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Abstract
Aims: Vagus nerve stimulation (VNS) is a neuromodulation therapy for children with 
drug-resistant epilepsy (DRE). The efficacy of VNS is heterogeneous. A prediction 
model is needed to predict the efficacy before implantation.
Methods: We collected data from children with DRE who underwent VNS implanta-
tion and received regular programming for at least 1 year. Preoperative clinical infor-
mation and scalp video electroencephalography (EEG) were available in 88 children. 
Synchronization features, including phase lag index (PLI), weighted phase lag index 
(wPLI), and phase-locking value (PLV), were compared between responders and non-
responders. We further adapted a support vector machine (SVM) classifier selected 
from 25 clinical and 18 synchronization features to build a prediction model for effi-
cacy in a discovery cohort (n = 70) and was tested in an independent validation cohort 
(n = 18).
Results: In the discovery cohort, the average interictal awake PLI in the high beta 
band was significantly higher in responders than non-responders (p < 0.05). The SVM 
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1  |  INTRODUC TION

Vagus nerve stimulation (VNS) is a neuromodulation therapy for 
drug-resistant epilepsy (DRE) in both children and adults. VNS was 
first approved by the U.S. Food and Drug Administration for patients 
with DRE in 1997, and its efficacy and safety have been proven for 
over 20 years.1 A recent meta-analysis including 101 pediatric stud-
ies found that approximately 56.4% of children with DRE achieved 
≥50% seizure reduction (defined as responders) compared to the 
pretreatment baseline, and 11.7% of children were seizure-free at 
the last follow-up (>1 year).2 Although VNS significantly decreases 
the costs related to hospitalization, anti-seizure medications (ASMs), 
and other costly downstream healthcare interventions in respond-
ers,3,4 the total expense of VNS treatment is still a heavy financial 
burden for families, especially in developing countries, with costs 
ranging from EUR 65 to 24,790.5,6 The average expense for the 
pediatric population is approximately 1.7 times higher than that 
of the general population.7 Furthermore, despite advancements in 
surgical procedures, children still inevitably need to undergo gen-
eral anesthesia and undertake the risks of any invasive surgery. As a 
consequence, taking into account the heterogeneity in efficacy, it is 
essential to identify potential candidates who are more likely to ben-
efit from VNS in advance to avoid unnecessary implantation. A high 
specificity and convenient prediction model applicable for identify-
ing pediatric responders before VNS implantation in clinical practice 
is in crucial need.8–13

Although the exact antiepileptic mechanisms of VNS remained 
unclear, desynchronization recorded by electroencephalogram 
(EEG) was considered to be a possible mechanism as VNS inducing 
desynchronization in specific frequency band was proved in both 
animal and human researches.14–16 Based on the underlying de-
synchronization mechanism, synchronicity indexes extracted from 
EEG, including the phase locking value (PLV), phase lag index (PLI) 
and weighted PLI (wPLI), were found to be related to postoperative 
VNS efficacy.16–20 Sangare et al.20 reported a significant correlation 
between lower PLI OFF/ON ratio in delta, theta and beta bands at 

awake state and better VNS efficacy in 35 patients with DRE. Vespa 
et al.16 found that stronger VNS-induced theta desynchronization 
correlated with better clinical outcome and wPLI OFF/ON ratio in 
theta band could be considered as a biomarker to identify respond-
ers from non-responders. In theory, the variability of synchronicity 
index might reflect the integrity of individual functional brain net-
work connectivity, which responders showed significant desynchro-
nization receiving external stimulation compared to non-responders. 
Therefore, we speculate that epilepsy patients with higher preoper-
ative synchronicity indexes might be potential VNS responders.

With the wide application of machine learning, researchers 
have adopted relevant methods for predicting therapeutic effica-
cy.21–23 Support vector machine (SVM), which is a binary classifica-
tion model, is widely used in epileptic field, including prediction of 
epilepsy surgery outcomes, patient-specific seizure prediction and 
epilepsy diagnosis based on a small dataset.21,22,24 As Mithani et al. 
conducted SVM prediction model, which indicated the unreliability 
based on clinical phenotypes only, the accuracy of the prediction 
algorithm was likely to be improved when holding the major factors 
and eliminating the minor factors by SVM.11–13 On these grounds, 
we explored a prediction SVM model integrating clinical and syn-
chronization features extracted from scalp EEG before implantation, 
with the aim of predicting postoperative VNS efficacy in children 
with DRE.

2  |  METHODS

2.1  |  Patients and clinical information

2.1.1  |  Inclusion criteria

We collected data from children with DRE who underwent implanta-
tion of a vagus nerve stimulator (PINS, Beijing, China or Cyberonics, 
Houston, TX) between March 2016 and December 2020 from 2 
separate epilepsy centers: Peking University First Hospital (Beijing, 

classifier generated from integrating both clinical and synchronization features had 
the best prediction efficacy, demonstrating an accuracy of 75.7%, precision of 80.8% 
and area under the receiver operating characteristic (AUC) of 0.766 on 10-fold cross-
validation. In the validation cohort, the prediction model demonstrated an accuracy 
of 61.1%.
Conclusion: This study established the first prediction model integrating clinical and 
baseline synchronization features for preoperative VNS responder screening among 
children with DRE. With further optimization of the model, we hope to provide an ef-
fective and convenient method for identifying responders before VNS implantation.

K E Y W O R D S
drug-resistant epilepsy, machine learning, scalp electroencephalography, synchronization, 
vagus nerve stimulation
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China) and Sanbo Brain Hospital (Beijing, China). Data from pa-
tients implanted between March 2016 and June 2020 in Peking 
University First Hospital were used as cohort for prediction SVM 
building (discovery cohort). Additional data from patients implanted 
with VNS from Peking University First Hospital and Sanbo Brain 
Hospital were used as independent data for validation of the predic-
tion model (validation cohort). Patients included in this study ful-
filled all the following criteria: (1) age at implantation ≤16 years; (2) 
diagnosis of drug-resistant epilepsy according to the criteria defined 
by the International League Against Epilepsy (ILAE)25; (3) regularly 
programmed and followed-up for at least 1 year after implantation; 
(4) output current ≥1 mA during program; and (5) with preoperative 
scalp video-EEG recorded for at least 4  hours (duration of awake 
state ≥40 min) within 3  months prior to implantation available. 
Patients who received newly added antiepileptic therapy after VNS 
(including surgical treatment, ketogenic diet, and other anti-seizure 
medications), terminated VNS therapy, lost to follow-up or with ir-
regular/absent seizure frequency recordings were excluded.

2.1.2  |  Baseline clinical information

Baseline clinical information included gender, body mass index (BMI), 
diastolic and pulse pressure, age at onset, age at implantation, dura-
tion of epilepsy before surgery, seizure type, frequency of seizures, 
etiology of epilepsy, history of any previous epilepsy surgery or di-
agnosis of developmental and epileptic encephalopathies (DEEs),26 
number of historical anti-seizure medications (ASMs) used, number 
of ASMs at baseline and brain magnetic resonance imaging (MRI).

2.1.3  |  Seizure outcome measures

The efficacy outcomes of individual patients were calculated as 
the average reduction in seizure frequency within 6 months at the 
last follow-up compared to baseline (average seizure frequency 
within 3  months before implantation) according to the epilepsy 
diary. Children with 100%, ≥80% and ≥50% reductions in seizure 
frequency were defined as 100% (R100), 80% (R80) and 50% (R50) 
responders, respectively. Children with a reduction in seizure fre-
quency < 50% were defined as non-responders (NR50).

2.2  |  Scalp video-EEG recording and 
synchronization-based measures

2.2.1  |  Scalp video-EEG recording and processing

Baseline scalp video-EEG was acquired within 3  months before 
VNS. Scalp video-EEG was recorded using a 21-channel EEG system 
(Neurofax, EEG-1200C) positioned according to the 10–20 system 
placement (Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, T3, T4, T5, T6, 
Fz, Cz, Pz, F7, and F8).

EEG processing was carried out in MATLAB R2018b (Mathworks), 
using EEGLAB (2020).27 For each patient, at least 6 min of awake in-
terictal EEG data (identified by synchronized video or eye movement 
artifact) were selected. For better implementation of data station-
arity in subsequent processing, selected data was further analyzed 
into epochs with 2 s length each. Epochs with apparent eye move-
ment artifacts or epileptiform discharges were removed by visual 
analysis. Then, signals were digitized at a sampling rate of 500 Hz. 
Bandpass filtering was applied in standard EEG frequency bands: 
delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), low beta (13–20 Hz), 
high beta (20–29 Hz) and beta (13–29 Hz).

2.2.2  |  Synchronization-based measures: Phase-
locking value (PLV), Phase lag index (PLI) and Weighted 
phase lag index (wPLI)

Traditionally, EEG analysis indices based on coherence could rep-
resent only the linear dependence between signals because they 
could not exclude the influence of the amplitude and phase of EEG 
signals. Therefore, Lachaux et al.28 proposed that the PLV could be 
used to evaluate the phase synchronization degree between signals. 
We performed a Hilbert transform on the preprocessed whole time 
series EEG signals to obtain the instantaneous phase time series of 
EEG signals at each electrode. The PLV was calculated by the phase 
difference between different signals, and the PLV range was [0,1]. 
When the PLV was equal to 1, the phase difference time series was 
constant throughout the whole time series. If the PLV is equal to 0, 
it means that the phase difference is evenly distributed within the 
range of (0,2π). The mean global PLV was calculated by averaging 
PLV values from bipolar EEG channels. Mean global interictal PLV 
values in awake state were compared for each frequency band be-
tween the R50 and NR50 groups.

Although the PLV is widely used, it has an obvious disadvantage: 
it is sensitive to the common source problem; that is, it is susceptible 
to the volume conduction. Therefore, Stam et al.29 proposed that the 
PLI could be used to accurately evaluate the phase synchronization 
degree between different signals. The PLI evaluates the asymmetry 
of the distribution of phase differences between signals. Similarly, 
we calculated the phase difference between different EEG signals as 
we did in the calculation of the PLV and further calculated the value 
of the PLI in the range of [0, 1]. When the PLI value is 1, there is a 
constant phase difference, and it is not 0 or π. When the PLI value 
is 0, there is no connectivity between the EEG signals. The mean 
global PLI was calculated by averaging PLI values from bipolar EEG 
channels. Mean global PLI values in awake state were compared for 
each frequency band between the R50 and NR50 groups.

The wPLI is a phase-based connectivity evaluation index pro-
posed by Vinck et al.30 which is used to improve the discontinuity 
of PLI indicators. We performed cross-spectrum analysis of differ-
ent EEG signals and then further calculated the wPLI values. The 
wPLI ranges from 0 to 1. Higher wPLI values mean higher connec-
tivity between EEG signals. The mean global wPLI was calculated by 
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averaging the wPLI values from bipolar EEG channels. Mean global 
wPLI values in awake state were compared for each frequency band 
between the R50 and NR50 groups.

2.3  |  SVM learning and prediction model

2.3.1  |  SVM learning

A prediction model for efficacy was built in the form of a linear 
SVM, which is a frequently applied supervised machine learning 
method. The efficacy of VNS in the discovery cohort, which was set 
to be the expected outcome of the prediction, was labeled R50s or 
NR50s. A total of 43 features (25 clinical and 18 synchronization 
features) were included in the model as input to generate a binary 
linear classifier. Twenty-five clinical features included BMI, diastolic 
pressure, pulse pressure, age of VNS implantation, duration of epi-
lepsy before implantation, age of seizure onset, history of epilepsy 
surgery, seizure frequency, etiology of epilepsy (including structural, 
autoimmune, genetic and unknown), seizure type (including general-
ized, focal, spasms and multiple types), epilepsy syndrome (including 
infantile spasms, Lennox–Gastaut Syndrome, early-onset epileptic 
encephalopathy and unclassified syndrome), brain MRI (including 
local, multifocal and negative), number of historical ASMs usage and 
number of ASMs at baseline. And 18 synchronization features in-
cluded the PLV, PLI, and wPLI calculated in six bandwidths (delta, 
theta, alpha, beta, low beta and high beta).

To build a more comprehensive model and improve the perfor-
mance, redundant or irrelevant features were eliminated through 
feature selection methods. We applied the filter method with the 
F-score and the wrapper method with recursive feature elimination 
(RFE) in this work. The filter method works in a way that sorts all 
the features by a specific statistical method and selects a certain 
number of features that rank at the top. Unlike the filter method, the 
wrapper method takes advantage of the learning performance of a 

model to assess the features, which means that its performance is 
dependent on the learning algorithm itself but may result in a more 
complicated and slower calculation. We applied both methods to 
compare their performance.

The nested cross-validation (nested-CV) method was carried out 
during model building. The CV method includes two loop layers. The 
inner loop aimed to find the best parameters of the model, while 
each fold of the outer loop provides the validation performance of 
the model independently by calculating an estimate of error. A 5-fold 
CV method was carried out in the inner loop, while both 5-fold and 
10-fold CV method was tested in the outer loop. For decreasing the 
overfitting problems to maximum extent, we finally applied a 10-fold 
CV method to the outer loop. The performance of the model was 
assessed through the confusion matrix and receiver operating char-
acteristic curve (ROC curve). Accuracy, precision, and area under the 
ROC curve (AUC) were calculated.

2.3.2  |  Validation of the model

Completely independent sample data were collected as a validation 
cohort to validate the prediction model. All the datasets were col-
lected and analyzed in the same way as the discovery cohort, and 
clinical and synchronization features were also collected according 
to a standardized process. The prediction SVM model was then ap-
plied to predict the responder status of each patient. Meanwhile, a 
separate researcher calculated the seizure outcome without know-
ing the prediction result. The final validation result was calculated 
according to the accuracy.

2.4  |  Statistical analysis

All the continuous variables were analyzed by Kolmogorov 
Smirnov test to evaluate data distribution. Subject demographics 

F I G U R E  1  Flow chart of the study 
design A total of 88 patients met the 
inclusion criteria for our study, among 
whom 70 children were further randomly 
selected for the discovery cohort, while 
an independent cohort of 18 children 
was selected for the validation cohort. 
DRE, drug-resistant epilepsy; EEG, 
electroencephalography; NR, non-
responders; R, responders; SVM, support 
vector machine.
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information and clinical characteristics were analyzed using the 
Mann–Whitney test for continuous variables and chi-square anal-
ysis or Fisher's exact test for nominal data. Electrophysiological 
synchronization features were compared between groups with 
unpaired t tests in each frequency band, and false discovery rate 
(FDR) correction was applied to avoid misleading low p-values.31 
Statistical analysis and graphing were performed using MATLAB 
2018b and GraphPad Prism 8.0. A significance level of 0.05 was 
set.

3  |  RESULTS

3.1  |  Baseline clinical features were comparable 
between responders and non-responders

Eighty-eight children (54 males and 34 females; age at VNS implan-
tation ranging 1.8–15.4 years) with DRE were finally included in our 
study (shown in Figure 1), among whom 70 patients were used as 
the cohort for building of prediction SVM (discovery cohort), and 
18 patients for the validation. A total of 52.9% (37/70) and 47.1% 
(33/70) of patients were defined as having R50 and NR50 in the 
discovery cohort, respectively, after VNS treatment for an average 
of 2.95 years (range 1.22 to 5.58 years). A comparable summary of 
the baseline clinical features of the R50 and NR50 groups from the 
discovery cohort is presented in Table 1. No significant difference 
was found in clinical features between the R50 and NR50 groups 
at baseline.

Among 37 patients defined as R50, 27.0% (10/37) and 75.7% 
(28/37) were further categorized as R100 and R80, respectively. 
For the VNS parameters at the last follow-up, the median output 
currents of the R50 and NR50 groups were 1.7  mA (ranging 1.5–
2.25 mA) and 1.7  mA (ranging 1.4–2.0  mA), respectively, and the 
duty cycle ranged from 10%–38%.

3.2  |  The baseline synchronization features 
during awake state in scalp EEG differed between 
responders and non-responders

The preoperative baseline synchronization features during awake 
state (including PLV, PLI, and wPLI) were analyzed (Table 2). We 
found that the PLI in the R50 group was significantly higher than 
that in the NR50 group in the high beta band (0.165 ± 0.027 vs. 
0.152 ± 0.007, p  =  0.045, FDR-corrected Mann–Whitney U test, 
Figure 2B). The PLI and wPLI in the other frequency bands (espe-
cially high beta and low beta bands) were also higher in the R50 
group, although the difference was not statistically significant. No 
significant differences in the PLV were found between the R50 
and NR50 groups (Figure 2A).

We further evaluated the difference in the wPLI and PLI at the 
beta bandwidth (low and high beta bands) among R100, R80 and 
NR50 by subgroup analysis (shown in Table S1). We found that the 

PLI in the R100 and R80 groups was significantly higher than that in 
NR50 group in the high beta band (p = 0.038 and p = 0.006, FDR-
corrected Mann–Whitney U test, respectively). Although there was 
no statistical significance when comparing the wPLI between the 
R100 and NR50 groups, higher synchronization was indicated.

Ages significantly affected the background frequency of inter-
ictal awake state EEG, especially in high beta bandwidth among 
younger children. To confirm that the differences in EEG synchro-
nization between R and NR are still applicable to children with dif-
ferent age, patients were categorized into three groups according 
to age: (1) 0–3 years (n = 8); (2) 3–9 years (n = 53); and (3) 9–16 years 
(n = 9). A higher wPLI and PLI were still observed at the high beta 
band in responders in all these groups (shown in Table S2), indicating 
the constancy of the biomarkers. However, due to the small number 
of cases in each group, no statistical difference could be reached.

3.3  |  A prediction SVM model integrating 
clinical and synchronization features to distinguish 
responders from non-responders

Three SVM classifiers were generated from the discovery cohort (70 
patients) using (1) 25 clinical features, (2) 18 synchronization fea-
tures and (3) integrating both clinical and synchronization features. 
We found that the SVM classifier generated from integrating clinical 
and synchronization features had the best predictive efficiency, with 
an accuracy of 75.7%, a precision of 80.8% and an AUC of 0.766 on 
10-fold CV (shown in Table 3).

From 10 meaningful principal components identified by SVM, 
the principal component coefficient (mean ± SD) of each was 
listed below sorted by numerical value: (1) wPLI at high beta band 
(1.448 ± 0.300); (2) Multiple seizure types (1.308 ± 0.279); (3) PLI at 
alpha band (1.294 ± 0.533); (4) PLI at high beta band (1.278 ± 0.343); 
(5) Negative findings in brain MRI (1.190 ± 0.138); (6) PLI at theta 
band (0.761 ± 0.171); (7) wPLI at theta band (0.331 ± 0.173); (8) 
Infantile spasms (0.327 ± 0.284); (9) Unclassified epilepsy syndrome 
(−0.199 ± 0.156); (10) Number of ASMs at baseline (−0.744 ± 0.332). 
We found that the wPLI in the high beta band, PLI in the high beta 
band, PLI in the alpha band, multiple seizure types and negative find-
ings in brain MRI had higher principal component coefficients (shown 
in Figure 3A). The confusion matrix of the SVM classifier generated 
from principal component analysis was shown in Figure 3C.

The other two SVM classifiers generated from 25 clinical fea-
tures or 18 synchronization features demonstrated accuracies of 
51.4% and 61.4%, respectively, and the AUCs of the ROC curve were 
significantly lower than those of the ROC curve generated from inte-
grating clinical and synchronization features, as shown in Figure 3B.

The SVM classifier generated from integrating clinical and syn-
chronization features was tested in a validation cohort of 18 patients 
(10 males and eight females; age at VNS implantation ranging 2.2–
15.0 years) from two separate institutions. In this cohort, 11 patients 
(61.1%) were responders and 7 (38.9%) were non-responders. The 
prediction model yielded an accuracy of 61.1%.



    |  1843MA et al.

TA B L E  1  Comparison of the baseline clinical features between the R50 and NR50 groups

Baseline variables (n = 70) R50 (n = 37, 52.9%) NR50 (n = 33, 47.1%) p Value

Seizure frequency
mean ± SD (range), times/month

681.9 ± 1187
(4–5430)

696.7 ± 764.5
(1.5–2490)

0.52a

Gender, n

Male 25 19 0.46b

Female 12 14

BMI
mean ± SD (range), kg/m2

16.4 ± 2.9
(11.8–23.1)

17.1 ± 3.6
(12.7–29.3)

0.78a

Diastolic Pressure
mean ± SD (range), mmHg

59.8 ± 5.9
(40–73)

59.9 ± 6.6
(47–76)

0.86a

Pulse Pressure
mean ± SD (range), mmHg

40.8 ± 6.9
(28–58)

41.7 ± 8.0
(21–68)

0.73a

Age of seizure onset
mean ± SD (range), years

2.3 ± 3.0
(0.0–11.7)

2.1 ± 2.3
(0.0–8.8)

1.00a

Duration of epilepsy before implantation
mean ± SD (range), years

3.5 ± 1.4
(1.0–7.3)

3.1 ± 2.3
(0.5–10.0)

0.06a

Age at VNS implantation
mean ± SD (range), years

5.9 ± 3.1
(1.8–15.4)

5.2 ± 3.0
(1.9–15.0)

0.12a

History of previous epilepsy surgery, n (%) 6 (43.2%) 3 (9.1%) 0.48b

Etiology of epilepsy, n, (%)

Structural 20 (54.1%) 19 (57.6%) 0.76b

Genetic 2 (5.4%) 1 (3.0%)

Autoimmune 1 (2.7%) 0 (0.0%)

Unknown 14 (37.8%) 13 (39.4%)

Predominant seizure type, n (%)

Generalized 11 (29.7%) 11 (33.3%) 0.51b

Focal 17 (46.0%) 16 (48.5%)

Spasms 24 (64.9%) 15 (45.5%)

Multiple types 14 (37.8%) 18 (54.6%)

Epilepsy syndrome, n (%)

Infantile spasms 11 (29.7%) 4 (12.1%) 0.30b

Lennox–Gastaut Syndrome 3 (8.1%) 2 (6.1%)

EOEE 4 (10.8%) 4 (12.1%)

Unclassified 19 (51.4%) 23 (69.7%)

MRI, n (%)

Multifocal 19 (51.4%) 17 (51.5%) 0.84b

Localc 3 (8.1%) 4 (12.1%)

Negative 15 40.5%) 12 (36.4%)

Number of ASMs at baseline
mean ± SD (range)

2.9 ± 1.0 (0–5) 3.2 ± 0.9 (2–5) 0.27a

Number of historical ASMs
mean ± SD (range)

5.5 ± 2.2 (2–10) 5.6 ± 1.8 (2–9) 0.67a

Usage of benzodiazepinesd, n (%) 20 (54.1%) 14 (42.4%) 0.35b

Abbreviations: ASMs, Anti-seizure medications; BMI, body mass index; EOEE, early-onset epileptic encephalopathy; MRI, magnetic resonance 
imaging; NR, non-responders; R, responders; SD, standard deviation; VNS, vagus nerve stimulation.
aCalculated using nonparametric Mann–Whitney U test.
bCalculated using chi-squared (χ2) test.
cPatients with local findings in brain MRI had undergone preoperative evaluation who were identified as unfitful for resection surgery.
dThe types of benzodiazepines used in this study included phenobarbital, clonazepam, nitrazepam and clobazam.
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TA B L E  2  Differences in the PLV, PLI, and wPLI at different frequency bands between the R50 and NR50 groups

PLV PLI wPLI

R50s (n = 37)
NR50s 
(n = 33)

p 
Value R50s (n = 37)

NR50s 
(n = 33)

p 
Value R50s (n = 37)

NR50s 
(n = 33)

p 
Value

Delta 0.479 ± 0.034 0.483 ± 0.050 0.769 0.307 ± 0.016 0.312 ± 0.036 0.814 0.484 ± 0.024 0.487 ± 0.040 0.656

Theta 0.456 ± 0.048 0.443 ± 0.026 0.769 0.293 ± 0.040 0.281 ± 0.015 0.170 0.501 ± 0.038 0.489 ± 0.020 0.338

Alpha 0.387 ± 0.025 0.378 ± 0.026 0.769 0.226 ± 0.012 0.222 ± 0.009 0.170 0.390 ± 0.035 0.381 ± 0.025 0.640

Low beta 0.341 ± 0.030 0.338 ± 0.032 0.769 0.184 ± 0.010 0.182 ± 0.007 0.513 0.332 ± 0.038 0.323 ± 0.020 0.663

High beta 0.323 ± 0.049 0.321 ± 0.052 0.769 0.164 ± 0.027 0.152 ± 0.007 0.045a 0.295 ± 0.041 0.270 ± 0.015 0.055

Note: Data was showed in mean ± standard deviation (SD).
Abbreviations: NR, non-responders; PLI, phase lag index; PLV, phase locking value; R, responders; wPLI, weighted phase lag index.
ap < 0.05; All p value were applied FDR-corrected Mann–Whitney U test.

F I G U R E  2  Differences in the PLV, PLI, and wPLI at different frequency bands between the R50 and NR50 groups (A) Differences in 
the PLV at different frequency bands between the R50 and NR50 groups; there was no significant difference. (B) Differences in the PLI 
at different frequency bands between the R50 and NR50 groups. The PLI in the R50 group was significantly higher than that in the NR50 
group in the high beta band (p = 0.045). (C) Differences in the wPLI at different frequency bands between the R50 and NR50 groups. The 
wPLI in the R50 group was higher than that in the NR50 group in the high beta band, although the difference was not significant (p = 0.055). 
Data are shown as the mean ± SD. All p value were applied FDR-corrected Mann–Whitney U test. NR, non-responders; PLI, phase lag index; 
PLV, phase-locking value; R, responders; wPLI, weighted phase lag index.
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4  |  DISCUSSION

To the best of our knowledge, this study is the first to establish a 
model integrating baseline clinical and synchronization features be-
fore implantation through SVM machine learning to predict the ef-
ficacy of VNS in children with DRE.

Despite the wide use of VNS in children with DRE, predictive 
clinical phenotypes and biomarkers for screening potential VNS re-
sponders in clinical practice remain unidentified. Clinical phenotypes 
include later age at onset of epilepsy, shorter epilepsy duration be-
fore implantation, particular etiology, seizure type, absence of intel-
lectual disability, fewer ASMs before implantation and so on.8–13,32 
However, none of them could be applied alone in clinical practice due 
to inconsistencies across studies. Biomarkers mainly focus on elec-
trophysiological activity and network-based and systemic indexes.33 
Among these biomarkers, heart rate variability (HRV),34 multimodal 
connectomic prediction algorithm22 and genetic variation of adenos-
ine35 were reported to be related with long-term VNS efficacy, with 
a sensitivity ranging from 9.3%–85.7% and a specificity ranging from 
72.4%–100%. However, the study of HRV and genetic variation of 
adenosine was based on an adult cohort, and it was not tested in a 
pediatric cohort. The multimodal connectomic prediction algorithm 
purposed by Mithani et al. demonstrated an accuracy of 89.5%, 
which was very promising for children with DRE. However, the al-
gorithm requires several tests, including diffusion tensor imaging 
(DTI) and DTI-informed magnetoencephalography (MEG), which are 
complicated, costly, and might not be easily generalizable to clinical 
practice in children. Hence, the ideal biomarker for prediction should 
be extracted from data in routine clinical evaluation.

In our study, we applied PLV to give the modulus of the instan-
taneous phase differences between two time series. Furthermore, 
to avoid the influence of volume conduction, we applied the wPLI, 
which is more sensitive in reflecting genuine connectivity changes 
than the PLI, together with the PLV and PLI in our study.36 And the 
PLI extracted from baseline scalp EEG were significantly different 
between responders and non-responders at the high beta band in 
interictal awake state. Higher frequency band oscillations are also 
considered to be related to epilepsy and might reflect the beginning 
of the epileptic network loop.15,17 Usami et al.37 found that beta 

oscillations may enhance the responsiveness of cortex to input from 
distant cortical sites besides gating local cortical processing, indi-
cating the importance of beta oscillations in functional connectivity. 
Song et al.38 reported longer duration of time spent seizure-free cor-
related with lower beta power in the seizure onset zone of patients 
with benign epilepsy with centrotemporal spikes, suggesting beta 
oscillations might relate with epileptogenicity. When comparing the 
difference in the PLI at the beta bandwidth in different efficacies 
(R100 and R80 subgroups) and different age ranges (3–9 years and 
9–16 years subgroups), the significance still had good consistency. 
This result suggested that higher beta oscillations might have better 
response for VNS and awake PLI in the high beta band is probably 
potential biomarkers for predicting VNS efficacy. The SVM classi-
fier generated from EEG synchronization features could precisely 
predict responders with a high AUC value (74.1%), indicating the 
higher synchronization level at baseline in responders. Interestingly, 
Mithani et al.22 found better left-lateralized structural and functional 
connectivity, including the left thalamic, limbic, insular, and temporal 
regions, in DTI and resting-state MEG analysis in responders than in 
non-responders, which also proved a higher synchronization level in 
responders from the perspective of structural connectivity before 
implantation.

Previous studies have fully proven that a more significant de-
crease in the level of synchronization (including the PLI, wPLI, PLI 
ratio OFF/ON) during VNS is strongly correlated with better VNS 
efficacy,16,17,19,20 indicating that desynchronization is an important 
mechanism of VNS.14,15,39 Sangare et al.20 found that the awake 
PLI ratio OFF/ON in the beta frequency band correlated with acute 
VNS efficacy among 35 adult patients. Another study conducted by 
Bodin et al.19 also found that responders had lower awake postoper-
ative global PLI values among 19 patients (14–54 years) who received 
chronic VNS therapy. In sub-band PLI analysis, lower frequency 
bands (delta and alpha) were found to be significantly reduced in 10 
responders. Similarly, Vespa et al.16 applied the postoperative wPLI 
OFF/ON ratio of 24 adult patients in the N2 sleep state in the theta 
band as a potential biomarker to distinguish responders from non-
responders after surgery, yielding an AUC of 0.825. Interestingly, 
these two studies failed to find a significant difference when focus-
ing on desynchronization in the higher frequency band. This could 
be explained by the recommendation for patients to keep their eyes 
closed for at least 20 min (as in Bodin et al. study) or the collection of 
data during stage 2 NREM sleep (as in Vespa et al. study), when EEG 
rhythms are dominated by a lower frequency band. For patients after 
VNS implantation, desynchronization in the higher frequency band 
is inevitably influenced by stimulation of the VNS device. The only 
study (Fraschini et al.17) to analyze differences in the preoperative 
interictal awake PLI of 10 patients (32–57 years) between respond-
ers and non-responders found no significant difference, which could 
be explained by source of undersizing. Because the dynamic change 
process of EEG activity is adaptive and adjustable to external stimu-
lation, the variability of synchronization biomarkers might reflect the 
integrity of individual functional brain network connectivity, which 
responders showed significant desynchronization receiving external 

TA B L E  3  Summary of the accuracy, precision, and AUC values 
for 3 separate mean 10-fold cross-validation-based SVM learning 
prediction models in identifying responders/non-responders in the 
discovery cohort

F-score

Accuracy Precision AUC

Synchronization features 61.4% 67.5% 0.741

Clinical features 51.4% 60.0% 0.610

Clinical+ Synchronization 
features

75.7% 80.8% 0.766

Abbreviations: AUC, area under the receiver operating characteristic 
curve; SVM, support vector machine.
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stimulation compared to non-responders. Therefore, our study also 
proved that pediatric epilepsy patients with higher preoperative 
synchronicity indexes might be potential VNS responders.

Although clinical information alone is not sufficient for predict-
ing VNS efficacy,11–13 which was also consistent with our study (the 
SVM classifier generated from clinical features yielded an accuracy 
of only 51.4%), we still consider it helpful for improving the accu-
racy of prediction when integrated with synchronization features. 
Mithani et al.22 also applied multimodal connectomic profiling and 
SVM classifiers generated from connectomic and clinical features 
to predict responsiveness to VNS. In our cohort, the SVM classifier 
generated from integrating clinical and synchronization features re-
vealed an accuracy of 75.7% with an AUC of 0.776, which clearly 
improved the accuracy of prediction. The principal component co-
efficient of the selected features in the 10-fold CV SVM classifier 
corresponded to the influence of specific features on postoperative 
VNS efficacy. We could tell from the selected principal component 
that children with DRE who had fewer current ASMs before im-
plantation, multiple seizure types, and negative MRI findings were 
more likely to be VNS responders, which also places great empha-
sis on multidimensional combinations in individualized prediction. 
Although the accuracy of validation cohort was lower than that of 
discovery cohort, the deviation was within tolerance, considering 
the limitation of sample size and heterogeneity of patients in two 
separate institutions. Furthermore, the application of SVM has been 
used in outcome prediction for epilepsy surgery,40 patient-specific 
seizure prediction,41 epilepsy diagnosis,42 and the identification of 
the epileptogenic zone.43 With further enlargement of sample size 
and model optimization, the efficacy and generality of SVM predic-
tion model would be ulteriorly improved to meet the need to identify 
responders to VNS in clinical practice.

Our study had some limitations. First, it was conducted on a rel-
atively small and heterogeneous study population from two sepa-
rate tertiary epilepsy centers. Although the nature of SVM ensured 
the accuracy of our results, a more multicenter sample should be 
included. And we have provided a clinical paradigm and reliable 
foundation for further research to optimize the prediction algorithm. 
Second, the age at VNS implantation in our study was heterogeneous 

(focused mainly between 3 and 9 years old). Limited to sample size in 
different age groups, age at implantation was not selected as one of 
the principal components. As further increasing number of different 
age groups, it might become one of clinical features, which could be 
adapted in the prediction model. Third, the evaluation of VNS effi-
cacy in our study was bound by 50% reductions in seizure frequency 
according to the average seizure frequency 6 months before the last 
follow-up. Due to the complexity and fluctuation of the epilepsy 
course in children, it was difficult to completely match the seizure 
frequency and VNS efficacy. We considered that 75% reduction 
might be a better critical value for distinguish responders and non-
responders and longer-term follow-up would be better for higher 
sensitivity and specificity. Finally, the biomarker in our study mainly 
focused on functional connectivity based measures extracted from 
EEG. Other network or structural connectivity based measures 
extracted from MRI, DTI and MEG might also be helpful for rais-
ing accuracy and precision of prediction model in clinical practice. 
Hopefully, further study with larger sample size and more network 
or connectivity based measures could optimize the prediction model 
to better evaluate VNS efficacy based on our study.

5  |  CONCLUSION

This study established the first prediction model integrating both 
clinical and synchronization features from baseline scalp EEG for 
screening VNS responders. With further optimization of the model 
in the future, we hope to provide an effective, convenient, and indi-
vidualized method that could be used in clinical practice to identify 
potential responders before VNS implantation.
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