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Abstract
Cancer stem cells (CSCs) possess self-renewal and differentiation potential, which 
may be related to recurrence, metastasis, and radiochemotherapy resistance 
during tumor treatment. Understanding the mechanisms via which CSCs 
maintain self-renewal may reveal new therapeutic targets for attenuating CSC 
resistance and extending patient life-span. Recent studies have shown that amino 
acid metabolism plays an important role in maintaining the self-renewal of CSCs 
and is involved in regulating their tumorigenicity characteristics. This review 
summarizes the relationship between CSCs and amino acid metabolism, and 
discusses the possible mechanisms by which amino acid metabolism regulates 
CSC characteristics particularly self-renewal, survival and stemness. The ultimate 
goal is to identify new targets and research directions for elimination of CSCs.
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Core Tip: Amino acid metabolism plays an important role in maintaining the stemness of 
cancer stem cells (CSCs) and is involved in regulating their self-renewal and differen-
tiation potential. This review summarizes the relationship between CSCs and amino acid 
metabolism and discusses possible mechanisms via which amino acid metabolism 
regulates the self-renewal and differentiation potential of CSCs. The ultimate goal is to 
identify new targets and research directions for elimination of CSCs.
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INTRODUCTION
The concept of cancer stem cells (CSCs) has emerged in recent years. CSCs are a population of self-
renewing cell types identified in many types of liquid and solid tumors, and persist predominantly in a 
low pH, low O2, and nutrient-deficient tumor microenvironment (TME)[1,2]. CSCs possess the 
capability to initiate cancer development, recurrence and metastasis[1-4], and play important roles in 
radio-, chemo- and immunotherapy resistance[5,6]. The TME is a dynamic milieu comprising of cancer 
cells and stromal cells[7-9] and provides specific conditions favorable to tumor growth such as low pH, 
hypoxia, ischemia, and limited nutrients[7]. TME regulates the morphology of cancer cells, induces 
tumor cell activation and CSC production, mediates immunosuppression, and determines tumor 
response to treatment[2,7,10-12]. The CSC niche is a part of the TME, in which perivascular, invasive, 
and hypoxic niches are involved in the generation and maintenance of CSCs[13,14]. CSCs also rebuild 
the microenvironment by transdifferentiation into vascular endothelial cells, fibroblasts, and pericytes[7,
14]. CSCs obtain nutrients from TME to support their proliferation[15]. Owing to the increased interest 
in CSCs, the role of metabolism in the regulation of CSC biology is now being extensively investigated.

Amino acids are indispensable nutrients for the body and play important roles in TME[16]. The 
human body contains twenty amino acids, which are divided as essential and nonessential. Among 
these, eight essential amino acids are obtained from food, as they cannot be synthesized by the body or 
their rate of synthesis cannot meet the body requirements[17]. Although nonessential amino acids can 
be synthesized by the body, they are equally or more important than essential amino acids for cancer 
progression[18]. Arginine and histidine are semi-essential amino acids as their organic synthesis is not 
sufficient for metabolic requirements, and hence they have to be obtained from the environment[19]. 
However, some researchers consider cysteine and tyrosine as semi-essential amino acids as well because 
they can be converted from methionine and phenylalanine in vivo; thus, conversion and food intake can 
complement each other[20,21]. In this review we have described these four amino acids as nonessential 
amino acids.

In addition to being the building blocks of proteins, amino acids participate in many biosynthetic 
pathways as intermediate metabolites[22]. Previously, researchers have studied the relationship 
between tumors and amino acid metabolism. In tumor cells, nonessential amino acids may act as 
essential amino acids to meet the requirement of abnormal proliferation[23]. For example, glutamine is 
considered to be a “conditional” essential amino acid[24], and therefore, it has been proposed that 
amino acid metabolism-related enzymes may be used to disrupt amino acid metabolism in targeted 
therapy[25]. Whether CSCs also harbor similar therapeutic targets warrants detailed investigation, but 
the exact relationship between CSCs and amino acid metabolism is not completely elucidated. This 
review tries to summarize the relationship between CSC self-renewal and other characteristics and 
amino acid metabolism to provide new targets for cancer therapy.

TUMORIGENICITY CHARACTERISTICS OF CSCs AND ESSENTIAL AMINO ACID META-
BOLISM
In recent years, researchers have focused on the differences in amino acid metabolism between CSCs 
and tumor cells, in which essential amino acids play a major role. Several studies have investigated the 
relationship between methionine and tryptophan metabolism and CSCs; however, studies on 
phenylalanine metabolism are lacking, and those on the metabolism of the other five essential amino 
acids are limited. In this review, we have attempted to summarize the role of metabolism of these amino 
acids in CSC self-renewal.

Methionine metabolism
The methionine cycle maintains the balance of methionine levels in vivo. Homocysteine, an intermediate 
of the methionine cycle, regenerates methionine and tetrahydrofolate (THF) with one-carbon THF (1C-
THF) catalyzed by methyltransferase (MTase), while methionine reenters the methionine cycle. THF acts 
as a carrier in the transfer and utilization of 1C unit, which is crucial for biosynthesis of nucleic acids, 
DNA stability, and gene expression[26,27]. As conversion of homocysteine to methionine is folic acid-
dependent, content of folic acid affects the tumorsphere-forming ability, nucleotide biosynthesis, and 
DNA methylation in colon cancer cells and glioblastoma cells[27-29]. Cancer cells consume higher 
amount of methionine than normal cells in some malignant tumors[30,31]; hence, methionine and its 
derivatives may be labeled with radionuclides in clinics for identification of malignant recurrent glioma, 
meningioma, as well as prostate cancer and multiple myeloma[28,32-34]. The methionine cycle is 
enhanced in CSCs of various cancers, such as lung, breast cancer, osteosarcoma, and brain tumor, owing 
to their disordered proliferation and higher rate of DNA biosynthesis[28,35,36]. As the concentration of 
methionine increases, the glioblastoma tumorsphere formation ability that supports the self-renewal 
capacity of CSCs increases; while methionine deprivation not only promotes embryonic stem cell (ESC) 
differentiation but also weakens clonal formation and tumorigenicity of lung and breast cancer 
tumorsphere cells, which can be rescued by the re-addition of methionine[28,36]. It was further found 
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that betaine, synthesized from choline, provides methyl group to homocysteine under the action of 
betaine homocysteine MTas; this in turn leads to the recycling of methionine[29,37,38]. Stem cell 
reprogramming requires methionine metabolism and the choline/betaine axis to jointly regulate 
intracellular homocysteine, abnormality in which causes oxidative stress, mitochondrial toxicity, and 
inflammation[29].

S-adenosine methionine (SAM) is a crucial intermediate of the methionine cycle, which acts as a direct 
donor of the methyl group and is involved in genome methylation in vivo[28,39,40]. In gastric CSCs, 
higher methylation of miR-7-5p promoter region reduces its intracellular expression, while in 
methionine-deficient medium, miR-7-5p expression is up-regulated and inhibits the formation of gastric 
CSCs by targeting Notch and Hedgehog signaling pathways[41]. Nuclear reprogramming is usually 
accompanied by an increase in DNA methylation level in ESCs[29]. Methionine adenosyltransferase 
(MAT) catalyzes the production of SAM and has two isozymes, MATα1 and MATα2[42]. MATα1 is 
mainly expressed in hepatocytes, while MATα2 is present in extrahepatic tissue[42,43]. MATα2, which 
maintains the epigenome of CSCs, is a key enzyme involved in the SAM generation in lung, breast, and 
liver CSCs[36,39,44]. The inhibition of tumorsphere formation and genome methylation by MATα2 
inhibitors FIDAS-5 and cycloleucine demonstrates that methionine circulation is necessary to maintain 
CSC self-renewal and tumorigenicity[36,39]. Another study found that sirtuin 1 (SIRT1), a NAD+-
dependent protein deacetylase, regulated methionine metabolism and histone methylation by 
regulating MYC-mediated MAT expression in mouse ESCs (mESC)[45,46]. Nicotinamide N-methyl-
transferase (NNMT) catalyzes the transfer of methyl groups from SAM to nicotinamide and is overex-
pressed in a variety of cancer cells. NNMT promotes cancer cell invasion, migration, and proliferation 
by inhibiting the methylation potential of cancer cells[47,48]. Overexpression of NNMT in glioblastoma 
mesenchymal stem-like cells promotes hypomethylation of mesenchymal subtype genes by down-
regulating DNA methyltransferase 1 (DNMT1) and DNMT3A[49]. Ras, Stat3, and nuclear factor-kappaB 
(NF-κB) signaling pathways upregulate NNMT in cancer cells, which may be related to the epithelial-to-
mesenchymal transition (EMT)[47]. Several other enzymes that catalyze SAM, such as DNMT1/3L, 
AMD1, SRM, and MTAP, are downregulated in colon CSCs. The reduction of DNMT1/3L, which 
catalyzes the transfer of methyl groups from SAM to DNA, leads to the accumulation of SAM in CSCs 
and thus affects DNA methylation[50].

Overall, maintenance of CSC phenotype mainly requires methionine cycle and folic acid cycle, as they 
either directly supply CSCs with nutrients or participate in genome methylation as methyl donors. 
Therefore, reducing the exogenous intake of methionine and folic acid or blocking the methionine cycle 
may be new therapeutic directions, which are worth investigating[26,51,52].

Tryptophan metabolism
Tryptophan is a source of the 1C unit and high consumption causes changes in TME. Tryptophan 2,3-
dioxygenase (TDO2), a rate-limiting enzyme in tryptophan metabolism, was overexpressed in 
esophageal CSCs and may promote their production by inducing Oct4 and CD44 expression and 
activating EGFR pathway, which stimulates EMT and invasion of esophageal CSCs[53,54]. TDO2 is 
involved in the formation of tumorspheres of esophageal CSCs and TDO2 suppression reduces the size 
and number of spheres[53]. Indoleamine-2,3-dioxygenase-1 (IDO1), one of two IDO isozymes, is another 
rate-limiting enzyme that catalyzes the production of kynurenine in tryptophan metabolism. Similar to 
TDO2, the expression of IDO1 is increased in breast and prostate CSCs as well as mesothelioma stem 
cells[55]. The increased IDO1 promotes immune escape by depleting tryptophan in TME and inducing 
the binding of tryptophan catabolites to aryl hydrocarbon receptor (AhR) resulting in regulatory T cell 
activation; this can be reversed by IDO1 inhibitors such as LW106[55-57]. Additionally, IDO also 
regulates tumor-related immune responses through molecular stress response pathways, mTOR kinase, 
and NF-κB pathway[56,58,59]. IDO1 and kynurenine pathway metabolites may promote colon cancer 
cell proliferation and cancer-therapy resistance by altering the PI3K/Akt and β-catenin pathways, which 
are known to be beneficial for self-renewal of colon CSCs[60-63]. 2-(1′H-indole-3′-carbonyl)-thiazole-4-
carboxylic acid methyl ester (ITE) is a tryptophan metabolite. ITE reduces the expression of Oct4 in 
CSCs by activating the AhR transcriptional pathway, thereby inducing CSC differentiation and 
ultimately reducing CSC tumorigenicity[53]. Tryptophan deprivation in TME decreases endogenous ITE 
level and increases Oct4 expression in CSCs, which subsequently maintains the stemness of CSCs[53,
64]. Recent findings on ITE synthesis and stimulation of the AhR transcriptional pathway have provided 
crucial targets for the treatment of CSCs[64,65]. Tryptophan derivative, melatonin, may inhibit the 
proliferation and tumorigenicity of glioma stem cells by inhibiting the zeste homologue 2 and Notch 
pathways that are important for the survival of glioma stem-like cells[66,67]. In conclusion, tryptophan 
metabolic enzymes or metabolites, rather than tryptophan itself, are more essential for CSC self-renewal 
and survival[53,56] and provide new directions for eliminating CSCs.

Threonine, lysine, leucine, isoleucine, and valine metabolism
Threonine is involved in the synthesis of nucleotides and is an important nutrient for mESCs[68]. 
Threonine content was significantly increased during tumorsphere formation of the colon cancer 
HCT116 cell line, but it was not explored in-depth[69]. Glycine and acetyl-CoA, produced by threonine 
dehydrogenase (TDH)-mediated threonine metabolism, are involved in various biosynthetic pathways. 
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Additionally, glycine produces 1C-THF, which results in SAM synthesis via the methionine cycle. SAM 
ultimately regulates epigenetic modifications in ESCs, which play a significant role in their stemness 
maintenance and self-renewal[68,70]. TDH is highly expressed in mESCs, and inhibition of TDH or 
depletion of threonine in the growth medium reduces trimethylation of histone H3 Lysine 4 (H3K4me3) 
and ESC growth[68,71].

Studies on the relationship between lysine metabolism and CSCs are limited. Only a few studies have 
suggested that lysine metabolism in CD110+ colorectal CSCs not only reduces the production of reactive 
oxygen species (ROS), which suppress the proliferation of cancer cells, but also maintains the self-
renewal of CSCs by activating the Wnt signaling pathway[72,73]. Instead, researchers have extensively 
investigated the role of epigenetic modification of histone lysine residues in CSCs[74,75], which may be 
of greater relevance.

Studies on the relationship between leucine or isoleucine metabolism and CSCs are also limited. 
Several studies have focused on the leucine-rich repeat of G-protein coupled receptor 5, a 
gastrointestinal CSC biomarker[71,76-78]. A few studies have found that leucine and isoleucine inhibit 
the stemness and self-renewal of EpCAM+ hepatocellular carcinoma stem cells by activating the 
mammalian target of rapamycin pathway complex 1 (mTORC1), in addition to enhanced chemotherapy 
sensitivity[72,79]. But a recent study suggested that the reduction of leucine caused apoptosis of CD13+ 
CSCs in hepatocellular carcinoma, but the specific mechanism is not yet clear[80].

Valine is reported to be elevated in canine mammary CSCs[72] and a decrease in valine can cause 
apoptosis of CD13+ CSCs in hepatocellular carcinoma by unknown mechanisms[80]. 3-Hydroxy-
isobutyryl-CoA hydrolase (HIBCH), which catalyzes 3-hydroxyisobutyryl-CoA to 3-hydroxyisobu-
tyrate, is a key enzyme in valine metabolism and is highly expressed in a colorectal cancer, prostate 
cancer, and brain tumor. Elevated HIBCH promotes the initiation and progression of colorectal cancer 
by increasing the proliferation of tumor cells and the resistance to bevacizumab, while reducing cancer 
cell autophagy[81,82]. In brain tissue with breast cancer metastasis, HIBCH expression was significantly 
increased in the areas of reactive gliosis associated with metastatic cells, tumor margins, and 
hemorrhagic areas, which may provide metabolic substrates[82]. Although studies on metabolism of 
these five amino acids in CSCs is limited, we confirm their involvement in maintaining self-renewal, 
survival, and drug resistance of CSCs.

TUMORIGENICITY CHARACTERISTICS OF CSCS AND NONESSENTIAL AMINO ACID 
METABOLISM
Humans do not have a dietary requirement for nonessential amino acids; however, they have crucial 
roles to play in CSC survival. To date, only one study illustrates the role of histidine metabolism in the 
central nervous system of Drosophila[83]. This section will further enumerate the roles of other 
nonessential amino acid metabolism in CSC biology.

Glycine/serine metabolism
Serine and glycine are commonly obtained via a branch of glycolysis and subsequent biosynthetic 
pathways. They can be interconverted by serine hydroxymethyl transferase (SHMT1/2), and participate 
in the folic acid cycle by providing a carbon unit[84]. Hence, in this review, we have jointly discussed 
the relationship between serine and glycine metabolism and CSCs. In colon CSCs, canine mammary 
CSCs, and neuroblastoma stem-like cells, the level of glycine is significantly higher than that in normal 
cancer cells[69,72,85-87]. If levels of glycine in colon CSC spheres are reduced, EMT suppression and 
induction of CSC apoptosis will occur[69]. Glycine decarboxylase (GLDC) is highly expressed in several 
cancers, including lung, ovarian, cervical, prostate, lymphoma, and breast except gastric cancer, 
catalyzes the conversion of glycine to 1C-THF, and participates in the methionine cycle[36,84,88-90]. The 
silent GLDC in gastric cancer may be due to hypermethylation of CpG islands in the promoter region of 
GLDC, which causes invasion and migration of gastric cancer cells[90,91]. GLDC is also related to bone 
metastases from breast cancer and may increase the aggressiveness of malignant tumors by aiding their 
metabolic adaptation to hypoxia[89,92]. Overexpressed GLDC in non-small cell lung CSCs alters 
glycolysis, promotes cellular transformation and synthesis of pyrimidines for cell proliferation that 
eventually promotes tumorigenesis[88,90]. GLDC knockout suppresses colony formation and CD166 on 
the surface markers of lung CSCs and reduces tumorigenicity[36,88]. Glycine metabolism via glycine 
and GLDC is a requirement to drive CSCs and promote tumorigenesis[72,88]. Recently, it was found 
that a new splice variant of GLDC is overexpressed in non-small cell lung CSCs; its tumorigenic ability 
is similar to that of GLDC and can be exerted by activating MAPK/ERK signaling pathway and 
regulating cyclin[93]. The binding of c-Myc to GLDC promoter also results in GLDC overexpression in 
ESCs, which is critical for maintaining their stemness by adjusting H3K4me3 levels; however, whether 
this is related to c-Myc in CSCs is not yet clear[94-96]. In glioblastoma multiforme, GLDC knockdown 
results in conversion of excess glycine into toxic aminoacetone and methylglyoxal by glycine C-acetyl-
transferase (GCAT), leading to highly expressing SHMT2 cell growth arrest[97]. Importantly, GCAT 
silencing and preemptive knockdown of SHMT2 can suppress the toxicity due to GLDC knockdown
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[97]. Thus, excess glycine is probably toxic to CSCs, and inducing excessive accumulation of glycine in 
CSC cytoplasm may be a new treatment strategy for glioblastoma[98].

Serine is involved in nucleotide and one-carbon unit biosynthesis. It plays an important role in tumor 
cell proliferation and is found at a high level in colorectal CSCs, ovarian clear cell adenocarcinoma, 
cervical squamous cell carcinoma, and neuroblastoma stem-like cells[69,87,99]. In ovarian clear cell 
adenocarcinoma and cervical squamous cell carcinoma stem-like cells, the high levels of serine are 
accompanied by elevated levels of aspartate, glutamate, and glutamine, all of which are involved in the 
tricarboxylic acid cycle (TCA cycle)[99]. In neuroblastoma stem-like cells, upregulated activating 
transcription factor 4 can activate genes of the glycine/serine pathway to promote formation of 
tumorspheres[87,100]. Moreover, in melanoma stem-like cells, up-regulated phosphoenolpyruvate 
carboxykinase, an enzyme in gluconeogenesis, promotes tumorigenesis by promoting glycolysis and 
serine/glycine pathway[101]. Phosphoglycerate dehydrogenase (PHGDH) is the first key enzyme in the 
glycolytic serine biosynthetic pathway and is overexpressed in breast cancer[102-104]. The serine 
synthesized by PHGDH is converted to glycine by SHMT and then forms glutathione (GSH) to maintain 
intracellular redox balance[105,106]. PHGDH was found to be preferentially expressed in hypoxia-
induced breast CSCs and preserved the breast CSC stemness by maintaining the balance of redox 
reactions and shunting a portion of glucose-derived 3-phosphoglycerate[103,104]. The shunt from 
glucose metabolism to serine metabolism produces NADPH, which can maintain the reduced state of 
GSH and forms an antioxidant barrier in breast CSCs[104,107]. Additionally, high intra-tumoral co-
expression of PHGDH and Oct4 in NT2/D1 (embryonal carcinoma stem-like cells) is beneficial for the 
survival of CSCs[103]. PHGDH can interact with kinesin family member 15, which is overexpressed in 
liver cancer cells and liver CSCs, and increase its stability to promote the liver CSC phenotype[108]. 
Because CSCs are more dependent on mitochondrial metabolic pathways than glycolytic pathways, 
mitochondrial inhibitors can limit their growth[107,109,110]. However, increased intracellular PHGDH 
expression was observed after the use of mitochondrial inhibitors, indicating that PHGDH may play a 
protective role against mitochondrial inhibitors in CSCs. Additionally, increasing the intake of 
exogenous serine or synthesis of intracellular serine also countervails the damage to CSCs caused by 
mitochondrial inhibitors[107]. PHGDH deficiency suppresses tumorsphere formation and reduces 
expression of stem factors (Oct4, Sox2, Nanog, Bmi-1) in breast CSCs, embryonal carcinoma, and brain 
tumor stem-like cells, and also impairs metastasis from breast to lung and increases chemotherapy 
sensitivity[103,104,106]. Mechanistically, the inhibition of PHGDH not only results in redox imbalance 
but also promotes the differentiation of CSCs through the degradation of Oct4 and the differential 
ubiquitination of β3-tubulin; it also promotes p-AMPK mediated-Beclin-1 dependent autophagy in a p-
mTOR-independent manner. These findings suggest that PHGDH is necessary for maintaining CSC 
stemness and self-renewal and may be a new metabolic target for eradication of CSCs[103,104,108]. 
Other enzymes, including SHMT1/2, phosphoserine phosphatase, phosphoserine aminotransferase, 
and GCAT, required for glycine/serine metabolism, are up-regulated in non-small cell lung CSCs with 
different amplitudes and promote tumorigenesis by up-regulating glycine/serine metabolism[88].

Glutamate and glutamine metabolism 
Glutamate and glutamine, often upregulated in CSCs, have an amine group (-NH2) difference and 
glutamine is converted to glutamate via deamination by glutaminase (GLS), which constitutes the first 
step of glutaminolysis[111]. Glutaminolysis, a series of reactions in which glutamine is degraded to 
produce metabolic components and energy, may either replace or complement glucose dependence of 
cancer cells and CSCs[111-113]. Glutamine and glutamate are structurally similar and their roles in vivo 
are interrelated[114]. Glutamine is used in the biosynthesis of nucleotides, lipids, and amino acids; 
glutamate forms α-ketoglutarate (α-KG) catalyzed by glutamate dehydrogenase (GDH or GLUD), 
thereby producing ATP for cellular activities. Interestingly, the biological functions of both these amino 
acids may be specific to the cancer types[115-118].

Glutamine acts as a “conditionally” essential amino acid in multiple CSCs because the biosynthesis of 
three major nutrients and nucleic acids requires glutamine to provide the source of carbon and amino 
nitrogen[99,111,112,117,119]. The glutamine transporter ASCT2 (also known as SLC1A5), encoded by 
SLC1A5, is highly expressed in various CSCs and is associated with tumor progression and poor 
prognosis[120,121]. CD9-mediated ASCT2 plasma membrane localization increases glutamine uptake 
and provides energy for CSC growth in pancreatic ductal adenocarcinoma[122]. The up-regulation of 
MYC-regulated ASCT2 and GLS1 in colorectal CSCs increases glutamine metabolism and metformin 
resistance[118,123-125]. MYC in CSCs is regulated by the tumor suppressor TP73/p73, and loss of 
TP73/p73 reduces the expression of MYC and GLS, thereby inhibiting ASCT2 and reducing glutamine-
uptake and glutamine metabolism[126,127]. ASCT2 also activates the downstream mTORC1 signaling 
pathway to promote the growth of prostate cancer cells or melanoma cells by increasing glutamine 
uptake[128,129]. Of the other SLC1A family members, the upregulation of SLC1A3 (also called 
glutamate aspartate transporter, GLAST) in CD133+ thyroid CSCs depends on the activation of the NF-
κB pathway; SLC1A3 expression in glioblastoma stem-like cells depends on the activation of the STAT3 
pathway triggered by glutamate, whereas SLC1A6 that acts as a glutamate exporter is down-regulated 
in EMT[130-132]. The higher glutamine and glutamate levels in ovarian clear cell adenocarcinoma and 
cervical squamous cell carcinoma stem-like cells are related to TCA cycle; in glioblastoma stem-like cells 
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with high GLS expression, GLS inhibition attenuates the influx of glutamine metabolites into the TCA 
cycle[99,111]. Exogenous glutamine via GLS induces tumorsphere formation and expression of ALDH, a 
stem cell marker of head and neck squamous cell carcinoma, which can be prevented by glutamine 
deprivation and GLS inhibitors[112]. Glutamine not only promotes the expression of CSC markers and 
self-renewal potential of pancreatic CSCs, but also increases radiotherapy resistance by maintaining 
ROS stability[118,133]. Glutamine also promotes clonogenic formation and stemness marker expression 
in non-small cell lung CSCs and hepatocellular carcinoma CSCs via the maintenance of redox balance 
and activation of the Wnt/β-catenin signaling pathway[119,134]. Additionally, the AMPK-mTOR 
pathway is involved in the regulation of glutamine metabolism on the metformin sensitivity of 
colorectal CSCs; in absence of glutamine, the activation of AMPK and inhibition of mTOR will increase 
the sensitivity of metformin-resistant SW620 colorectal CSCs to metformin; however, as metformin-
sensitive HT29 CSCs have an activated AMPK pathway, inhibition of glutamine metabolism will 
enhance the inhibitory effect of metformin[118,125]. Moreover, mTOR inhibition in ovarian clear cell 
adenocarcinoma stem-like cells in absence of glutamine confirms that glutamine regulates CSCs through 
the mTOR pathway[135]. The ammonia molecule released by glutaminolysis also neutralizes the excess 
acid produced by the Warburg effect in epithelial CSCs, in which stemness and EMT are uncoupled
[136]. α-KG, another metabolite produced during glutaminolysis in ESCs, regulates the demethylation of 
DNA/histone to maintain pluripotency[137]. If the overexpressed GDH1 is suppressed in CSCs, the 
level of α-KG will be reduced, which not only reduces the production of ATP but also produces a large 
amount of ROS to damage CSCs[132].

GLS has two isoenzyme forms, GLS1 and GLS2; GLS1 is a tumor promoter in many cancers, while 
GLS2 appears to be a tumor suppressor[123,134,138]. Recently, studies have found that GLS1 induced 
by distal-less homeobox-2 promotes the progression of transcription factor Snail-mediated EMT by 
negatively regulating p53 in colon and breast cancer. However, GLS2 inhibits Snail to prevent EMT in 
hepatocellular carcinoma independent of glutaminase activity; during breast cancer EMT, GLS2 and 
glutamine utilization are reduced, which can be rescued by the suppression of transcription factor, 
FOXC2[117,123,139,140]. In intrahepatic cholangiocarcinoma and lung cancer, the expression of GLS1 is 
negatively correlated with the expression of E-cadherin but positively correlated with that of vimentin, 
and cells with low E-cadherin/high vimentin are more sensitive to GLS1 inhibitors[138,141]. 
Additionally, aspartate aminotransferase (GOT1) is upregulated and system L-type amino acid 
transporter 1 is down-regulated in ovarian clear cell adenocarcinoma stem-like cells[135,142]. Glutamine 
depletion and ASCT2/SLC1A3/GLS/GDH/GOT1 inhibition increase CSC apoptosis and sensitivity to 
therapy, all of which are new ways for CSC therapy[111,119,128,133,134]. For instance, GLS inhibitors 
CB839 and compound 968 suppress cloning ability of high GLS-expressing glioblastoma stem-like cells 
and reduce expression of stemness marker CD133. CB839 also selectively leads to cell cycle arrest 
without inducing apoptosis[111]. Other GLS inhibitors, such as BPTES and Zaprinast, effectively 
sensitizes pancreatic CSCs to radiotherapy and induces apoptosis through intracellular ROS accumu-
lation[133]. SLC1A3 knockdown reduces intracellular glutamate levels and inhibits the self-renewal 
activity and tumorigenicity of CD133 + thyroid CSCs; SLC1A3 inhibitor UCPH-101 induces apoptosis of 
glioblastoma stem-like cells[130,131].

Cysteine metabolism
Cysteine is a special amino acid that can be obtained not only from cystine conversion but also via 
homocysteine transsulfuration[31,143]. The cystathionine produced from homocysteine by cystathionine 
β-synthase (CBS) is further converted to cysteine by cystathionine γ-lyase (CGL). Cysteine then 
produces GSH so as to maintain the redox balance[143]. Increased homocysteine to cysteine metabolism 
is observed in tamoxifen-resistant breast cancer, and both CBS and CGL are significantly upregulated in 
CD133+ colon CSCs[50,144]. The cystine–glutamate antiporter xCT (SLC7A11) on the cell membrane, 
which is stabilized by CD44/CD44 variant (CD44v) and overexpressed in breast CSCs, is associated 
with cystine intake as well as cysteine and GSH production[145-149]. CD133 in liver CSCs, CD44v in 
lung CSCs, and CD44v8-10 in esophageal squamous cell carcinoma and urothelial cancer stem-like cells 
upregulate or stabilize xCT against intercellular ROS, and overexpressed CD44v in lung CSCs is not 
related to stem-like properties[150-153]. Inhibition of xCT leads to changes in redox levels of breast 
CSCs, decreased survival rate, and reduced self-renewal[146,147]. Sulfasalazine (SSZ), an inhibitor of 
xCT, selectively inhibits CD44+/CD44v+ CSCs, such as those in gastrointestinal tumors, metastatic 
bladder cancer, esophageal squamous cell carcinoma, and glioma, decreases intracellular GSH levels, 
and increases ROS levels[145,152,154-156]. The same SSZ effect also occurs in CD133+ liver CSCs[150,
157]. In CD44vhigh head and neck squamous cell carcinoma cells, the cytotoxicity of SSZ depends on 
ASCT2-dependent glutamine uptake and GDH-mediated production of α-KG; GDH depletion and 
ASCT2 inhibition not only significantly attenuate SSZ-induced intracellular ROS accumulation but also 
weaken the inhibitory effect of SSZ on cell survival[120]. A phase I study on combined drug therapy in 
advanced non-small cell lung cancer (UMIN000017854) proposed that SSZ 1.5 g/day can be safely used 
in combination with standard-dose cisplatin and pemetrexed, but its side effects include intestinal 
toxicity and limited absorption[158]. Another phase 1 study in patients with refractory cisplatin CD44v+ 
gastric cancer (UMIN000015595) showed that a combination of 6 g dose of SSZ and cisplatin is feasible, 
but side effects and disappearance of the inhibitory effect of SSZ on xCT after oral administration were 
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reported[159]. In addition, vaccines against xCT antigens induce xCT antibody production that mediates 
antibody-dependent cell cytotoxicity, resulting in redox imbalance, inhibition of breast CSC phenotype 
and self-renewal, increased chemosensitivity, delay in primary tumor growth, and impaired pulmonary 
metastasis[146,147,160,161]. Therefore, targeted inhibition and immunotargeting therapy of xCT 
promotes CSC apoptosis, which may provide new methods for adjuvant anti-cancer therapy[147,150,
154,155,160]. Glutamate cysteine ligase (GCL) catalyzes condensation of cysteine, produced by above 
mentioned pathways, and glutamate to form γ-glutamyl-cysteine, which reacts with glycine to form 
GSH by the action of glutathione synthetase[162]. GCL is composed of a catalytic subunit (GCLC) and a 
modifier subunit (GCLM); upregulated GCLC, regulated by nuclear factor erythroid-derived 2-like 2, in 
breast CSCs can mediate the production of GSH to upregulate the expression of FoxO3a and Bmi-1, 
which are essential for maintaining stemness, whereas GCLM is induced in a HIF-1 dependent manner 
during chemotherapy or hypoxia[162,163]. In short, GSH is the key to elucidating the role of cysteine 
metabolism in CSCs.

Aspartate and asparagine metabolism
Aspartate and asparagine differ in cellular functions owing to their structural differences. In tumor cells, 
asparagine is involved in the synthesis of proteins and is a nitrogen source for the synthesis of purines 
and pyrimidines[164]. Recently, studies have focused on the regulatory role of asparagine in cancers. 
Asparagine regulates the cellular adaptation to glutamine depletion and inhibits glutamine depletion-
mediated apoptosis; in case of sufficient availability of other amino acids, asparagine depletion also 
causes apoptosis[165]. Asparagine synthetase, which synthesizes asparagine from glutamine, is 
associated with tumorigenesis in lung cancer and poor prognosis in glioma and neuroblastoma as well 
as plays a crucial role in glutamine-dependent survival[165,166]. Asparagine can also be used as an 
exchange factor for cellular uptake of amino acids, such as serine, arginine, and histidine, thereby 
activating mTORC1 and regulating amino acid metabolism[167]. Aspartate is also involved in the 
synthesis of nucleotides[168]. Aspartate and asparagine are upregulated in osteosarcoma stem-like cells, 
and GOT1, an enzyme that converts aspartate to oxaloacetate, is upregulated in ovarian clear cell 
adenocarcinoma stem-like cells[35,135,169]. The upregulated aspartate in ovarian clear cell adenocar-
cinoma and cervical squamous cell carcinoma stem-like cells may be involved in TCA cycle reactions
[99]. Although research on aspartate and asparagine in CSCs is limited, their established functions in 
cancer cells provides a basis for further research on CSCs.

Alanine, proline, arginine, and tyrosine metabolism
A recent study revealed that alanine and proline levels are increased in canine mammary CSCs, which 
may be related to maintenance of stemness[72]. Over-expression of glutamic pyruvate transaminase 2, 
which catalyzes the reaction between alanine and α-KG to form pyruvate and glutamate, reduces the 
level of α-KG in cells, thereby leading to proline hydroxylase 2 activity inhibition and HIF-1α stabil-
ization. HIF-1α in turn activates the sonic hedgehog signaling pathway and promotes breast cancer 
tumorigenesis and CSC growth[170,171]. Arginine and proline metabolism are upregulated in 
osteosarcoma stem-like cells. The level of arginine and ornithine, converted from arginine via arginase, 
increases significantly and participates in cell proliferation and urea cycle[35]. Addition of proline to 
Dulbecco's minimum essential media allows ESC to maintain pluripotency. Moreover, proline also 
induces ESC transformation to mesenchymal-like state and genome-wide reprogramming involving 
H3K9 and H3K36 methylation[172,173]. TP73/p73 regulates proline metabolism in CSCs; loss of 
TP73/p73 reduces proline synthesis by inhibiting pyrroline-5-carboxylate reductase 1, which catalyzes 
proline formation from pyrroline-5-carboxylate[126]. In addition, proline metabolism also plays an 
important role in the self-renewal of human breast CSCs via proline dehydrogenase (PRODH), and 
inhibiting PRODH damages spheroidal growth and metastasis[72]. CD13+ CSCs are habituated to 
tyrosine metabolism in hepatocellular carcinoma; acetyl-CoA, produced by tyrosine metabolism, not 
only enters the TCA cycle to provide energy to CD13+ CSCs, but also promotes the transcription factor 
Foxd3 acetylation to maintain the CD13+ CSC self-renewal[80]. Due to the lack of phenylalanine 
hydroxylase in CD13+ CSCs, deprivation of phenylalanine has no effect on cell survival[80]. Thus, the 
metabolism of arginine, alanine, proline, and tyrosine seem to be necessary in CSCs of specific cancer 
species.

RELATIONSHIP BETWEEN AMINO ACID METABOLISM AND TME 
In addition to regulating CSCs, amino acid metabolism is also interconnected with TME or CSC niches 
as TME plays an important role in maintaining the self-renewal of CSCs[119,174]. As microenvir-
onments of different cancer types exhibit variable conditions (glucose concentration and oxygen 
tension), CSCs display diverse metabolic phenotypes to adapt to these microenvironments[113,175-
177]. For instance, in the absence of glucose, glutamine compensates for the shortage of glucose[12,113]. 
However, in the absence of glutamine, extracellular asparagine becomes critical because intracellular 
asparagine is redirected to glutamine synthesis to avoid apoptosis[165,178,179]. Glutamine metabolism 
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Figure 1 Enzymes and transporters that are potential therapeutic targets in cancer stem cell-based therapy. The red and green triangles 
indicate the enzyme and transporter, respectively, which may serve as potential targets. IDO1: Indoleamine-2,3-dioxygenase-1; TDO2: Tryptophan 2,3-dioxygenase; 
PHGDH: Phosphoglycerate dehydrogenase; PSAT1: Phosphoserine aminotransferase; PSPH: P phosphatase; GOT: Aspartate aminotransferase; SHMT: Serine 
hydroxymethyl transferase; GLDC: Glycine decarboxylase; GLS: Glutaminase; CBS: Cystathionine β synthase; CGL: Cystathionine γ lyase; MTase: 
Methyltransferase; MAT: Methionine adenosyltransferase; GDH: Glutamate dehydrogenase; GCL: Glutamate cysteine ligase; GSS: Glutathione synthetase; ASCT2: 
Alanine-serine-cysteine transporter 2; xCT: Cystine-glutamate antiporter; Glut: Glucose transporter; THF: Tetrahydrofolate; 1C-THF: One-canton tetrahydrofolate; 
HCy: Homocysteine; SAH: S-adenosine homocysteine; Met: Methionine; SAM: S-adenosine methionine; Cys–Cys: Cystine; GSH: Glutathione; α-KG: α-ketoglutarate; 
TCA cycle: Tricarboxylic acid cycle.

is also affected in TME as interleukin-4 (IL-4), secreted by immune cells, increases ASCT2 expression in 
breast cancer cells[180,181]. Growth factor IL-3 in TME, through binding to IL-3Rα, up-regulates ASCT2 
expression and promotes glutamine uptake via the JAK/STAT pathway[180,182]. Hypoxic microenvir-
onment causes the accumulation of lactate, which affects ASCT2 and GLS1 expression by activating c-
Myc[180,183]. Glutamine-dependent ovarian cancer cells form a glutamine loop with cancer-associated 
fibroblasts (CAFs) within TME; tumor cells convert glutamine to glutamate, which is regenerated into 
glutamine by CAFs to supply to tumor cells[12,184]. CAFs also secrete cysteine and GSH, which are 
absorbed by ovarian cancer cells to induce resistance to platinum-based chemotherapy. However, drug 
resistance induced by TME is destroyed by effector T cells, which suppress xCT expression of CAFs 
through the JAK/STAT1 pathway[180,185].

Cancer cell metabolism produces an acidic, hypoxic, and malnourished TME, which is detrimental to 
the antitumor immune response[186]. The main amino acids in the tumor immune microenvironment 
are tryptophan and arginine, whose increased catabolism is a common marker of TME[187]. Cells that 
decompose tryptophan and arginine, such as myeloid-derived suppressor cells and tumor-associated 
dendritic cells, induce regulatory T cells and suppress effector T cells to suppress antitumor immunity 
and promote tumorigenesis[187,188]. Interestingly, tryptophan has a significant effect on T cell survival 
and function[189]. Tumor cells that overexpress IDO show reduced extracellular tryptophan, which 
affects the effector function of T cells[189]. Whereas kynurenine, an immunosuppressive product of 
tryptophan metabolism, induces CD4+ T cells to differentiate into regulatory T cells by activating AhR, 
which weakens the ability of the immune system to recognize and kill cancer cells[178,190]. However, it 
does not seem to be a contradiction, as the expression of IDO, extracellularly consumed tryptophan, and 
synthesized kynurenine all synergistically inhibit T cell proliferation and activation[188]. The increased 
IDO1 in breast and prostate CSCs also activates regulatory T cells through the kynurenine pathway to 
promote immune escape[55]. The presence of arginine promotes the effector function and survival of T 
cells, which indicates that the lack of arginine in TME leads to T cell dysfunction[12,184,188]. Citrulline 
and ornithine, downstream metabolites of arginine, also affect T cell activation[178]. Glutamine is not 
only used for cancer cell metabolism, but also provides nitrogen and carbon sources for active T cells in 
TME[178,191]. Glutamine metabolism is essential to B cell proliferation and differentiation into plasma 
cells, and macrophage antigen presentation and phagocytosis[188,189]. Amino acids such as serine and 
alanine are also critical to the tumor immune microenvironment. Serine provides purines for T cell 
proliferation, but has no effect on T cell function. Conversely, alanine affects T cell effector function and 
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Table 1 Summary of the role and mechanism of amino acid metabolism in cancer stem cells

Amino acid 
metabolism Possible mechanisms in CSCs Role in CSC properties

Methionine 
metabolism

Direct nutrients; Genetic modification; DNA biosynthesis Self-renewal; tumorigenicity

Tryptophan 
metabolism

Immune escape and resistance; regulates stem genes and signal pathway Self-renewal; survival

Threonine 
metabolism

Upregulated in colon CSCs (HCT116), but mechanism is unknown Self-renewal

Lysine metabolism Reduces ROS and activates Wnt pathway Self-renewal

Leucine 
metabolism

Regulates CD13+ CSCs survival in hepatocellular carcinoma, but mechanism is unknown; 
Inhibits stemness and growth of EpCAM+ hepatocellular carcinoma stem cells by 
activating MTORC1

Stemness; survival

Valine metabolism Regulates CD13+ CSCs survival in hepatocellular carcinoma, but mechanism is unknown survival

Phenylalanine 
metabolism

Unknown Unknown 

Isoleucine 
metabolism

Inhibits stemness and growth of EpCAM+ hepatocellular carcinoma stem cells by 
activating MTORC1

Stemness

Histidine 
metabolism

Unknown Unknown 

Glycine 
metabolism

Direct nutrients within a certain range; epigenetic modification; DNA synthesis; regulates 
redox homeostasis; carries out TCA cycle

Self-renewal; survival; tumorigenicity; 
metastasis

Serine metabolism Regulates redox homeostasis; shunts glucose metabolism; carries out TCA cycle; 
influences T cell proliferation

Self-renewal; survival; tumorigenicity; 
stemness; metastasis; resistance

Glutamine 
metabolism

Direct nutrients; carries out TCA cycle; synthesis of nucleic acids; maintains redox balance; 
regulates tumor immunity

Self-renewal; survival; tumorigenicity; 
stemness; resistance

Glutamate 
metabolism

Carries out TCA cycle; participates serine metabolism; maintains redox balance Self-renewal; survival; tumorigenicity; 
stemness

Cysteine 
metabolism

Mainly maintains redox balance Self-renewal; survival; tumorigenicity; 
resistance; metastasis

Aspartate 
metabolism

Replenishes TCA cycle; synthesis of nucleic acids Survival

Asparagine 
metabolism

Replenishes TCA cycle; synthesis of nucleic acids; exchanges amino acids Survival

Alanine 
metabolism

Upregulated in breast CSCs, but mechanism is unknown; regulates T cell function Self-renewal;stemness; tumorigenicity 

Arginine 
metabolism

Participates in cell proliferation and urea cycle; regulates tumor immunity Self-renewal

Proline metabolism Maybe epigenetic modification and transform steadily; synthesize collagen Self-renewal; stemness; metastasis

Tyrosine 
metabolism

Provides energy; Foxd3 acetylation Self-renewal

CSC: Cancer stem cell; TCA cycle: Tricarboxylic acid cycle.

proinflammatory cytokine secretion by promoting T cell protein synthesis and initial activation[189,
192]. In addition to tumor metabolism and immune microenvironment, amino acid metabolism also has 
an influence on the structural microenvironment. Collagen, the main component of the extracellular 
matrix in TME, is degraded to proline by the action of metalloproteinases and collagenases. The 
extracellular proline is an energy source for tumor cells and may be resynthesized into collagen to 
promote the extracellular matrix remodeling, which is responsible for cancer cell reprogramming[174,
193,194]. High-density extracellular collagen matrix also shifts the metabolism of metastatic breast 
cancer 4T1 cell line from glucose to glutamine[195]. All the above evidence shows that amino acid 
metabolism, cancer cells or CSCs, and TME form a complex regulatory network that can be efficiently 
applied in clinical research.



Zhang Q et al. Amino acid metabolism and CSCs

WJSC https://www.wjgnet.com 276 April 26, 2022 Volume 14 Issue 4

Table 2 Potential enzymes targets for cancer stem cell therapy, role in metabolism, treatment strategy in cancer stem cell-based 
therapy

Enzyme Role in amino acid metabolism CSC therapy

MTase Translates homocysteine to methionine Inhibition

MATα2 Induces the production of SAM Inhibition

IDO1 Catalyzes tryptophan into kynurenine Inhibition

TDO2 Catalyzes tryptophan into kynurenine Inhibition

GLDC Catalyzes glycine into NH3, CO2 and CH2-THF Inhibition (except gastric cancer, better inhibit SHMT 
and GCAT simultaneously)

PHGDH Catalyzes 3P-glycerate into 3-P-OH-pyruvate Inhibition

SHMT1/2 Completes the conversion between serine and glycine Inhibition

GLS1 Catalyzes glutamine into glutamate Inhibition 

GDH Catalyzes glutamate into α-KG Inhibition 

CBS Translates homocysteine to cystathionine Inhibition 

CGL Catalyzes cystathionine to cysteine Inhibition 

GCL Catalyzes the production of γ-glutamyl-cysteine Inhibition 

GSS Catalyzes GSH production Inhibition 

GOT1 Catalyzes the production of oxaloacetate from 
aspartate 

Inhibition 

GPT2 Catalyzes transamination between alanine and α-KG to 
pyruvate and glutamate

Inhibition 

PRODH Oxidize proline to glutamate Inhibition 

CSC: Cancer stem cell; MTase: Methyltransferase; MAT: Methionine adenosyltransferase; SAM: S-adenosine methionine; IDO1: Indoleamine-2,3-
dioxygenase-1; TDO2: Tryptophan 2,3-dioxygenase; GLDC: Glycine decarboxylase; 1C-THF: One-canton tetrahydrofolate; PHGDH: Phosphoglycerate 
dehydrogenase; SHMT: Serine hydroxymethyl transferase; GCAT: Glycine C-acetyltransferase; GLS: Glutaminase; GDH: Glutamate dehydrogenase; α-KG: 
α-ketoglutarate; CBS: Cystathionine β synthase; CGL: Cystathionine γ lyase; GCL: Glutamate cysteine ligase; GSS: Glutathione synthetase; GSH: 
Glutathione; GOT: Aspartate aminotransferase; GPT2: Glutamic pyruvate transaminase; PRODH: Proline dehydrogenase.

CONCLUSION
The concept of CSCs, a class of cells with potential for self-renewal and differentiation, was proposed 
owing to the emergence of recurrence, metastasis, and drug or radiotherapy resistance in tumors, and 
renders tumor treatment challenging[196]. Currently, researchers are focusing on issues related to the 
metabolism within CSCs and attempting to identify new research directions and therapeutic targets to 
eliminate CSC population. In TME, researchers have indicated the involvement of amino acids as a 
nutrition and energy source, apart from glycolysis, by demonstrating abnormal mitochondrial function 
in tumor cells[197,198]. Amino acids are not only involved in protein synthesis, but also participate in 
important biosynthetic pathways as intermediate metabolites. As amino acids are important nutritional 
components in TME, an increasing number of studies are focusing on the role of amino acids in self-
renewal and other biological characteristics of CSCs. This review focuses on the role of amino acid 
metabolism in CSC biology, particularly self-renewal and their mechanism of action.

The role of 20 amino acids in CSCs is summarized in Table 1. The metabolism of certain amino acid 
plays an important role in the self-renewal of CSCs, such as methionine, tryptophan, glycine, serine, and 
glutamine. The effects of amino acids depletion in TME or inhibition of key enzymes on the self-renewal 
and survival of CSCs further illustrate the influence of amino acid metabolism on the characteristics of 
CSCs and provide potential targets for cancer therapy. An increasing number of clinical trials focus on 
targeting key proteins in amino acid metabolism pathways in CSCs. For example, xCT, a cystine-
glutamate antiporter, plays an important role in CSC self-renewal; clinical studies involving its 
inhibitor, SSZ, in advanced non-small cell lung cancer (UMIN000017854) and refractory cisplatin 
CD44v+ gastric cancer (UMIN000015595) suggest the potential feasibility of targeting amino acid 
metabolism transporters for tumor therapy[158,159]. In two clinical cases of CD44v9-positive urogenital 
cancer, SSZ was also used as a new adjuvant treatment approach[199]. Further, parthenolide and 
piperlongumine targeting aberrant glutathione metabolism in leukemia stem cells[200]; pegcris-
antaspase depleting plasma glutamine and asparagine in relapsed/refractory acute myeloid leukemia
[201]; and L-asparaginase exhausting asparagine in acute lymphoblastic leukaemia[202] highlight the 
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extensive prospect of targeting amino acid metabolism in cancer therapy. Additionally, key metabolic 
enzymes also act as potential targets for CSC-based cancer therapy; they are listed in Table 2 and 
Figure 1.

In conclusion, the role of amino acid metabolism is varied in different cancer types and metabolism of 
amino acids are interlinked, which adds to the complexity of TME. Based on these reports, we expect 
the future research on amino acid metabolism to be based on cancer types, amino acid interrelations, 
and TME. Only through this research path, can we propose better solutions for CSC clinical therapy and 
ultimately prolong patient life-expectancy.
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