a, also

see Method), we obtained high-content locomotive pro-
files for 128 genotypes of pan-neuronal or ubiquitous
RNAi after analysing over 3600 videos of individual ani-
mals (Additional file 2: Table S2). Among the 69 genes
we tested, excluding those whose RNAi caused larval
lethality, neuronal RNAi profiles were obtained for 68
genes, and ubiquitous RNAi profiles were obtained for
60 genes. Upon neuronal RNAi, 42 genes showed signifi-
cant larval locomotor defect in at least one parameter
(FDR < 0.05); upon ubiquitous RNAi, 37 genes showed
significant locomotor phenotypes (Additional file 2: Table
S2). Combined, significant larval locomotor defects were
observed for 58 genes in either ubiquitous or neuronal
RNAi; 21 genes showed defects in both types of RNAi. It
should be noted that lack of a phenotype could be a
consequence of inadequate knockdown.
Several data suggested the validity of this RNAi screen.

We randomly selected one gene, Gαo, and tested its
neuronal RNAi using a UAS-RNAi strain from the
VDRC stock center. This strain showed a phenotype
highly similar to that of the UAS-RNAi strain from the
Bloomington stock center (Fig. 1b), suggesting that the
phenotype is gene specific. In addition, among the genes
with RNAi larval locomotor phenotypes, mutants of cac,
CanA1, Caps, dys, and norpA are known to have lo-
comotor defects in adults (FlyBase). The consistency
between our RNAi results with known locomotor effects
of chromosomal mutations suggested that the RNAi
effects are likely gene specific.
The sensitivity of our phenotyping is high because of

the quantitative measurements. Among the parameter
values that we found to be significantly different than
wild-type values, most of them were 0.5–2 standard
deviations (SDs) away from wild-type values (Fig. 1c).
91% of these 58 genes identified with larval locomotor
defects in this study have not been previously associated

with any locomotor defects. Among the 68 genes for
which we had locomotor profiles, only 6 genes were an-
notated with locomotor defects with any mutant allele at
any developmental stage in FlyBase (flybase.org, version
FB2016_05). Our phenotyping data recaptured 5 of the 6
genes to have significant larval locomotor defects, and
detected 53 more genes with such phenotype. Together,
these data suggested that our current knowledge on
genetic control of larval locomotion is still largely in-
complete, and that our method is highly effective in
discovering genes with such functions.

Neuronal genes required for larval locomotion
To understand how genes function in the neurons to
regulate larval locomotion, we seek answers to two ques-
tions: what genes are involved, and how these genes
interact.
RNAi of the following 42 genes in the neurons caused

significant larval locomotor defects: Ank2, Arf79F, bru-3,
cac, CanA-14F, CanA1, Caps, CG18208, CG31140, CngB,
Dhc64C, dpp, Drp1, Dyb, eag, Gαo, Gαq, Gβ5, gro, hep,
lin-28, Liprin-α, Med, nAChRα1, nAChRα3, nAChRα4,
nAChRα6, nSyb, Rab27, Rab3, Rab3-GEF, Rab6, Rdl,
retn, RhoGAP100F, sei, Snap24, ss, Syb, trio, unc-13,
X11L (Fig. 2a, Additional file 2: Table S2). Among them,
an interesting case is the nicotinic acetylcholine recep-
tors (nAChRs). Mutations in human nAChRs are linked
to a range of diseases such as epilepsy and autoimmune
diseases [23]. There are 10 nAChRs in the Drosophila
genome, α1-α7 and β1-β3 [24]. These nAChRs are
expressed in the nervous system and are targets of insec-
ticides [24]. Their in vivo physiological functions are
largely unknown except that α7 is required for an escape
behavior [25].
Eight nAChRs, α1-α7 and β2, have RNAi strains avail-

able at the Bloomington center and were tested in this
study. Neuronal inactivation of α1 and α3 produced
most severe and very similar larval locomotor pheno-
types (Fig. 2b). It was reported that mutants of nAChRα1
and nAChRβ2 showed resistance to the neonicotinoid
class of insecticides [26]. Consistent with this, neuronal
RNAi of nAChRβ2 had a larval locomotor profile highly
similar to that of nAChRα1, although the phenotype of
nAChRβ2 is weaker than that of nAChRα1 (Fig. 2b).
These data indicated that among the nAChRs, α1, α3
and β2 share similar functions in regulating larval loco-
motive behaviors. It was shown that nAChRα5 and
nAChRα7 can form heteromeric ion channels [27]. It is
possible that α1, α3 and β2 may also form heteromeric
ion channels.

Interactions of neuronal locomotor genes
To identify the interactions among the 42 neuronal larval
locomotive genes, we computed the Pearson correlation
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coefficient (PCC) to evaluate the similarity of phenotypic
patterns. We reasoned that interacting gene pairs were
more likely to have similar (PCC close to 1) or opposite
(PCC close to −1) phenotypic patterns, resulting a high
absolute value of PCC (|PCC| close to 1). In contrast, if
two phenotypic patterns were not correlated at all (|PCC|
close to 0), then less likely these two genes would interact.
To verify such rationale, we queried the databases BioGrid
(thebiogrid.org) and FlyBase for known interactions.
Among all genes we tested, there were 29 gene pairs
known to interact genetically or physically. Indeed, these
interacting genes were more likely to have high |PCC|
values of their locomotive profiles. 21% of interacting gene
pairs had |PCC| value over 0.7 for their locomotive
profiles, whereas only 14% of random parings of neuronal
profiles did (Fig. 2c), confirming that |PCC| could be used
to distinguish interacting genes. The 42 neuronal larval
locomotive genes generated 861 (42 × 41/2 = 861) pair-
wise combinations. Among them, a total of 302 pairs
showed |PCC| above 0.7.
To further prioritize these 302 gene pairs for genetic in-

teractions, we queried GeneOrienteer (geneorienteer.org),
a database that predicts genetic interactions by integrating
expression, phenotype, gene ontology, and interaction data

from multiple species [28]. Our previous investigation of
C. elegans locomotive genes showed genetic interactions
were most enriched among gene pair that satisfied two
conditions: |PCC| above 0.7, and GeneOrienteer score
over 4 [14]. A similar result was observed in this study of
fly genes: interacting pairs were 4.6 times more likely than
random pairing of locomotor profiles to satisfy both
criteria, while individual criteria could only provide 1.5
and 3.7 times enrichment (Fig. 2c). Two hundred twenty-
two gene pairs among the 42 neuronal larval locomotive
genes had GeneOrienteer scores over 4. Using both |PCC|
and GeneOrienteer scores as criteria, 81 pairs of neuronal
larval locomotive genes were identified as high-confidence
interactions (Additional file 3: Table S3, Fig. 3).
Some of these 81 high-confidence interactions are con-

sistent with known interaction data. For example, the gene
products of two pairs, unc-13 – Syb and Snap24 – Syb, have
been shown to interact physically in yeast two-hybrid ex-
periments (BioGrid). The yeast orthologous pair of Arf79F
– Syb and the human orthologous pair of Snap24 – unc-13
also encode proteins that physically interact (BioGrid). The
orthologs of 13 pairs interact genetically in C. elegans, in-
cluding unc-13 – Syb, Gαq – Gbeta5, CG31140 – Gαo,
nSyb – unc-13, Gαq – trio, Snap24 – Syb, Gαq – unc-13,
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CanA-14F – Gαq, CanA1 – Gαq, Caps – Gαo, Gαo –
Liprin-α, nSyb – RhoGAP100F, RhoGAP100F – Syb
(WormBase). These data demonstrated the validity of these
high-confidence interactions.
The high-confidence interaction network shows that

nAChRα1 and nAChRα3 interact with the SNARE pro-
tein Snap24, and the potassium channel eag, with similar
phenotypic patterns; nAChRα1 and nAChRα3 also interact
with the synaptic vesicle protein unc-13, and the G protein
Gαq, with opposite phenotypic patterns (Figs. 2d, 3). It
was reported that unc-13 functions downstream of Gαq
signalling, and upstream of vesicular fusion at the neuro-
muscular junction (NMJ) [29, 30]. Our data suggested that
eag and nAChRs have an antagonistic effect on this Gαq
signalling pathway in locomotor behaviors. The involve-
ment of Snap24 suggested that the antagonistic effect on
Gαq signalling is possibly mediated through neurotrans-
mitter release or reuptake.

Site-of-action for larval locomotive genes
To understand whether the locomotor genes primarily
function in neurons or in additional tissues, we com-
pared the locomotive profiles from pan-neuronal RNAi
with those from ubiquitous RNAi. If inactivating the
gene in the neurons generates the same phenotype as in-
activating the gene ubiquitously, then the gene function
is most likely to be neuronal. As RNAi strength varies
with different Gal4 drivers, the phenotypic severity of
different RNAi may differ, causing difference in our
parameter values. Therefore, we evaluated the PCC of
profiles because phenotypic patterns are less affected by
RNAi strength.

Pan-neuronal RNAi profiles were more likely to be cor-
related with ubiquitous RNAi profiles of the same genes.
26% genes had highly correlated (PCC > 0.7) ubiquitous
and neuronal profiles; among genes with significant loco-
motor phenotypes in both neuronal and ubiquitous RNAi,
38% had PCC > 0.7 for ubiquitous and neuronal profiles
(Fig. 4a). These data suggested that many genes we tested
predominantly function in the neurons. For example,
Arf79F, CG31140, Drp1, eag, Gαo, nAChRα3, Rab 27, and
ss, had highly correlated ubiquitous and neuronal profiles
(Fig. 4b), suggesting that these genes function primarily in
the neurons to regulate locomotion. In contrast, Gβ5, lin-
28, Liprin-α, Med, rab3-GEF, retn, RhoGAP100F, had little
correlation (PCC < 0.1) between their ubiquitous and
neuronal profiles (Fig. 4c), suggesting that these genes
have functions in non-neuronal tissues as well as neurons
to regulate larval locomotion.
For the genes with severe neuronal phenotypes, we

investigated whether they primarily function in motor
neurons. The behavioral profiles from the pan-neuronal
elav-Gal4 driver were compared with those from the
motor-neuronal D42-Gal4 driver. Arf79F, eag, nAChRα1,
nAChRα3, and Rdl showed highly correlated (PCC > 0.7)
pan-neuronal and motor-neuronal profiles (Fig. 4d), sug-
gesting that these genes primarily function in the motor
neurons to regulate larval locomotion. Drp1, Gαo, Gαq
showed moderately correlated (PCC between 0.6–0.7)
pan-neuronal and motor-neuronal profiles. These genes
may still primarily function in the motor neurons. Cac,
CanA1, and unc-13 had uncorrelated (PCC < 0.3) pan-
neuronal and motor-neuronal profiles (Fig. 4e), suggest-
ing that these genes have functions in neurons other
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than motor neurons. The requirement of different neu-
rons in larval locomotor regulation is consistent with
previous findings such as [8, 31].
For the nAChRs, nAChRα1 and nAChRα3 showed

highly similar phenotypic profiles with pan-neuronal,
and motor-neuronal RNAi (Fig. 4d), suggesting that
these genes primarily function in motor neurons. Simi-
larly, their interacting genes, Gαq and eag, are also likely
to primarily function in motor neurons (Fig. 4d). In
contrast, the interactor unc-13 is likely to function in
other neurons and non-neuronal tissues (Fig. 4c, e).

Conservation of gene functions in locomotor phenotypes
and neuronal expression
Because all genes we tested in this study were orthologs
of C. elegans genes that had been analyzed previously for
their locomotor defects [14], such data enabled us to
compare gene functions in C. elegans and D. melanoga-
ster to understand their levels of conservation. Three
aspects of gene functions were evaluated: expression,
phenotype, and gene interactions. The two animals have
different nervous system anatomy and different locomo-
tive pattern: C. elegans employs a sinusoidal wave of
crawling whereas fly larvae employ peristalsis crawl-
ing. Therefore, the detailed cellular gene expression
pattern and locomotive parameters are not compar-
able between the two species. However, we can com-
pare gene function at a higher level such as whether
the genes are neuronally expressed and whether they
affect movement.

All orthologous worm genes were annotated as neur-
onal genes in WormBase. We queried FlyBase and found
that 67% (46/69) genes were also annotated as neuron-
ally expressed, i.e., associated with terms such as brain,
nerve, neuron, or nervous system. In contrast, only 15%
of all genes in the fly genome and 19% of all fly genes
with worm orthologs were annotated as expressed in the
neurons (Fig. 5a). In addition to FlyBase annotations, 12
genes that were not annotated in FlyBase as neuronally
expressed showed locomotor phenotypes in this study
when inactivated in the neurons, suggesting that they
function in the neurons. Combined, 87% (60/69) of our
tested fly genes are neuronal genes (Fig. 5a), demonstrat-
ing a high level of conservation in gene expression.
In addition to expression, these genes also showed a

high level of conservation in phenotypes. All ort-
hologous worm genes had mutants with significant
locomotor defects [14]. In this study, upon RNAi inacti-
vation, 85% (59/69) of our tested fly genes showed loco-
motor phenotypes (Fig. 5b). We further queried FlyBase
to estimate how likely a randomly selected gene would
display a locomotor phenotype. Among FlyBase pheno-
type annotations, only 3.1% of all genes in the fly gen-
ome and 2.5% of all genes with worm orthologs were
annotated with locomotor defects (Fig. 5b). This ratio
significantly (p < 0.01, Fisher’s exact test) increased to
10% among our tested genes (Fig. 5b), demonstrating
that locomotor defects are enriched among these genes.
Together, these data suggested a strong conservation
among these genes in locomotor phenotypes.
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Rewiring of genetic interactions among locomotor genes
Next we examined the conservation of genetic interac-
tions. Worm interacting gene pairs were defined as
genes with |PCC| > 0.7 for worm locomotive profiles
and GeneOrienteer score over 4 [14]. For fly gene pairs
whose worm orthologous pairs were interacting, 11%
were interacting if we used the same criteria for fly gene
interactions and if we used locomotive profiles from
neuronal RNAi (Fig. 5c). While such conservation level
was drastically lower than those in expression or pheno-
type (11 vs. ≥85%), it is significantly (p < 0.001, Fisher’s
exact test) higher than the expected probability from
random gene pairs (11 vs. 4%, Fig. 5c). In comparison
with neuronal locomotive profiles, profiles from ubi-
quitous RNAi showed even a lower level of con-
servation: Fly gene pairs with interacting worm
orthologous pairs had only 2.4% probability of inter-
acting, which was not significantly higher than the
1.2% from random pairs (Fig. 5c).

We investigated whether our results on genetic inter-
actions were biased by the GeneOrienteer algorithm as
it used orthologous data. When we eliminated GeneOr-
ienteer scores and used |PCC| values as the sole criter-
ion for interaction, we observed that 24% of genetic
interactions were conserved if neuronal profiles were
used, which was significantly higher than the expected
14% from random pairs (Fig. 5d). Conservation of
genetic interactions was not observed in ubiquitous
profiles (Fig. 5d). These data confirmed that the conser-
vation level of genetic interactions was much lower than
those of expression and phenotype.

Motor-neuronal control of body length
While we used only 10 locomotive parameters in this
study, our imaging system extracts 20+ parameters from
the videos. One parameter that was measured by the
system but not used in the locomotive profiles was body
size. As male larvae are smaller than female larvae, we
analyzed them separately in all body length measure-
ments. Notably, inactivation of two genes, Rdl and Gαo,
in neurons caused significantly reduced larval body size
in both females and males (Fig. 6a).
As neuronal RNAi of Rdl and Gαo also caused severe

locomotive defects, it seemed possible that the reduced
body length might be a secondary defect of the locomo-
tive phenotypes. For example, if a larva could not move
well, it might not reach food well, and thus could have a
small body length because of malnutrition. This was
unlikely under our culture conditions as the larvae were
maintained continuously on food. Furthermore, neur-
onal RNAi of many genes caused severe locomotor
defects, without affecting body length. For example,
neuronal RNAi of syb reduced the larval crawling speed
to a level similar to Rdl and Gαo (Fig. 6b), yet caused no
body length defects (Fig. 6a). Therefore, we hypothesize
that the reduced larval length of Rdl and Gαo reflects a
primary defect in gene function.
Surprisingly, inactivating Rdl and Gαo in motor neurons

using the D42-Gal4 driver reproduced the shortened-
body-length phenotype (Fig. 6c). In contrast, inactivating
these genes in insulin producing brain cells using a dilp2-
Gal4 driver did not cause reduced body length (Fig. 6c).
These data suggested that there is a motor-neuronal
control of body length in D. melanogaster, and that
such control requires the function of Rdl and Gαo in
motor neurons.

Database
In addition to the supplementary tables, an interactive
database was built to enable queries of videos and be-
havioral profiles including all 20+ parameters. The data-
base provides raw measurements as well as normalized
measurements of each animal for query and download.
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The database can be accessed at http://wormloco.org,
the same website that also stores C. elegans locomotor
behavioral profiles [14].

Discussion
We present here the high-content larval locomotive pro-
files of 69 genes whose C. elegans orthologs are neuronal
signalling genes with locomotor phenotypes. Profiles
were collected after inactivation of these genes by RNAi
in all cells, neurons, and motor neurons. Bioinformatic
analysis on these profiles revealed 42 genes whose func-
tions are required in the neurons to maintain normal
larval locomotor behaviors, and 81 high-confident inter-
actions among these genes. While many of these genes
are known to be expressed in neurons and have adult
behavioral phenotypes, the difference between our study
and the previous findings are: 1) this study revealed the
functions of these genes in larval instead of adult behav-
iors; 2) this study provided quantitative, high-content
phenotypic measurements instead of qualitative observa-
tions or single-metric measurements.
Using the nAChR family as an example, we showed

how such analysis brings insights to gene functions. Our
profiles revealed that inactivation of nAChRα1 and
nAChRα3 in the neurons caused severe movement disor-
ders. The interaction analysis suggested that these two
nAChRs function similarly with Snap24 and eag, but
antagonistically with Gαq and unc-13. Site-of-action ana-
lysis suggested that nAChRα1, nAChRα3, eag, Gαq func-
tion primarily in the motor neurons. These results are

consistent with previous reports that Gαq and unc-13
function in the same signalling pathway in NMJ [29, 30].
It was reported that cholinergic input directly stimulates
motor neurons [32], consistent with our finding that
nAChRs are required in the motor neurons to maintain
normal movement.
While high-content profiling cannot definitively prove

genetic interactions as epistasis analysis, the effectiveness
of this method has been well established [11–14]. As
there is no high-throughput method to epistasis analysis
in flies, experimental validation of these predicted
genetic interactions is difficult. We thus relied on a com-
putational validation of the predicted genetic interac-
tions, and showed that the predicted interactions are
enriched among the known positives (known interac-
tions) than negatives (random gene pairs). Random gene
pairs were used as negatives because there is no sizable
data set on genes that do not interact, and because
genetic interactions are sparse among all gene pairs.
It has remained unknown whether genetic interaction

networks are conserved for multicellular organisms. This
is mostly due to lack of large-scale genetic interaction
studies: the only available multicellular in vivo genetic
interaction networks are synthetic lethality networks in
C. elegans [33, 34]. While certain conservation was ob-
served for genetic interaction networks between budding
and fission yeast, no conservation was observed between
these worm networks and the yeast ones [35, 36]. Using
the same methodology of high-content profiling, we pro-
vided comparable data sets to estimate the conservation
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of genetic interaction networks in worms and flies. Similar
to the worm-yeast result, no strong conservation of
genetic interactions between worms and flies was ob-
served under ubiquitous RNAi. C. elegans and Drosophila
larvae have different nervous system and muscle anatomy.
As genetic interactions can involve genes functioning in
different cells, the difference in cellular circuitry may
explain the lack of conservation. Similar reasoning may
also explain the mild conservation between worm and fly
neuronal genetic interactions (11% conservation rate,
Fig. 4d), as these interactions are limited to the same
tissue. Consistent with this hypothesis, this mild conserva-
tion rate is similar to the genetic interaction conservation
rate observed between budding yeast S. cerevisiae and
fission yeast S. pombe: 17% negative interactions and 10%
positive interactions were conserved [36].
The observed motor neuronal control of body size was

unexpected. One possible mechanism for such motor-
neuronal effect of body size is through muscle cells. It
was discovered that inhibition of insulin receptor (InR)
in muscle cells could cause systemic effects and reduce
the body size of the entire larvae [37] an effect that
might be mediated at least in part by the Foxo-
dependent increase in release of ImpL2, an insulin
signalling inhibitor [38]. It is possible that Rdl and Gαo
functions in motor neurons affect the muscle state,
which subsequently changes the activities of these regu-
lators in muscle cells, and impacts body size. Given that
Rdl encodes the Drosophila GABAA receptor, which me-
diates inhibitory synaptic transmission, the Rdl knock-
down is expected to increase motor neuron activity and
hence synaptic input onto the muscle; this increased
synaptic input might activate muscle Foxo. Consistent
with this model, it was reported previously that effects
of altered synaptic transmission in Drosophila larvae on
activity of muscle insulin signalling components [39].
It was shown that a coordinated action from both exci-

tatory neurons, which release acetylcholine, and inhibitory
neurons, which release GABA, is required to generate the
sequential firing of motor neurons for the peristaltic
movement [40]. The acetylcholine receptor (nAChR) and
the GABAA receptor (Rdl) are likely to function in differ-
ent dendrites of motor neurons to mediate the excitatory
and inhibitor synaptic transmission, respectively, to drive
the rhythmic firing of motor neurons responsible for
peristaltic movements.
We do not know whether motor neuronal control of

body size also exists in C. elegans. Neuronal control of
body size exists in C. elegans, as it was reported that
gene functions in sensory neurons affect body size in C.
elegans [41]. Mutants of the C. elegans orthologs of Rdl
and Gαo, unc-49 and goa-1, had a smaller body length
(wormloco.org). However, the site-of-action for these
genes in size-regulation is unknown in C. elegans.

Conclusion
Our high-content profile data provided a framework for
understanding the genetic control of larval locomotion.
In addition to providing clues for individual genes
functions, such system-level approach also enabled
evaluation of conservation and rewiring of genetic
interaction networks.

Additional files

Additional file 1: Table S1. Genes studied. List of the gene names,
FlyBase IDs of the genes, the Bloomington stock numbers of fly strains
used, and the worm orthologs of the fly genes (XLSX 12 kb).

Additional file 2: Table S2. Locomotive profiles of genes with
significant phenotypes. Profiles are composed of normalized values for
ten locomotive parameters. Profiles for both neuronal and ubiquitous
RNAi are listed. The summary page lists genes with significant
phenotypes (XLSX 26 kb).

Additional file 3: Table S3. Genetic interactions inferred from
locomotive profiles. Predicted genetic interactions with |PCC| > 0.7 and
GeneOrienteer score over 4 (XLSX 12 kb).
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