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A B S T R A C T

Background: Chronic myelomonocytic leukaemia (CMML) is a clinically heterogeneous stem cell malignancy
with overlapping features of myelodysplasia and myeloproliferation. Over 90% of patients carry mutations in
epigenetic and/or splicing genes, typically detectable in the Lin�CD34+CD38� immunophenotypic stem cell
compartment in which the leukaemia-initiating cells reside. Transcriptional dysregulation at the stem cell
level is likely fundamental to disease onset and progression.
Methods: We performed single-cell RNA sequencing on 6826 Lin�CD34+CD38�stem cells from CMML
patients and healthy controls using the droplet-based, ultra-high-throughput 10x platform.
Findings: We found substantial inter- and intra-patient heterogeneity, with CMML stem cells displaying dis-
tinctive transcriptional programs. Compared with normal controls, CMML stem cells exhibited transcrip-
tomes characterized by increased expression of myeloid-lineage and cell cycle genes, and lower expression
of genes selectively expressed by normal haematopoietic stem cells. Neutrophil-primed progenitor genes
and a MYC transcription factor regulome were prominent in stem cells from CMML-1 patients, whereas
CMML-2 stem cells exhibited strong expression of interferon-regulatory factor regulomes, including those
associated with IRF1, IRF7 and IRF8. CMML-1 and CMML-2 stem cells (stages distinguished by proportion of
downstream blasts and promonocytes) differed substantially in both transcriptome and pseudotime, indicat-
ing fundamentally different biology underpinning these disease states. Gene expression and pathway analy-
ses highlighted potentially tractable therapeutic vulnerabilities for downstream investigation. Importantly,
CMML patients harboured variably-sized subpopulations of transcriptionally normal stem cells, indicating a
potential reservoir to restore functional haematopoiesis.
Interpretation: Our findings provide novel insights into the CMML stem cell compartment, revealing an unex-
pected degree of heterogeneity and demonstrating that CMML stem cell transcriptomes anticipate disease
morphology, and therefore outcome.
Funding: Project funding was supported by Oglesby Charitable Trust, Cancer Research UK, Blood Cancer UK,
and UK Medical Research Council.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license.
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1. Introduction

Chronic myelomonocytic leukaemia (CMML) is a myelodysplastic/
myeloproliferative overlap syndrome typically affecting older people,
characterized by bone marrow (BM) failure, leukocytosis and mono-
cytosis [1,2]. CMML is clinically heterogeneous and categorized by
both percentage accumulation of blasts and promonocytes (stages
CMML-0/�1/�2), and by circulating white blood cell (WBC) count
into dysplastic (<13£ 109/L) and proliferative (>13£ 109/L) forms
[2,3]. Advanced stage and proliferative disease are both associated
with shorter survival and higher risk of leukaemic transformation [4].
The genomic landscape is dominated by mutations in epigenetic
modifier (e.g. TET2; ASXL1) and splicing (e.g. SRSF2) genes [5,6].
Despite its clinico-pathological heterogeneity, most patients have
dismal prognosis with few treatment options [7,8]. Haematopoietic
stem cell (HSC) transplantation is potentially curative but only an
option for the minority of younger patients [9]. For the majority,
hydroxycarbamide remains standard of care, affording cytoreduction
without substantially altering disease biology, clonal composition or
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Research in context

Evidence before this study

Chronic myelomonocytic leukaemia (CMML) is a rare haemato-
logical malignancy with dismal prognosis. Currently there are
no treatment options available for this disease, largely due to
inadequate mechanistic understanding of disease initiation and
progression. The mutational landscape in CMML and insights
from other myeloid malignancies implicate transcriptional dys-
regulation at the level of the disease initiating haematopoietic
stem cells in CMML leukaemogenesis. However, to date no
studies have directly investigated the transcriptome of these
cells in detail. Such understanding is critical for the rational
design of novel targeted therapeutic strategies to address this
major area of unmet clinical need.

Added value of this study

This is the first study to evaluate the CMML transcriptome at
single cell level, and the first to directly evaluate transcriptional
dysregulation specifically in the immunophenotypic stem cell
compartment. It reveals marked heterogeneity, both within
and between individual patients, highlighting CMML as a com-
mon phenotypic endpoint of quite different transcriptionally
dysregulated stem cell programs. It highlights some candidate
genes and pathways as potential novel therapeutic targets and,
importantly, identified a proportion of transcriptionally near-
normal residual stem cells in most cases, raising the potential
for an important therapeutic window and sparing of normal
haematopoietic output.

Implications of all the available evidence

Our study reveals new insights into CMML biology and provides
a useful platform for future hypothesis-driven exploration of
potentially tractable therapeutic vulnerabilities.
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natural history. Hypomethylating agents (HMA) have an important
role for a subset of non-proliferative patients, but their utility is
mostly restricted to transiently rebalancing haematopoiesis, with
inevitable progression and only modest influence on survival [10].
Thus, novel therapeutic targets and strategies are required to
improve patient outcome; this will require deeper understanding of
the biology driving the malignant evolution of CMML.

While the transcriptome of CMML monocytes and bulk BM cells
has been previously evaluated, the malignant stem cells in CMML
have not been directly studied at the genome-wide level [11�15].
The Lin�CD34+CD38� BM compartment represents the apex of the
haematopoietic hierarchy, typically representing <5% of total CD34+

cells and <0.25% of total BM MNCs [16]. Imbued with properties of
self-renewal and multilineage differentiation potential, normal HSCs
sustain and replenish haematopoiesis throughout life. In most mye-
loid malignancies there is substantial enrichment of leukaemia-initi-
ating cells (LICs) within this compartment [17�19]. Whereas
CD34+CD38+ and even CD34� LICs are recognized in some acute mye-
loid leukaemias (AML), disease-propagating cells in myelodysplasia
(MDS) are thought to reside exclusively in the CD34+CD38� fraction
[20]. This may also apply in CMML, with the CD34+CD38� compart-
ment consistently harbouring initiating and driver mutations [13]
and able to initiate disease in murine xenotransplantation experi-
ments [21]. LICs are distinct from downstream blasts and other clonal
progeny in their biology and response to therapy. Their persistence
following chemotherapy is a major contributor to the high relapse
rate in AML, and the primitive nature of MDS/CMML LICs may
explain, in part, the inability to cure these diseases without allogeneic
stem cell transplantation.

Single-cell RNA-sequencing (scRNA-seq) is a powerful tool for
elaborating transcriptional heterogeneity in cell populations
[22�24]. We hypothesised that the remarkable clinical heterogeneity
observed in CMML might reflect transcriptomic heterogeneity within
the disease-initiating stem cell compartment. ScRNA-seq could reveal
genes and pathways selectively dysregulated in CMML stem cells,
highlighting potentially tractable vulnerabilities for novel therapeutic
strategies. It could also shed light on the origin and pathobiology of
CMML disease progression: defined by the accumulation of blasts
and promonocytes into clinical stages (CMML-0; �1; �2; AML)
tightly linked to overall prognosis [1].

We performed scRNA-seq on 6826 sorted Lin�CD34+CD38�

immunophenotypic stem cells from seven treatment-naïve CMML
patients and three healthy controls using the droplet-based, ultra-
high-throughput 10x platform [24]. We identified distinctive CMML
stem cell signatures but with a remarkable degree of inter- and intra-
patient transcriptomic heterogeneity, distinct patterns of transcrip-
tion factor network dysregulation, and substantial differences
between CMML-1 and CMML-2 evident even at the primitive stem
cell level.

2. Materials and methods

Samples: BM mononuclear cell (MNC) samples from CMML
patients were obtained from the Manchester Cancer Research Centre
Tissue Biobank (initiated with the approval of South Manchester
Research Ethics Committee). Samples were donated, with informed
consent, from patients presenting to The Christie NHS Foundation
Trust (Manchester, UK), and MNC preparations cryopreserved as pre-
viously described [25]. All CMML samples were taken at time of diag-
nosis and before any definitive therapy. Healthy control BM MNC
samples were purchased from Stem Cell Technologies (Cambridge,
UK, Cat #70,001). Further details are provided in Table S1

Data and code availability: The data generated in the study are
available at Array Express (E-MTAB-8884) https://www.ebi.ac.uk/
arrayexpress/.

Fluorescence-activated cell sorting (FACS): BM-MNC samples
were thawed, washed and incubated for 30 min on ice with Hoechst
33-258 (Cat #94,403; Sigma Aldrich, Gillingham, UK) and the follow-
ing antibodies (all at 1:100): anti-CD34-APC (clone 581; #555,824;
BD Biosciences, Oxford, UK); anti-CD38-PE (HIT2; #25�0389�42;
eBioscience, Altrincham, UK); anti-Lin-FITC (pooled antibodies tar-
geting CD2/3/4/7/8/10/11b/14/19/20/56/235a; #25�0389�71; BD
Biosciences, Oxford, UK). Viable Lin�CD34+CD38� cells were sorted
using a FACS Aria III (BD Biosciences). To ensure maximum purity
with minimal contamination of the targeted population, sorted sam-
ples were immediately subjected to a second sort (when cell num-
bers permitted) using identical gating. Up to 2000 Lin�CD34+CD38�

cells were targeted per sample, based on the empirically-determined
10x capture efficiency (40�50%).

Single-cell RNA-sequencing: Each sample was prepared for sin-
gle-cell capture immediately after sorting to ensure cell viability. Sin-
gle cell capture was performed as per manufacturer’s protocol
(Chromium Single Cell v2 chemistry; 10x Genomics; Leiden, The
Netherlands), with 12 cycles of whole transcriptome amplification.
Barcoded cDNA libraries were pooled for sequencing on an Illumina
NextSeq 500 (Illumina, San Diego, CA, USA) across two high-output
runs.

Data processing and filtering: FASTQ files were processed using
10x Genomics’ custom pipeline Cell Ranger (v2.2.0) using default
parameters (E-MTAB-8884). This identifies valid barcodes as cells
and counts Unique Molecular Identifiers (UMIs) mapped to each cell,
reported by cell count matrix in sparse matrix format. Sequences
were mapped to the prebuild hg38 genome. Cell Ranger’s aggr
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command was used to aggregate samples, with default down-sam-
pling normalization enabled. We evaluated three metrics to remove
low quality cells: number of UMIs identified per cell barcode (i.e.
library size); number of genes called per barcode; and proportion of
UMIs mapping to mitochondrial genes. For each a threshold of three
Median Absolute Deviations was applied to reject poor quality cells.
Violin plots for each metric were visualized to exclude outlier distri-
butions (no potential doublets/multiplets were observed). Genes
with average counts below 0.01 were excluded, being minimally
informative and unreliable for statistical inference [26]. A total of
12,695 genes were retained for downstream analysis. To consider the
effect of variable library size for each cell, raw counts were normal-
ized using a deconvolution-based method and then log-transformed
[27]. Scater (v1.14.6) and its dependent packages were downloaded
from Bioconductor [28].

Cell cycle analysis: We used the Seurat package (version 3.1.4)
CellCycleScoring function to calculate the cell cycle phase score for
each cell using canonical marker genes [29]. For this calculation, we
took counts for all cells and log normalized them. Next, we performed
cell cycle scoring analysis that gives a score for S and G2/M phase of
cell cycle. The cell cycle phase is then determined based on a highest
positive score given for S or G2/M phase of the cell cycle. Any cell not
scoring positive for either of these phases is assigned to G1/G0 phase.
Canonical marker genes used for scoring were loaded from Seurat
package [29]. No corrections for cell cycle were made, in view of the
possibility that cell cycle differences were an important biological
variable in comparing cells from different samples in this study.

Visualization and clustering: The variance of expression of each
gene was decomposed to technical and biological components, and
highly variable genes identified where biological components were
significantly >0.5. This gave a list of genes for which the difference
between average expression in any two cells would be at least 2-log
fold. These were used for dimensional reduction using Principle Com-
ponent Analysis (PCA). T-distributed Stochastic neighbour Embed-
ding (t-SNE) and Uniform Manifold Approximation and Projection
(UMAP) plots were generated using 1�14 components of the PCA. No
batch effects were observed for sample BC572 (sequenced on both
runs), indicating that batch corrections were not required. To cluster
cells we used the hierarchical iterative clustering from the scrattch.
hicat package (https://github.com/AllenInstitute/scrattch.hicat) [30].
This starts with coarse-level clustering and iteratively splits into
increasingly fine clusters using the phonograph algorithm, which cre-
ates a graph with phenotypic similarities of cells by calculating Jac-
card distance between their nearest neighbours [31].

Differential gene/pathway analysis: Marker genes for each clus-
ter were identified as those displaying differential expression on
comparing each cluster against all others and reporting the genes
that are differentially expressed, using edgeR [32]. Pairwise differen-
tial expression (DE) analysis was performed between patients or
between clusters, with each cell considered as a sample in edgeR con-
vention. All comparisons used the DE analysis from sSeq package
[33]. Cluster 17 (derived from sample BC278) returned a prominent
signature of highly expressed erythroid progenitor genes; since low
cell numbers had precluded double sorting on this sample we could
not exclude contamination from CD38+ or CD34� downstream cells,
so excluded this cluster from all subsequent DE analyses (CD34
mRNA expression was relatively lower in cells from this cluster).
Gene set enrichment analysis (GSEA) was performed using GSEA soft-
ware (http://software.broadinstitute.org/gsea) with default parame-
ters, 1000 permutations on gene sets, and gene sets downloaded
fromMSigDB or other relevant studies [23,34,35] (Table S3).

Pseudotime analysis: We ordered single cells along their devel-
opmental trajectory using the Monocle (v2.0) R package (http://cole-
trapnell-lab.github.io/monocle-release/) and default workflow [36].
Size factors and dispersions were first estimated and genes with a
global minimum expression detection threshold of 0.1 were selected
for reordering, using dpFeature. We then used tSNE for dimension
reduction, and pseudotime trajectories were generated using the
plot_cell_trajectory function.

SCENIC analysis: We used SCENIC (https://github.com/aertslab/
SCENIC) to construct gene regulatory networks and identify stable
cell states [37]. We first applied a two-stage soft filter to remove
genes with low expression (UMI count lower than the value of UMI
counts of 3 in 1% of cells) or expressed only in few (<1%) cells. For fur-
ther downstream analysis we identified genes available on RcisTarget
database and ran GENIE3 [38] to identify potential targets for each
transcription factor based on co-expression. We then identified
potential direct targets based on DNA-motif analysis using RcisTarget.
Finally, we identified cell states of individual cells by analysing the
network activity in the cell and scoring them using AUCell.

3. Results

To compare the transcriptional landscape of immunophenotypic
CMML stem cells with their normal counterparts we performed
scRNA-seq on double-sorted Lin�CD34+CD38� cells from seven
untreated CMML patients at presentation (CMML-1, n = 4; CMML-2,
n = 3; six males, one female; age range, 60�75) and three normal
healthy volunteers (two males, one female; age range, 36�52)
(Figs. 1A, S1A-B, Table S1). In total we sequenced 5870 patient and
1913 normal stem cells, of which 5031 and 1795 respectively passed
quality controls for downstream analysis (Fig. S2A). For each sample
we detected a median of 10,520 unique transcripts (range,
2411�14,493) mapping to median 2162 genes per cell (range,
917�2524) (Figs. S2B-C).

3.1. CMML stem cells display a myeloid skewed, proliferative
transcriptional signature

Two dimensional visualization by t-SNE based on 526 highly vari-
able genes, (defined as those with biological component of variance
significantly greater than zero, i.e. false discovery rate (FDR) 5%)
revealed a substantial and clear separation between CMML and con-
trol Lin�CD34+CD38� cells with, in addition, striking transcriptomic
heterogeneity between different CMML patients (Fig. 1B). By contrast,
spatial separation of the three control samples was much more lim-
ited. We focused initially on common differences between CMML
and control stem cells by analysing differentially expressed genes.
We performed differential gene expression analyses between control
and CMML Lin�CD34+CD38� cells, with each cell considered as a sep-
arate sample. We found 943 genes up-regulated and 296 genes
down-regulated in CMML by comparison with normal cells (FDR<5%,
fold change >1.5; Table S2). KEGG and Gene Ontology (GO) analysis
of up-regulated genes highlighted enrichment of pathways related to
cell cycle and also those characteristic of myeloid lineage cells,
including “cytokine-cytokine receptor interaction”, “JAK-STAT signal-
ling” and “chemokine signalling” (Fig. 1C and D). There were no simi-
lar enrichments among down-regulated genes. Chemokine genes up-
regulated included CXCL8, CXCL12, CCL3L3, and CXCL10 (Fig. S3A,
Table S2). In keeping with the significant level of inter-patient het-
erogeneity, we did not find any genes consistently up-regulated
across every CMML patient sample. By contrast, many genes were
consistently down-regulated, including FOS and JUN proto-onco-
genes, both coding for components of the AP-1 transcription factor
complex and important regulators of myeloid differentiation
(Fig. S3B). Silencing of FOS has been reported to promote abnormali-
ties of myeloid differentiation [39], while both are among the most
prominently up-regulated genes in (unsorted) BM upon clinical
response to HMAs in CMML [10].

We next computed mean normalized expression values for each
gene across the population of sorted single Lin�CD34+CD38� cells, on
a sample-by-sample basis for each CMML and control specimen (i.e.
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Patients 

Fig. 1. CMML stem cells display distinct transcriptional signatures: (A) Schematic overview of the experimental workflow used in the study. (B) T-distributed stochastic neighbour
embedding (t-SNE) plot based on highly variable genes for all cells passing filtering thresholds, coloured by sample type. In the inset, cells derived from CMML patients are coloured
black and from healthy controls are coloured grey. BC: Biobank case number; HV: healthy volunteer; (C-D) KEGG (C) and GO biological processes (D) pathway analysis of up-regu-
lated genes in stem cells from CMML samples as compared with control samples. The top pathways differentially active in CMML stem cells are shown; horizontal bars indicate the
-log(10) q-value for that term. (E) Gene set enrichment analysis plots showing enrichment of the indicated gene signatures in CMML stem cells as compared with control samples.
See also Figs. S1�S3.
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seven versus three samples), and performed gene set enrichment
analysis (GSEA) using a signal-to-noise ranking metric. We interro-
gated the ranked list with the Molecular Signatures Database Hall-
mark Gene Set collection, each of which conveys a specific biological
state or process and displays coherent expression [40]. The most
significant enrichments were for gene sets characteristic of differenti-
ated myeloid cells such as “Inflammatory response” and “IL6-JAK-
STAT signalling” (strongly enriched in CMML versus normal
Lin�CD34+CD38� cells) and cell cycle gene sets “E2F targets” and
“G2M checkpoint” (Fig. 1E, Tables S3 and S4). No Hallmark gene sets
exhibited enriched expression in control versus CMML
Lin�CD34+CD38� cells. To investigate whether changes in gene
expression between CMML and control stem cells are merely reflec-
tive of age differences between these groups, we performed GSEA
analysis for genes differentially expressed between aged vs. young
HSCs [35]. No gene sets associated with normal HSC ageing were dif-
ferentially enriched in CMML or normal stem cells (Fig. S3C). Further,
out of 943 up-regulated genes in CMML stem cells only 8 were associ-
ated with ageing (Fig. S3D).

Since stem cell division and differentiation are intimately linked
we performed additional GSEA using (i) the gene set up-regulated in
human Lin�CD34+CD38� HSCs by comparison with their downstream
Lin+CD34+CD38+ progenitor cells [34] and (ii) gene sets up-regulated
in Lin�CD34+CD38+ oligopotent progenitors committed to one partic-
ular lineage versus all other cells with the same immunophenotype
(including B-cell progenitors, megakaryocyte/erythrocyte (MegE)
committed progenitors, neutrophil-primed progenitors, monocyte/
dendritic cell progenitors and eosinophil/basophil/mast cell (EBM)
progenitors) (Table S3). We observed a highly significant down-regu-
lation of a normal Lin�CD34+CD38� HSC gene set in CMML versus
normal Lin�CD34+CD38� HSCs (Fig. 2A) and a highly significant
up-regulation of genes selectively expressed in oligopotent
Lin�CD34+CD38+neutrophil-primed or monocyte/dendritic cell-
primed progenitors (Fig. 2B). There was by contrast minimal or
absent enrichment of expression of B-cell, MegE or EBM progenitor
gene sets (data not shown). These findings are further supported by
violin plots shown (Fig. 2C) for single-cell expression of transcription
factor genes which have been associated with HSC self-renewal,
including MEIS1, HLF, KLF4 and EGR1 (all down-regulated in CMML
versus normal stem cells); and transcription factor and other genes
associated with myeloid commitment and differentiation such as
RUNX1, CEBPD, LGALS1 and AZU (all up-regulated in CMML versus
normal HSCs (Fig. 2C). We also found up-regulation of several genes
unique to subsets of patients e.g. CDKN1A was up-regulated in a sub-
set of patients’ stem cells, as observed previously by targeted q-RT-
PCR analysis [11].

Taken together, these data demonstrate that by comparison with
normal Lin�CD34+CD38� HSCs, CMML stem cells exhibit a transcrip-
tome characterized by increased expression of myeloid lineage and
cell cycle genes, and lower expression of genes selectively expressed
by normal HSCs.

3.2. Detection of normal Lin�CD34+CD38�single cell transcriptional
signature in CMML patients

We next performed unsupervised iterative clustering and identi-
fied 17 transcriptionally separable subpopulations across all
sequenced cells (Fig. 3A). For each comparison of a subpopulation
with all remaining populations, the 20 most up-regulated genes were
identified (Table S5). Expression of these marker genes for each of
the 17 clusters is shown in Fig. 3B, along with the top three KEGG
terms exhibiting significant enrichment in each cluster. As expected
for CMML stem cell clusters, and as before, terms include those asso-
ciated with myeloid lineage differentiation and the cell cycle
(Fig. 3B). Normal Lin�CD34+CD38� HSCs almost exclusively clustered
in Cluster 15 (Fig. 3C). Notably, most CMML samples contained a
variable proportion of cells also assigned to Cluster 15 (median 3.1%;
range, 0.1�52.3%; Fig. 3C), suggesting the residual presence of cells
akin to normal HSCs within each CMML patient.

Leukemic stem cells could influence normal stem cell function via
paracrine signalling or through alterations to the microenvironment.
We found samples BC786 and BC746 included unusually high (52.4%
and 46.5%, respectively) proportions of cells assigned to the “normal”
Cluster 15 (Fig. 3C), alongside distinctive patient-specific leukemic
clusters. Interestingly, when Cluster 15 CMML stem cells were com-
pared with Cluster 15 stem cells from healthy controls, significant
and consistent gene expression differences were evident. We again
observed a relative down-regulation of normal HSC genes in Cluster
15 stem cells recovered from CMML patients BC786 and BC746 by
comparison with normal individuals; and in the case of Cluster 15
stem cells from patient BC746 there was a significant relative
increase in genes selectively expressed in both neutrophil and mono-
cyte/dendritic progenitor cells (Figs. S4A-C). It remains unclear
whether these transcriptional differences within Cluster 15 are
driven by CMML-associated genetic lesions or alternatively reflect
residual genetically normal HSCs in the BM of CMML patients whose
transcriptome has been modified by an altered disease-associated
BMmicroenvironment.

3.3. Stem cells from CMML-1 and CMML-2 patients harbour distinct
transcriptional programs

An increased BM blast percentage is strongly associated with infe-
rior outcome in CMML [1]. To determine whether this clinicopatho-
logical distinction is reflected by transcriptomic differences within
the CMML stem cell compartment, we compared single stem cell
transcriptomes from patients with WHO-defined CMML-0 or CMML-
1 (<10% BM blasts and promonocytes; hereafter “CMML-100) with
those from patients with “CMML-200 (�10% BM blasts and promono-
cytes). Again each cell was considered as a separate sample. We
observed substantial differences: 782 genes were up-regulated and
802 genes down-regulated in CMML-1 versus CMML-2 stem cell pop-
ulations (FDR<5%, fold change >1.5; Table S6). KEGG and GO Biologi-
cal Process analysis showed enriched expression in CMML-1 of gene
sets with annotations “DNA replication”, “Cell cycle”, “Translational
elongation”, among others. By contrast, gene sets enriched in CMML-
2 stem cells by comparison with CMML-1 included those related to
inflammatory and cytokine response, JAK-STAT signalling and apo-
ptosis (Table S7). Given this observation of highly distinct categories
of KEGG and GO terms enriched in CMML-1 versus CMML-2 stem
cells, we made use of the alternate visualization method UMAP,
which better represents cellular origins and trajectories during devel-
opment than the more widely used t-SNE method [41]. This revealed
remarkable segregation of CMML-2 stem cell transcriptomes away
from CMML-1 and control stem cell transcriptomes, but for a subfrac-
tion of stem cells from CMML-2 patient BC572 (Fig. 4A).

To further interrogate the relatedness of normal and CMML stem
cell populations we performed pseudotemporal ordering analysis, a
method that constructs putative cellular trajectories by statistically
ordering cells based on transcriptomic similarity [36,41]. In a two-
dimensional linear representation clear demarcation of CMML-1,
CMML-2 and normal stem cells was observed (Fig. 4B). This separa-
tion was further emphasized by a branched representation where
pseudotime ordered stem cells into distinct branches without a priori
assumption of normal HSC differentiation (Fig. 4C and D). In this pro-
jection control and CMML-1 stem cells are largely located above
branching point 2, whereas those before branching point 2 are pre-
dominantly CMML-2 stem cells (Fig. S5A).

Given the distinct transcriptomes of CMML-1 versus CMML-2
stem cells, we next evaluated levels of transcription factor expres-
sion, since these are core regulators of cellular state and differentia-
tion. Consistent with more extensive monocytic differentiation



Fig. 2. CMML stem cells lose features of stem cell quiescence and exhibit myeloid bias: (A and B) Gene set enrichment analysis plots showing enrichment of the indicated gene sig-
natures in CMML stem cells as compared with control samples. (C) Violin plots showing the expression of selected genes relating to HSC maintenance and myeloid commitment in
CMML and control stem cells. Expression levels are shown as log(10)(normalized counts +1).
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observed in CMML-2 cases, we noted significantly higher expression
of transcription factor genes associated with monocytic differentia-
tion such as IRF1, IRF7, IRF9, MAFF and CEBPB in CMML-2 versus
CMML-1 stem cells (Fig. 5A, Fig. S5B). In contrast, the key oncogenic
transcription factor MYC and its downstream targets were up-regu-
lated in CMML-1 versus either CMML-2 or normal stem cells, in keep-
ing with the observed enrichment of MYC-associated KEGG and GO
terms (Fig. 5B). Furthermore, mature granulocytic genes including



Fig. 3. A variable fraction of CMML stem cells share a transcriptional signature with normal stem cells: (A) t-SNE plot based on highly variable genes for all cells passing filtering
thresholds, indicating 17 transcriptionally separable subpopulations (distinguished by colour) as determined by unsupervised iterative clustering. Normal stem cells (from all three
healthy controlssegregate together in Cluster 15. (B) Heat map displaying scaled expression of the top 20 differentially expressed genes in each cluster, with respect to cells from all
other clusters. Top 3 KEGG pathways (lowest q-value) active in each cluster are shown next to the corresponding cluster (where identified). (C) Heat map indicating the distribution
of cells for each sample (columns) across the 17 defined clusters (rows); shading indicates scaled percentage of cells within each cluster for that patient/control sample. Lower panel
indicates percentage of cells within Cluster 15 (on a logarithmic scale). See also Fig. S4.
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ELANE, MPO and LYZ were significantly up-regulated in CMML-1 stem
cells (Fig. S5C). Transcription factors specifying granulomonocytic
commitment and differentiation, such as SPI1 and CEBPA, were also
consistently more highly expressed in CMML-1 versus CMML-2 stem
cells, but did not reach statistical significance possibly due to small
sample size (Fig. 5C). Taken together, our data reveal that stem cell
transcriptomes from patients with CMML-2 are quite distinct from
those from patients with CMML-1, apparently anticipating disease
morphology and thus outcome.

Another source of clinicopathological heterogeneity in CMML is
the prognostically-significant distinction between dysplastic and pro-
liferative disease. Differential gene expression analysis found 195
genes up-regulated and 596 down-regulated in dysplastic stem cells
with respect to proliferative stem cells (Table S8). Terms including
“negative regulation of cell proliferation” and “negative regulation
of developmental process” were enriched in dysplastic stem cells
(Table S9), but no hallmark gene sets were enriched in stem cells
from dysplastic CMML cases as compared with proliferative cases
(data not shown). No genes were uniquely expressed in CMML stem
cells from cases of proliferative versus dysplastic disease manifesta-
tion. Of note, gene expression profiles of whole unsorted BM mono-
nuclear cells and of sorted CD34+ cells from CMML patients similarly
did not segregate samples based on proliferative versus dysplastic
phenotype [15]. Together these observations suggest that whereas



Fig. 4. CMML-1 and CMML-2 stem cells show distinct developmental trajectories: (A) Uniform Manifold Approximation and Projection (UMAP) plot based on highly variable genes
for all cells. (B) Cellular trajectories displayed as linear stream plots for each sample, illustrating the spread and density of individual cells in pseudotime (C and D) Cellular trajecto-
ries of all cells in the study mapped to a branching 3D model, as constructed by the Monocle package; colour coding indicates (C) scaled pseudotime; and (D) the patient/control
sample from which each cell derived. Branching points 1 and 2 are indicated in (C) by bold black dots. CMML-1, CMML-2 and HV sample IDs are labelled in green, red and blue
respectively. See also Fig. S5.

Fig. 5. Stem cells from CMML-1 and CMML-2 patients harbour distinct transcriptional signatures: (A and C) Violin plots showing the relative expression level of selected genes
involved in myeloid differentiation. BC: Biobank case number; HV: healthy volunteer; CMML-1, CMML-2 and HV sample IDs are labelled in green, red and blue respectively. (B)
Gene set enrichment analysis plots of MYC target genes comparing CMML-1 stem cells as compared with control (upper pane) or CMML-2 (lower pane).

8 D.H. Wiseman et al. / EBioMedicine 58 (2020) 102904



H
V2

 

Fig. 6. Distinct transcription factor networks operational in CMML-1 and CMML-2
stem cells-: (A) t-SNE plot based on regulon activity in all CMML and control stem cells
included in the study, as determined by SCENIC analysis. Segregation of cells derived
from CMML-1, CMML-2 and normal controls is indicated by the dashed lines. BC: Bio-
bank case number; HV: healthy volunteer; CMML-1, CMML-2 and HV sample IDs are
labelled in green, red and blue respectively. (B & C) t-SNE plots based on activity of reg-
ulons centred on the indicated transcription factors, displayed as a binary measure
(grey: inactive; blue: active). Regulons that are uniquely active in HV, CMML-1 and
CMML-2 cells are highlighted in blue, green and red boxes, respectively (C). Regluons
that are either active in all cells or in cells that do not fall under any specific category
are highlighted black boxes (B). See also Fig. S6.
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the distinction of CMML-1 from CMML-2 stage disease is primed by
upstream transcriptional programs within the primitive stem cell
compartment, this does not appear to be the case for dysplastic ver-
sus proliferative phenotype; presumably the degree of proliferative
potential is instead programmed by genetic or epigenetic events
downstream of the stem cell compartment.

3.4. Transcription factor networks involved in CMML stem cells

To more deeply evaluate transcription factor dysregulation in
CMML stem cells, we performed a transcriptional regulatory network
analysis. A regulon is a gene regulatory network comprising a tran-
scription factor and all of its putative downstream targets. This
approach is particularly suited to scRNA-seq, with opportunity to
evaluate directly the coordinated expression of a regulating tran-
scription factor and its dependent targets within the same cell. More-
over, considering a regulon as a whole, it is robust against gene drop-
outs which are common in scRNA-seq datasets. For this we employed
SCENIC (Single-Cell rEgulatory Network Inference and Clustering)
[37], a computational algorithm that identifies regulon modules by
integrating co-expression of transcription factor and genes contain-
ing the corresponding transcription factor -binding motif in their cis-
regulatory elements.

Clustering based on a total of 296 regulons again showed that nor-
mal and CMML Lin�CD34+CD38� stem cells were widely separable in
transcriptional space (Fig. 6A). Whilst some regulons were equally
active across all cells (e.g. ELF1, HMGA1, ETS2), certain transcription
factor networks displayed unique activity in subsets of samples
(Fig. 6B). Consistent with our earlier analyses, regulons associated
with the proto-oncogene JUN and with transcription factors linked to
HSC self-renewal (e.g. KLF4, HLF) were relatively inactive in CMML
(Fig. 6C). CMML-1 stem cells showed a relative increase in activity of
regulons associated with knownmyeloid transcription factors CEBPD,
CEBPA and MYC. Networks related to monocytic differentiation were
preferentially active in CMML-2 stem cells (Fig. 6C and Fig. S6), con-
sistent with our earlier single gene and GSEA observations. These
included regulons centred on NFKB1, IRF8, RELA, RELB and IRF7, and
other transcription factors strongly associated with monocytic line-
age differentiation. Thus, the transcriptome of CMML stem cells and
their lineage potential are characterized by expression of distinctive
transcriptional circuits according to whether they are from patients
with CMML-1 (MYC) or CMML-2 (IRF transcription factors).

3.5. Inter- and intra-patient heterogeneity in CMML HSPCs

Understanding clonal heterogeneity in the stem cell compartment
within and between patients is critical for optimal design of novel
therapies, which to be effective must target all tumour sub-popula-
tions within that patient. Cell-to-cell transcriptional correlation anal-
ysis found no consistent differences in the magnitude of overall
transcriptomic heterogeneity between samples, or between CMML
and controls (Fig. S7A). This suggests that overall CMML stem cells
are no more heterogeneous than normal stem cells. However, unlike
control stem cells, each patient’s stem cells were distributed across
2�3 distinct clusters (Fig. 7A and S7B).

Next we performed pairwise pathway analyses comparing tran-
scriptional profiles of each CMML-patient specific cluster with that of
Cluster 15, excluding cells from CMML patients that mapped to this
cluster (Fig. 7B). There was highly heterogeneous differential expres-
sion of genes mapping to distinct KEGG pathways. Some (e.g. “cyto-
kine-cytokine receptor interaction”, “chemokine signalling”) were
generally active across most disease clusters, whilst others were only
active in certain clusters in some patients. Moreover, we observed
striking heterogeneity within certain CMML patients. For example,
patient BC776 displayed three major clusters: 3, 4 and 5. While Clus-
ters 3 and 5 shared many features, “Cell cycle” and “DNA replication”



Fig. 7. Inter and intra patient heterogeneity in CMML stem cells: (A) t-SNE plots based on highly variable genes for each CMML patient separately, highlighting the distribution of
their stem cells across the defined clusters; distinct clusters represented within a sample are assigned different colours for emphasis. t-SNE plots presenting CMML-1 and CMML-2
stem cells are highlighted in green and red boxes respectively (B) Bubble chart showing relative enrichment of the indicated pathways in each distinct cluster from the indicated
CMML patient samples, all with respect to Cluster 15 from all merged control samples. Bubble colour represents scaled -log(10) FDR significance; bubble size indicates the number
of up-regulated genes enriched in the indicated pathways. See also Fig. S7.
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gene sets were more active in Cluster 3 versus Cluster 5. Similarly,
Cluster 4 showed minimal activation of JAK-STAT and MAPK signal-
ling pathways in comparison with Clusters 3 and 5. These data fur-
ther highlight the transcriptional heterogeneity not just between, but
within CMML patient stem cell populations.

4. Discussion

Novel inhibitors targeting pathogenic gain-of-function mutations
(e.g. IDH1, IDH2, FLT3) are changing the treatment landscape in mye-
loid malignancies, but have a limited role in CMML in which these
mutations are comparatively rare [5]. The typical mutations driving
CMML (TET2, SRSF2, ASXL1, RUNX1, N/KRAS) have proved difficult to
target directly, and no tractable vulnerabilities specific to the CMML
disease-initiating compartment have been identified to rationally
guide targeted therapy design. Our data reveal that the defining
myelomonocytic expansion of CMML is primed from the
Lin�CD34+CD38� stem cell compartment, with fundamental myelo-
monocytic transcriptomic perturbation and dysregulation of key dif-
ferentiation pathways. These results are consistent with the previously
observed up-regulation of the myelomonocytic transcription factor
SPI1 in sorted common myeloid progenitor cells from CMML patients
in comparison with the healthy controls [13]. We highlight candidate
genes and pathways consistently and exclusively dysregulated in
CMML stem cells, apparently across genotypes: for example, down-
regulation of the AP-1 subunits FOS and JUN, implicating NF-kB path-
way activation as in other cancers [42] and overexpression of LGALS1,
a positive regulator of both RAS signalling and the anti-apoptotic
proto-oncogenes BCL-2 and MCL-1 [43]. More broadly, we identify
pathways aberrantly operational in stem cells from subsets of patients,
including JAK-STAT signalling, inflammatory response, translation
elongation and cell cycle progression, each of which are increasingly
amenable to therapeutic modulation with novel agents. Aberrant
expression of genes involved in inflammation and cell cycle was also
observed in whole unsorted BM mononuclear cells and in monocytes
from CMML patients, indicating that these altered regulatory networks
are programmed within primitive stem cells and propagated through-
out differentiation [11,13]. Activation of JAK-STAT pathway, without
necessarily a demonstrable JAK2 mutation and particularly as a hyper-
sensitive response to native GM-CSF, has been reported as a key fea-
ture of CMML, and drugs targeting this pathway have shown promise
in both preclinical models and early phase clinical trials [44�48].

Our data reveal a substantial degree of both inter- and intra-
patient heterogeneity within the Lin�CD34+CD38� compartment of
CMML. Strikingly, every patient displayed a private set of differen-
tially expressed genes and aberrantly operational transcription factor
networks. This extent of transcriptomic heterogeneity between
patients mirrors the observed clinical heterogeneity, which far
exceeds the mutational diversity of this disease and indicates that
effective targeted therapy approaches in CMML may need to be
highly personalized [7].

Strikingly, we observed wide segregation and distinct transcrip-
tomic profiles between CMML-1 and CMML-2 stem cells; disease
stages clinically distinguished solely by the percentage of blasts and
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promonocytes. CMML-1 and CMML-2 stem cells were segregated
widely by UMAP. CMML-1 stem cells exhibited a program defined by
high expression of MYC, and myeloid differentiation and cell cycle
genes. CMML-2 stem cells were characterized by high expression of
regulomes associated with IRF1, IRF7 and IRF8, factors that are highly
expressed in monocytic lineage differentiation. These data highlight
the distinctive priming of CMML-1 versus CMML-2 malignant stem
cells and suggest against a simplistic, linear succession model of
CMML disease progression. This implies that CMML-1 and CMML-2
might represent quite different disease states rather than necessarily
steps on a continuum, although our sample size was too small for
definitive confirmation. Notably, many CMML-1 patients do not
transform to AML despite sometimes exhibiting highly proliferative,
aggressive disease. CMML-2 patients, by contrast, frequently presents
with a disease closely resembling, or rapidly evolving into AML.

We identified variably sized populations of CMML stem cells tran-
scriptionally resembling normal HSCs. It remains unclear whether
these are part of the malignant clone, partially-transformed pre-leu-
kemic stem cells or genuinely normal residual stem cells. That they
might be uninvolved bystanders is supported by a previous report
that founding mutations were detectable in most, but not all, HSC/
MPP-derived colonies from a majority of CMML patients [13]. Never-
theless, the relationship between genotype and functional LIC status
is uncertain, particularly since CMML founding mutations are also
common markers of age-related clonal haematopoiesis of indetermi-
nate potential [49]. Indeed, our scRNA-seq, at much higher through-
put, is also consistent with a hypothesis that the BM of CMML
patients contains residual genetically uninvolved stem cells, with
transcriptomes subtly altered due to a non-cell autonomous effect.
These could represent transcriptional perturbations induced by para-
crine signalling from neighbouring malignant stem cells or from the
leukemic microenvironment, as has been observed in chronic mye-
loid leukaemia [50]. Irrespective, this raises the prospect of a thera-
peutic window, with a potential reservoir of cells to potentially
survive a targeted therapy exploiting more pervasive transcriptional
vulnerabilities and restore functional haematopoiesis.

Whether the transcriptomic heterogeneity of CMML stem cells is
mediated by genetic, epigenetic or microenvironmental influences
remains uncertain. We found no convincing correlation of transcrip-
tional clusters with patient mutation status as genotyped at bulk
MNC level (data not shown), but these analyses were indirect and
limited by small sample size. Our limited sample size also precluded
us from a detailed investigation into the transcriptional consequen-
ces of TET2/SRSF2 mutant combination in patient HSPCs. Studies
leveraging emerging technologies to correlate transcriptome with
genotype at the single-cell level, and in larger patient cohorts, are
required to comprehensively address the link between transcrip-
tional and mutational heterogeneity. Taken together, though, our
data demonstrate CMML to be a heterogeneous stem cell malignancy,
with multiple transcriptional routes converging on the common
downstream clinicopathological phenotype.
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