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Abstract

Background: New sequencing techniques require new visualization strategies, as is the case for epigenomics data
such as DNA base modifications, small non-coding RNAs, and histone modifications.

Results: We present a set of plugins for the genome browser JBrowse that are targeted for epigenomics
visualizations. Specifically, we have focused on visualizing DNA base modifications, small non-coding RNAs,
stranded read coverage, and sequence motif density. Additionally, we present several plugins for improved user
experience such as configurable, high-quality screenshots.

Conclusions: In visualizing epigenomics with traditional genomics data, we see these plugins improving scientific
communication and leading to discoveries within the field of epigenomics.
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Background
As next-generation sequencing techniques for detecting
and quantifying DNA nucleotide variants, histone
modifications and RNA transcripts become widely
implemented, it is imperative that graphical tools such
as genome browsers are able to properly visualize these
specialized data sets. Current genome browsers such as
UCSC genome browser [1], AnnoJ [2], IGV [3], WashU
EpiGenome Browser [4], Epiviz [5], IGB [6], and JBrowse
[7], have limited capability to visualize these data sets
effectively, hindering the visualization and potential
discoveries with new sequencing technologies. JBrowse
is used by numerous scientific resources, such as Phyto-
zome [8], CoGe [9], WormBase [10], and Araport [11]
because it is highly customizable and adaptable with
modular plugins [7].
Epigenomics is an emerging area of research that

generates a significant amount of specialized sequencing
data which cannot be efficiently visualized using standard
genome browsers. New sequencing technologies such as
whole-genome bisulfite sequencing (WGBS) [2, 12],
Tet-assisted bisulfite sequencing (TAB-seq) [13],
single-molecule real-time sequencing (SMRT) [14],
chromatin immunoprecipitation sequencing (ChIP-

seq) [15], assay for transposase-accessible chromatin
sequencing (ATAC-seq) [16], RNA-seq [17–19], and
small RNA-seq [20] have been instrumental in advancing
the field of epigenomics. Epigenomic data sets generated
from these techniques typically include: DNA base modifi-
cations, mRNAs, small RNAs, histone modifications and
variants, chromatin accessibility, and DNA sequence
motifs. These techniques have allowed researchers to map
the epigenomic landscape at high resolution, greatly
advancing our understanding of gene regulation. DNA
methylation (4-methylcytosine, 4mC; 5-methylcytosine,
5mC; 5-hydroxylmethylcytosine, 5hmC; and 6-
methyladenine, 6 mA) and small non-coding RNAs
(smRNAs) are modifications often found in epigenomic
data sets, and function to regulate DNA repair and
transcription by localizing additional chromatin marks or
inducing post-transcriptional gene regulation [21–23].
We have developed several JBrowse plugins to address

the current limitations of visualizing epigenomics data,
which include visualizing base modifications and small
RNAs as well as stranded-coverage tracks and sequence
motif density. Additionally, we have developed several
plugins that add features for improved user experience
with JBrowse, including high-resolution browser screen-
shots. These plugins are freely available and can be used
together or independently as needed. In visualizing epi-
genomics with traditional genomics data, we see these
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plugins improving scientific communication and leading
to discoveries within the field of epigenomics.

Implementation
Plugins are implemented to work with JBrowse’s
modular plugin system. Client-side logic, such as
visualization, fetching data, and interaction, are writ-
ten in JavaScript relying on the Dojo library [24]. This
includes JavaScript classes for viewing data and
storing data. Raw data files are standard in genomics,
including BAM files for next-generation sequencing
reads [25] and BigWig files for quantitative coverage
tracks [26]. Python scripts are included to convert
output from analysis pipelines to BigWig files needed
by JBrowse. Additional styling for each plugin is pro-
vided using CSS. Wherever possible, colorblind safe
colors were used to improve accessibility.

Results
Base modifications
We have developed a plugin to visualize the quantity of
4mC, 5mC, 5hmC, and 6 mA at single base-pair
resolution. When studying 5mC, the modification is split
into two (CG and CH; where H is any nucleotide expect
G) sequence contexts for animals or three (CG, CHG,
and CHH) sequence contexts for plants, as each context
is established and/or maintained by different pathways
with different functional roles [22]. Our plugin visualizes
the quantity of methylation at each cytosine or adenine
using a bar plot (Fig. 1), where values are positive or

negative to signify the DNA strand. In most genome
browsers, each sequence context must be shown as a
different track (Fig. 1a). This is cumbersome when view-
ing multiple samples and makes it more difficult to de-
termine overlap between context or samples. Our plugin
is advantageous because, we color-code 4mC, 5mC,
5hmC, and 6 mA sequence contexts and display them
on a single track (Fig. 1b, Additional file 1: Figure S1).
However, focusing on a single context or modification
can be important, thus our plugin offers several filtering
options including by sequence context and base
modification.

Small RNAs
Currently, JBrowse represents each sequenced RNA as a
single read and is colored by sequenced strand (Fig. 2a).
When analyzing smRNAs, strand alone does not always
provide sufficient information; the size (nucleotides [nt])
of smRNA and strandedness indicate potential function
[21]. For example, in plants, 21 nt microRNAs can be
aligned to single strand and 24 nt small interfering
RNAs can be aligned to both strands [27]. Products of
RNA degradation, however, have varying sizes and align
to one strand. To improve smRNA visualization, we
color-code reads by smRNA size and retain strand infor-
mation by placement of smRNAs within the track rela-
tive to the y-axis (Fig. 2b). This plugin also includes the
ability to filter the reads in a track or multiple tracks by
size, strand, and read quality.

a

b

Fig. 1 Visualizing DNA base modifications. Top track shows gene models in gold and transposable element models in purple. a) Viewing 5mC in
three A. thaliana samples without the plugin. b) Viewing 5mC in the same samples with the plugin. For all tracks, height and direction of bar
indicates methylation level and strand, respectively. Bars are colored by 5mC sequence context
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a

b

Fig. 2 Visualizing small RNAs. Top track shows gene models in gold and transposable element models in purple. a) Viewing smRNA reads,
18 nt - 30 nt, in an A. thaliana sample using the general JBrowse alignments track. Color indicates strand; red, forward; blue, reverse. b) Viewing
the same smRNA reads using the smRNA alignments track provided by the plugin. Color indicates read length. Position above and below the
y-axis origin indicates forward and reverse strand, respectively. Unfilled reads map to multiple genomic locations and filled reads map uniquely

a

b

Fig. 3 Visualizing stranded coverage and sequence motif density. Top track shows gene models in gold and transposable element models in
purple. a) Stranded read coverage for sample used in the methylation track. Asterisk (*) indicates uneven strand coverage which affects the
perceived methylation level. b) Dinucleotide sequence motif density in A. thaliana. Darker color indicates higher density
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Stranded read coverage
Quantitative coverage tracks are necessary for any worth-
while genome browser. It is important for visualizing
DNA-protein interactions via ChIP-seq and chromatin
accessibility via ATAC-seq where coverage is computed in
a strand-independent manner. However, for strand-
dependent data types, such as 5mC, small RNAs, and
mRNAs, read coverage can greatly vary for opposite
strands. The default coverage tracks are unable to handle
this, thus we developed a plugin which shows stranded
read coverage. For example, WGBS can have uneven
coverage on both strands which can make only one strand
seem methylated (Fig. 3a).

Motif density
Sequence motifs not only have important roles for pro-
tein binding, i.e. binding motifs, but can also impact
chromatin formation [28] and recombination hotspots
[29]. When correlating the frequency of a sequence
motif with another characteristic, i.e. 5mC or histone

modification localization, it is preferred to visualize
motif density over larger regions compared to single
base-pair resolution. To address this, we developed a
plugin which visualizes sequence motif density across
the genome as a heatmap (Fig. 3b). Users can input
multiple motifs in a single track and IUPAC degenerate
nucleotides are supported. We also include several
options for heatmap coloring and density computation
configuration options.

Exporting browser images
One of the most difficult tasks working with any genome
browser is obtaining high-quality screenshots for presen-
tations or publications. We have developed a plugin for
JBrowse, which allows the user to take high quality and
highly configurable screenshots without installing
additional software. A dialog window allows users to set
general, output, and track-specific configuration options
(Fig. 4). Additionally, our plugin is able to create the
screenshot with vector graphic objects, which is

Fig. 4 Screenshot dialog window. The dialog window that opens when taking screenshots with our plugin. There are numerous configuration
options for general visualization, image output, and track-specific settings. This includes exporting each track using vector objects
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preferred for publication-quality screenshots, without
needing to change the underlying track configuration
parameters.

Customization
To improve user experience, we have developed several
additional JBrowse plugins. These plugins include: (i)
Selecting or deselecting all tracks in a category from a
hierarchical track list; (ii) An easily customizable y-scale
range and location; and (iii) An option to force a track
to stay in “feature” view or “histogram” view regardless
of the zoom.

Conclusions
With these plugins, we aim to improve epigenomics
visualization using JBrowse, a user-friendly genome
browser familiar to the research community. All the
plugins described can be used together or independently
as needed. All plugins are freely available for download
and additional customization.

Availability and requirements
Project name: Epigenomics in JBrowse.
Project home page: http://github.com/bhofmei/bhof-

mei-jbplugins
Operating systems(s): Platform independent.
Programming language: JavaScript, Python.
Other requirements: JBrowse 1.11.6+.
License: Apache License, Version 2.0.
Any restrictions to use by non-academics: none.

Additional file

Additional file 1: Figure S1. Supplementary methods. (PDF 100 kb)

Abbreviations
4mC: 4-methylcytosine; 5hmC: 5-hydroxylmethylcytosine; 5mC: 5-
methylcytosine; 6mA: 6-methyladenine; ATAC-seq: Assay for transposase-
accessible chromatin sequencing; ChIP-seq: Chromatin immunoprecipitation
sequencing; smRNAs: Small non-coding RNAs; SMRT: Single-molecule real-
time sequencing; TAB-seq: Tet-assisted bisulfite sequencing; WGBS: Whole-
genome bisulfite sequencing
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