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Abstract: Atherosclerotic cardiovascular disease remains the leading cause of morbidity and mortality
worldwide. Atherosclerosis develops over several decades and is mediated by a complex interplay of
cellular mechanisms that drive a chronic inflammatory milieu and cell-to-cell interactions between
endothelial cells, smooth muscle cells and macrophages that promote plaque development and
progression. While there has been significant therapeutic advancement, there remains a gap where
novel therapeutic approaches can complement current therapies to provide a holistic approach for
treating atherosclerosis to orchestrate the regulation of complex signalling networks across multiple
cell types and different stages of disease progression. MicroRNAs (miRNAs) are emerging as important
post-transcriptional regulators of a suite of molecular signalling pathways and pathophysiological
cellular effects. Furthermore, circulating miRNAs have emerged as a new class of disease biomarkers
to better inform clinical diagnosis and provide new avenues for personalised therapies. This review
focusses on recent insights into the potential role of miRNAs both as therapeutic targets in the
regulation of the most influential processes that govern atherosclerosis and as clinical biomarkers
that may be reflective of disease severity, highlighting the potential theranostic (therapeutic and
diagnostic) properties of miRNAs in the management of cardiovascular disease.

Keywords: inflammation; oxidative stress; angiogenesis; endothelial dysfunction; smooth muscle
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1. Introduction

Coronary artery disease (CAD) involves the narrowing or hardening of arteries, restricting blood
flow to the heart and resulting in cardiovascular diseases such as angina, myocardial infarction or
even sudden death. CAD is driven by atherosclerosis, a multi-faceted disease that develops over
several decades that is mediated by a complex interplay between a plethora of cellular mechanisms
and interactions between endothelial cells (ECs), smooth muscle cells (SMCs) and inflammatory
cells. These mechanisms drive a chronic inflammatory milieu that promotes plaque development and
progression, in which lipid build-up in the arteries leads to plaque formation. Despite significant
research and therapeutic advances, the impact of atherosclerosis on cardiovascular disease is not
fully resolved, highlighting the need for alternate therapies and improved ways to better detect
disease progression. MicroRNAs (miRNAs), small non-coding RNAs that simultaneously control
the expression of multiple genes, are emerging as powerful clinical biomarkers and therapeutic
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targets for multi-faceted diseases [1]. miRNA targeting drugs are showing promise in Phase I and
II clinical trials in a wide range of diseases including scleroderma, cancer and hepatitis C virus [2],
making them the leading next generation biopharmaceuticals [1]. Furthermore, circulating miRNAs
have emerged as a new class of disease biomarkers [3]. This review focusses on recent insights into
the potential role of miRNAs both as therapeutic targets in the regulation of the most influential
processes that govern atherosclerosis and as clinical biomarkers that may be reflective of disease
severity, highlighting the potential therapeutic and diagnostic properties of miRNAs in the future
management of cardiovascular disease.

2. MicroRNA Biology

During canonical biogenesis, miRNAs are transcribed by RNA polymerase II, producing a
double-stranded hairpin primary (pri)-miRNA transcript [4]. pri-miRNAs are then cleaved by the
enzyme Drosha generating a short hairpin structure termed pre-miRNA. Pre-miRNA is exported to
the cytoplasm, where the RNase III endonuclease Dicer removes the terminal loop of pre-miRNA
producing mature miRNA duplex strands [4]. Each strand is termed either −5p or −3p, representative
of the 5’ or 3’ directionality of the strand. Either strand can be loaded onto the protein Argonaute to
form the RNA-induced silencing complex (RISC). The proportion of −5p to −3p in RISC is dependent
on the thermodynamic stability of the strands and the less stable of the two strands will be degraded [5].
However, the proportion of −5p to −3p can be either equal or, depending on the cell type, may
favour one strand over the other. Additionally, the functionality of each strand can differ, and RISC
may be directed towards divergent gene targets depending on the proportion/presence of the −5p or
−3p strands [6,7]. miRNAs then mediate gene expression through translational repression or targeted
degradation by binding through complementary base pairing within the 3’-UTR of their mRNA targets.
miRNAs have been shown to play a role in regulating numerous cellular processes and have been
shown to contribute to disease progression, regulating up to 60% of all genes in the human genome [8].
Furthermore, miRNAs and pre-miRNAs can be released from the cell into the bloodstream and are
extremely stable in the extracellular environment, either in free form or trapped in circulating microvesicles,
exosomes, high-density lipoproteins (HDL) or protein complexes, where they can be taken up within
tissues by cell-to-cell communication [8]. They continue to inspire a myriad of research and are emerging
as therapeutic targets and clinical biomarkers for personalised medicine in complex diseases.

3. MiRNAs in Cholesterol Homeostasis and Reverse Cholesterol Transport

Cholesterol is an important player in every stage of atherosclerosis development [9]. In the
circulation, cholesterol is carried on lipoproteins, in which low-density lipoproteins (LDL) deliver
and high-density lipoproteins (HDL) remove cholesterol from cells and tissues to mediate cholesterol
homeostasis. Excess circulating LDL levels contribute to lipid build-up in regions susceptible to plaque
formation. LDL is prone to oxidative and enzymatic modification, predisposing it to unregulated
uptake into macrophages, leading to the formation of atherosclerotic lesions [10]. Conversely, reduced
cholesterol efflux capacity is a robust predictor for atherosclerosis in humans. miRNAs are known to
be involved in maintaining the balance between atherogenic LDL and atheroprotective HDL levels
and function (Figure 1).

The liver plays a critical role in the production and clearance of lipoproteins. Numerous hepatic-
enriched miRNAs are known to regulate lipoprotein metabolism. miR-122 is a crucial regulator of
cholesterol and fatty acid synthesis and has been highlighted as a promising target for lowering
plasma cholesterol in humans [11]. Cholesterol synthesis is tightly regulated by sterol regulatory
element binding proteins (SREBP) which detect low cellular cholesterol levels, promoting its synthesis
and uptake. miR-185 reduces de novo cholesterol synthesis by downregulating SREBP2 and LDL
receptor (LDLR) [12]. Furthermore, SREBP1 increases miR-185 levels [12], suggesting that miR-185
expression is tightly regulated to control intracellular cholesterol homeostasis. Paradoxically, miR-185
also represses the expression of KH-type splicing regulatory protein (KSRP), a negative regulator of
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LDLR, providing novel insights into the miR-185-mediated regulatory network responsible for the
regulation of hepatic LDLR expression [13]. Importantly, inhibition of miR-185 in vivo reduced plasma
cholesterol levels and decreased plaque area in mice [13]. miR-33a/b is co-expressed with SREBP1/2
and miR-33a dysregulation is thought to contribute to atherosclerosis by promoting lipid build-up and
cholesterol retention in macrophages through the ATP binding cassette (ABC) transporter ABCA1 [14].
The close regulation of miR-33a/b and miR-185 with SREBP1/2 suggest that miR-33a/b and miR-185
play a crucial role in cholesterol homeostasis and that their dysregulation may be an early event in
atherosclerotic progression.J. Clin. Med. 2019, 8, x FOR PEER REVIEW 3 of 27 
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Figure 1. MiRNAs in cholesterol homeostasis and reverse cholesterol transport. In the liver, miRNAs
target critical mediators involved in cholesterol biosynthesis, exerting positive/atheroprotective (blue)
or negative/atherogenic (red) effects. miRNAs target cholesterol uptake into the liver by inhibiting
expression of cholesterol transporters scavenger receptor BI (SR-BI) and low density lipoprotein receptor
(LDLR). MiRNAs also have a significant impact in mediating cholesterol efflux capacity from the
atherosclerotic plaque.

miR-223 inhibits genes involved in cholesterol biosynthesis (e.g., 3-Hydroxy-3-methylglutaryl-CoA
synthase 1 (HMGCS1) and methylsterol monooxygenase 1 (SC4MOL)) and HDL uptake (scavenger
receptor-BI, SR-BI), and miR-223−/− mice have elevated hepatic and plasma total and HDL cholesterol
levels [15]. miR-24 has also been shown to aggravate atherosclerosis by inhibiting genes involved
in lipogenesis (e.g., insulin-induced gene 1 (INSIG1), an inhibitor of lipogenesis) [16] and HDL
uptake (SR-BI) [17]. In vivo, miR-24 administration decreased hepatic SR-BI expression and promoted
atheromatous plaque formation in atherosclerotic-prone apolipoprotein E-null (Apoe−/−) mice [17].
Inhibition of miR-486 and miR-92a decreased liver and plasma cholesterol by targeting SREBP1
and ABCG4, respectively [18]. miR-27 also decreased intracellular cholesterol uptake and increased
plasma cholesterol by inhibiting LDLR expression [19,20] and molecules involved in efficient LDL
endocytosis (e.g., low density lipoprotein receptor adaptor protein 1, LDLRAP1; LDL receptor related
protein 6, LRP6) [20]. miR-30c reduces hyperlipidaemia by inhibiting microsomal triglyceride transfer
protein (MTTP) to restrict assembly and secretion of apoB lipoproteins and lysophosphatidylglycerol
acyltransferase 1 (LPGAT1) to inhibit de novo lipogenesis, leading to decreased levels of plasma total
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and LDL cholesterol [21]. miR-30c overexpression in Apoe−/− mice mitigated atherosclerosis without
inducing steatosis, an undesirable side effect associated with conventional MTTP inhibitors [21].

miRNAs that regulate reverse cholesterol transport have also been explored for their therapeutic
potential in promoting the regression of atherosclerotic plaques. miR-33a and miR-33b inhibit the
expression of the cholesterol transporters ABCA1 and ABCG1 in macrophages resulting in reduced
cholesterol efflux to HDL [14,22,23]. Inhibition of miR-33a/b enhanced cholesterol efflux and regression
of atherosclerotic plaques in Ldlr−/−mice [24] and improved lipid profiles in non-human primates [25,26].
Other miRNAs including miR-144, miR-27a/b, miR-302a, miR-148a, miR-92a, miR-30e, miR-101,
miR-23a-5p, miR-20a/b and miR-10b also target cholesterol transporters (LDLR and ABCA1) [19,27–34],
highlighting their potential in regulating atherosclerosis. Cholesterol-loaded mature HDL facilitates
the removal or redistribution of cholesterol via its uptake in the liver through SR-BI. In atherosclerosis,
miR-185, miR-96, miR-223 and miR-24 target hepatic SR-BI to suppress HDL uptake in the liver,
preventing cholesterol excretion by the liver [15,17,30,35]. miR-24 was further shown to contribute
to plaque progression, promoting lipid accumulation in the liver [17,36]. Overall, these studies
demonstrate that multiple miRNAs can contribute to the burden of lipid build-up in the arteries via
different mechanisms, and those with multi-faceted effects on these processes represent the most
fundamental regulators that likely contribute to disease progression.

Evidence suggests that postprandial chylomicron (CM) and triglyceride-rich very low-density
lipoprotein (VLDL) particles also play an important part in atherosclerotic plaque development [37].
While miRNAs that mediate the ability of HDL to uptake and transport triglycerides has been
extensively investigated, it is currently unknown to what extent miRNAs are able to regulate VLDL in
the postprandial state. This is of importance given that VLDL particles comprise 80% of triglyceride-rich
lipoprotein (TGRL) remnants [38]. Studies have reported that miR-30c mediates apoB lipoprotein
assembly [21], and inhibition of miR-33 lowers VLDL-triglyceride levels in non-human primates [25].
However, whether these miRNAs contribute to dysregulated postprandial lipemia in atherosclerosis
is currently unknown. Clinical data show a correlation between postprandial lipoproteins and the
presence/progression of CAD [39]. Furthermore, studies show that non-fasting and postprandial
lipid parameters may better predict CVD risk compared to traditional fasting measurements [40,41].
Mechanistic studies demonstrate that, although CM and VLDL are too large for passage into the
arterial intima, their smaller cholesterol-enriched remnants can penetrate the vascular subendothelial
space, driving a pro-inflammatory state in the endothelium and promoting monocyte recruitment and
monocyte/macrophage accumulation in atherosclerotic plaques [39,42]. Ex vivo analysis of isolated
TGRL in subjects fed a high-fat diet showed that TGRL bias the endothelial pro-inflammatory response
via post-transcriptional editing of vascular cell adhesion molecule (VCAM)-1 through the action of
miR-126 [43]. Interestingly, subjects with an anti-inflammatory response to a meal produced TGRL
that increased endothelial miR-126 activity concomitant with reduced VCAM-1 levels and diminished
monocyte arrest [43], highlighting a direct role for miR-126 in response to postprandial TGRL. Recently,
miR-206-3p, miR-409-3p and miR-27b-5p were found to be increased in human exosomes in response
to fatty meals [44]. Pathway analysis suggests that these miRNAs target genes are involved in different
processes including insulin signalling, lipid metabolism, angiogenesis and inflammation, highlighting
the potential role of postprandial circulating miRNAs as mediators of the molecular response to
postprandial lipemia and their influence on atherosclerosis.

4. MiRNAs in Atherosclerotic Plaque Initiation and Progression

The initial stages of atherosclerosis are often asymptomatic and can develop over several decades
without being detected or treated. There is growing evidence that miRNAs mediate key cellular and
molecular processes related to this early stage, which could provide insight on early progression and
facilitate targeted interventions to prevent plaque development (Figure 2).
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Figure 2. miRNAs in atherosclerotic plaque initiation and progression. Damage to the endothelial
lining of lesion-prone areas of the arterial vasculature is one of the earliest events that contributes to
the pathobiology of atherosclerosis, promoting a pro-inflammatory milieu and inducing an oxidative
stress environment, which facilitates the recruitment of monocytes to the vessel wall via the increased
expression of cell adhesion molecules (CAMs) including ICAM-1 and VCAM-1. Monocytes undergo
trans-endothelial migration into the intima, where they undergo differentiation into macrophages
and become activated under inflammatory and oxidative stress conditions. LDL diffuses into the
intima and undergoes oxidative modification, and is likely to be taken up by the macrophages.
Atherosclerotic lesion progression involves the proliferation and migration of smooth muscle cells
(SMCs) into the intima. Positive/atheroprotective (blue) or negative/atherogenic (red) effects of miRNAs
on the atherosclerotic processes are shown.

4.1. Endothelial Dysfunction

Damage to the endothelial lining of lesion-prone areas of the arterial vasculature is one of the
earliest events that contributes to the pathobiology of atherosclerosis, promoting a pro-inflammatory
milieu and inducing an oxidative stress environment, which facilitates the recruitment of inflammatory
cells to the vessel wall.

The nuclear factor (NF)kB signalling pathway is a critical driver of endothelial dysfunction
and is activated by many risk factors that drive atherosclerosis including inflammatory cytokines
including tumour necrosis factor (TNF)α, diabetes, oxidised (ox)LDL, angiotensin II and haemodynamic
stress [45]. Upon activation, the NFkB signalling drives the expression of endothelial leukocyte adhesion
molecules including E-selectin, VCAM-1 and intracellular adhesion molecule (ICAM)-1. Numerous
miRNAs have been implicated in the inflammatory response in endothelial cells. Members of the
miR-181 family play an important role in suppressing endothelial inflammatory responses by targeting
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mediators of the NFkB signalling pathway. miR-181b targets importin-α3, a protein that facilitates NFkB
nuclear translocation, inhibiting an enriched set of NFkB-responsive genes including VCAM-1 and
E-selectin [46]. Systemic miR-181b delivery reduces NFkB activity and atherosclerotic lesion formation
in Apoe−/− mice [47]. miR-181a-5p and miR-181a-3p inhibit vascular inflammation through regulation
of the NFkB signalling pathway to inhibit VCAM-1, ICAM-1 and E-selectin expression [48]. Rescue of
miR-181a-5p and miR-181a-3p significantly suppresses atherosclerotic plaque formation in Apoe−/−

mice [48]. miR-146a is involved in a negative feedback loop control of NFkB signalling [49], by targeting
TRAF6, which inhibits downstream IκB kinase (IKK) phosphorylation and nuclear translocation [50] to
suppress ICAM-1 expression and macrophage migration [51]. miR-31 and miR-17-3p are involved in a
negative feedback loop that directly inhibits TNFα-induced E-selectin and ICAM-1 expression [52].
miR-155 and miR-221/222 inhibit the angiotensin II-induced inflammatory response by targeting the
transcription factor Ets-1 and its downstream genes, VCAM-1 and monocyte chemoattractant protein
(MCP)-1 [53]. Finally, let-7g exerts anti-inflammatory effects by inhibiting transforming growth factor
(TGF)-β signalling in endothelial cells while in vivo lentiviral delivery of let-7g inhibitors induced
overgrowth of the carotid intima-media layer in mice [54].

The loss of nitric oxide (NO) bioavailability is central to endothelial dysfunction. Production of
NO is facilitated by the endothelial nitric oxide synthase (eNOS) pathway. Oxidative stress is driven
by an imbalance in favour of increased generation of reactive oxygen species (ROS) coupled with a
reduction in the body’s innate antioxidant defence systems [55]. ROS production in the vessel wall is
increased in all conditions considered risk factors for atherosclerosis including hypertension, diabetes,
smoking and dyslipidaemia [56]. Increased ROS production drives endothelial injury by promoting
increased inflammation, apoptosis, vascular permeability and LDL oxidation [57]. miRNAs that can
mediate endothelial homeostasis through NO and ROS production within the vessel wall would be
therapeutically beneficial. miR-199a-3p and miR-199a-5p were both shown to independently mediate
NO bioavailability by promoting eNOS activity and reducing its degradation through the upregulation
of phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) and calcineurin pathways and by
targeting the antioxidant enzymes superoxide dismutase (SOD)1 and peroxiredoxin (PRDX)1 [58].
miR-200c is upregulated in response to oxidative stress and dysregulates the sirtuin 1 (SIRT1)/Forkhead
box O1 (FOXO1)/endothelial nitric oxide synthase (eNOS) regulatory loop, controlling oxidative
stress tolerance [59]. This in turn results in the decreased expression of the ROS scavengers, catalase
and manganese superoxide dismutase (MnSOD), leading to increased ROS presence and decreased
NO bioavailability. Recently, miR-142-3p has emerged as another miRNA that inhibits oxidative
stress-induced endothelial cell apoptosis and atherosclerotic plaque development in mice by activating
the Akt/eNOS pathway [60]. miR-19b, miR-221 and miR-222, which are highly expressed in the
intima of atherosclerotic lesions, contribute to endothelial dysfunction by increasing ROS production
through PPARG coactivator (PGC)-1α, a critical transcriptional regulator of energy metabolism and
mitochondrial function [61]. Mitochondrial function plays a vital role in endothelial cell propensity
towards damage and the insult of ROS on the endothelium. miR-20a and miR-328 reduced ROS
production by targeting components of the toll-like receptor (TLR)4 inflammatory pathway [62,63].

Increased ROS production drives the oxidation of LDL, a critical early event in atherosclerosis
that contributes to lipid accumulation. The main oxLDL receptor, lectin-like oxidised low-density
lipoprotein receptor-1 (LOX-1), is upregulated in response to pro-inflammatory and pro-atherogenic
stimuli and is known to drive endothelial activation and in foam cell formation. Both miR-98 and let-7a/b
inhibit LOX-1 expression, which prevents oxLDL uptake into the endothelium [64,65]. Conversely,
miR-34 antagonises oxLDL cell injury by targeting the cell-survival gene bcl-2 [66].

Modification to endothelial barrier integrity further contributes to trans-endothelial migration
of monocytes through the intima. In addition to its anti-inflammatory effects, miR-155 promotes
endothelial permeability by inhibiting zonula occludens-1 (ZO-1), claudin 1, β-catenin and VE-cadherin,
which modifies endothelial barrier function by destroying tight junctions [67]. This was shown to be
mediated via VSMC-derived miR-155, which was secreted in exosomes by VSMCs following oxLDL
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treatment, exhibiting a communicative interaction between endothelial cells and VSMCs in response to
atherogenic stimuli. Conversely, miR-126 inhibits endothelial permeability by targeting TGF-β [68],
which dampens the inflammatory response and decreases endothelial damage via ROS.

Ageing is an important risk factor for the development of atherosclerosis and is accompanied by
the decline of endothelial function. Senescence of endothelial cells has been proposed to be involved
in endothelial dysfunction and atherogenesis. Exploration of miRNAs implicated in endothelial
senescence could facilitate new approaches to reverse or dampen the effects of ageing. In addition to
its anti-inflammatory effects, let-7g also targets endothelial senescence by regulating the SIRT1 and the
insulin growth factor (IGF)1 pathway [69]. miR-216a was shown to promote premature endothelial
senescence via the transforming growth factor (TGF)-β1 pathway [70].

The compounding effects of endothelial activation and the recruitment of pro-inflammatory
mediators within the intima is devastating to vascular function. These events promote a sustained
pro-inflammatory phenotype within the vascular endothelium that becomes progressively detrimental,
contributing to endothelial senescence and plaque progression. Controlled regulation of endothelial activation
by miRNAs hold therapeutic potential in the early intervention and targeted control of atherosclerosis.

4.2. Monocyte Recruitment, Macrophage Differentiation and Foam Cell Formation

Immune responses to the pro-inflammatory environment within the vessel wall also contribute
critically to atherosclerosis. Monocytes are recruited to “clean up” lipids in response to chemoattractant
signals and once in the intima they differentiate into macrophages [71]. Macrophages are important in
the pathophysiology of atherosclerosis by maintaining vessel wall lipid homeostasis and secreting
inflammatory mediators. Within the plaque area, macrophages take up lipids resulting in the formation
of lipid-laden inflammatory foam cells. miRNAs have been shown to regulate key macrophage
processes that underpin atherosclerotic progression (Figure 2).

miR-21 drives leukocyte polarisation and survival under inflammatory conditions [72]. In the
early stages of atherosclerosis, the absence of miR-21 decreased the availability of circulating monocytes
and increased apoptosis of plaque macrophages, which limited lesion development [73]. miRNAs
are differentially expressed during foam cell formation in vitro (Figure 3) [74]. Plaque macrophages
express CD36, which facilitates the uptake of LDL with only minor oxidative modifications, making
it particularly potent in the context of atherosclerosis [75]. miR-758-5p reduces macrophage oxLDL
uptake by directly inhibiting expression of the scavenger receptor CD36 [76]. miR-27a/b regulates
macrophage cholesterol homeostasis by targeting genes involved in cholesterol uptake (LOX-1 and
CD36) and efflux (ABCA1) [77]. miR-23a-5p and miR-212 increase foam cell formation by reducing
cholesterol efflux from macrophages through ABCA1 [31,78]. miR-34 increases the binding capacity
of oxLDL to macrophages by facilitating bridging between lipoprotein lipase (LPL) and LOX-1 [79].
Conversely, miR-27 and miR-590 inhibit LPL expression to prevent macrophage lipid accumulation
and cytokine release [77,80,81].

Macrophages can also secrete extracellular vesicles containing miRNAs that in turn exert
downstream cellular effects. miR-146a was the most abundant miRNA found in vesicles secreted
by macrophages exposed to oxLDL [82]. Furthermore, miR-146a enriched vesicles diminished
macrophage migration by inhibiting insulin like growth Factor 2 mRNA binding protein 1 (IGF2BP1)
and human antigen R (HuR), suggesting that these effects could prevent macrophage emigration from
atherosclerotic lesions [82].

Differentiation of monocytes to macrophages is driven by two key colony stimulating factors
(CSF), macrophage (M)-CSF and granulocyte macrophage (GM)-CSF, which induce both divergent
and convergent alterations in gene expression [83]. To date, there is no known miRNA that directly
targets the GM-CSF receptor [84]. Several miRNAs that are direct targets of M-CSF, including mir-22,
miR-34a and miR-155 [85]. Whilst one study described that 87% of gene expression alterations were
conserved between M-CSF and GM-CSF, the role of miRNAs involved in monocyte-to-macrophage
polarisation remains to be fully explored. In atherosclerotic lesions, macrophages are exposed to
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a wide range of microenvironmental signals, which influence macrophage polarisation towards
either the classical M1 pro-inflammatory phenotype or alternatively activated M2 anti-inflammatory
reparative macrophages [86]. Studies have identified the differential expression of miRNAs during
M1/M2 polarisation: miR-155-5p, miR-181a and miR-451 are associated with M1 macrophages, whilst
expression of miR-125a, miR-145-5p and miR-146a are elevated in M2 macrophages. Furthermore,
knockout of miR-155 impaired M1 polarisation, while miR-155 overexpression reprogrammed M2 to
M1 macrophages [87] and promoted the accumulation of M1 macrophages [88]. miR-33 is known to
regulate macrophage phenotype by sustaining inflammatory M1 macrophages [89]. With inhibition
of miR-33 inducing metabolic reprogramming of atherosclerotic plaque macrophages towards the
M2 phenotype, driving tissue repair and reducing inflammation. Whilst there remains an attractive
avenue for the therapeutic potential of miRNA mimics/inhibitors to modulate macrophage polarisation,
more research is needed to understand the complex interplay between miRNAs and inflammation.
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Figure 3. miRNA regulation of atherosclerotic plaque rupture. Rupture-prone vulnerable atherosclerotic
plaques typically consist of high inflammatory cell content (foam cells) and a large necrotic core covered
by a thin fibrous cap. These vulnerable plaques have an increased susceptibility to rupture, often
culminating in catastrophic clinical manifestations of myocardial infarction or ischaemic stroke.
While the pathophysiology of plaque rupture is not fully understood, it is well accepted that lesion
vulnerability is more closely associated with plaque composition than size. Positive/atheroprotective
(blue) or negative/atherogenic (red) effects of miRNAs on the atherosclerotic processes are shown.

4.3. Vascular Smooth Muscle Cell Proliferation and Differentiation

Vascular smooth muscle cells (VSMCs) are the most abundant cell type in the arterial wall
and are involved throughout atherosclerosis progression. EC loss due to apoptosis, stenting or
mechanical forces can promote VSMC migration from the media to the intima of the vessel well, where
they then proliferate to promote formation of the neointima and plaque, contributing to atherosclerosis
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progression [90]. Atherogenic stimuli contribute to a switch in VSMC phenotype from contractile to
synthetic, which is characterised by changes in the proliferative, migrative and apoptotic nature of the cells.

miRNAs have been shown to target numerous transcription factors, signalling cascades and
growth factors that regulate VSMC proliferation (Figure 2) [91]. A recent study conducted in SMCs
isolated from human saphenous veins showed that miR-21 overexpression increases the proliferative
capacity of these cells and drives the switch towards a more synthetic phenotype [92]. Taken in
tandem with its effects on leukocytes, this highlights the importance of miR-21 in the early stages of
atherosclerosis. The miR-143/145 cluster are established modulators of VSMC plasticity, driving the
more proliferative SMC phenotype by cooperatively mediating a transcriptional network including
Kruppel like factor (KLF)5, KLF4 and myocardin [93,94]. These phenotypic changes lead to the
development of macrophage-like characteristics and oxLDL uptake by VSMCs [95]. miR-145 was
further implicated in promoting changes to VSMC contractile markers including α-smooth muscle
actin and calponin [96]. Additionally, miR-1 is shown to mediate changes to contractile proteins in
VSMCs including suppression of α-smooth muscle actin [97].

In general, VSMC are thought to contribute to plaque stability via mediating extracellular
matrix (ECM) structural elements. However, once undergoing phenotypic changes, VSMCs also
contribute to necrotic core development and fibrous cap thinning. miRNAs that mediate changes to
the VSMC phenotype by targeting molecules involved in vessel contraction and SMC proliferation and
migration could be potential targets to reverse or inhibit the contributions of VSMCs in atherosclerotic
plaque progression.

5. MiRNAs in Atherosclerotic Plaque Rupture

Rupture-prone, vulnerable atherosclerotic plaques typically consist of high inflammatory cell
content and a large necrotic core covered by a thin fibrous cap. These vulnerable plaques have
an increased susceptibility to rupture, often culminating in catastrophic clinical manifestations of
myocardial infarction or ischaemic stroke. While the pathophysiology of plaque rupture is not
fully understood, it is well accepted that lesion vulnerability is more closely associated with plaque
composition than size. There is increasing evidence that miRNAs regulate processes associated with
plaque rupture (Figure 3).

5.1. Fibrous Cap Thinning

Local factors regulating SMC proliferation and apoptosis in the vessel wall contribute to the
stability of the atherosclerotic fibrous cap, with vulnerable plaques showing increased evidence of
SMC death and decreased SMC numbers in the fibrous cap. Numerous miRNAs shown to target
SMCs in atherosclerotic plaques could have therapeutic potential in stabilising vulnerable plaques.
miR-21 overexpression inhibits ROS-induced SMC apoptosis in vitro [98] while local delivery of a
miR-21 mimic into carotid plaques rescued the vulnerable plaque rupture phenotype by increasing
SMC proliferation [99]. Systemic miR-210 overexpression increased the stability of the fibrous cap of
carotid atherosclerotic lesions in Apoe−/− mice by promoting SMC proliferation and survival [100].

Breakdown of ECM components and the dysregulation of processes involved in regulating
collagen structure and content, ECM synthesis and inflammation contribute to fibrous cap thinning
and plaque vulnerability [101]. Enhancement of plaque ECM may improve plaque morphology
and stabilise lesions, reducing the risk of plaque rupture. Overexpression of miR-124-3p reduced
atherosclerotic plaque stability in Apoe−/− mice by decreasing VSMC content and inhibiting type I
and type III collagen expression [102]. Conversely, inhibition of miR-29 promoted the expression of
ECM genes (Col1A and Col3A) and collagen and elastin content, which resulted in reduced lesion size,
increased fibrous cap thickness and reduced necrotic zones [103].

ECM structure is also mediated by a network of regulatory elements including matrix
metalloproteinases (MMPs) [101]. MMPs contribute to plaque stability by catalysing reactions that either
disintegrate or stabilise ECM components. In addition to its effects in regulating ECM content, miR-29b
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also inhibits MMP2 expression [104]. The atherogenic properties of VSMCs are decreased by miR-133b
inhibition, which targets MMP9 [105], a key regulator of collagen degradation that is significantly
upregulated in atherosclerotic plaques [106]. Tissue inhibitors of MMPs (TIMPs) regulate the action
of MMPs and contribute to maintaining ECM content and plaque stabilisation [101]. Inhibition of
miR-181b in Apoe−/− and Ldlr−/− mice promoted the stabilisation of existing plaques by targeting
TIMP3 and VSMC elastin production [107]. miR-362 inhibits A disintegrin and metalloproteinases
with thrombospondin domains (ADAMTS)1, another metalloproteinase that destabilises the ECM by
cleaving proteoglycans and has been implicated in atherosclerosis [108].

5.2. Necrotic Core Formation

Necrotic core formation is facilitated by cellular apoptosis and death of macrophages/foam cells
due to ineffective efferocytosis and an imbalance in healthy versus apoptotic macrophages [109].
Cells undergoing apoptosis secrete signals that facilitate uptake by phagocytic cells. These signals can
be mediated by miRNAs to cause shifts in the proportion of healthy versus apoptotic macrophages
present within the plaque. miR-378a regulates signal regulatory protein (SIRP)α-mediated phagocytosis
and polarisation of macrophages, which contribute to imbalances in efferocytosis in the plaque [110].
In addition to its effects in other cell types, miR-155 was shown to have divergent stage-specific effects
in lesion formation. miR-155 knockout in Apoe−/− mice enhanced lesion formation, increased lesional
macrophage content and promoted macrophage proliferation after 12 weeks of the high-cholesterol diet.
However, inhibition of miR-155 reduced necrotic core formation and the deposition of apoptotic cell
debris, preventing the progression of atherosclerosis between 12 and 24 weeks of the high-cholesterol
diet [111]. These studies highlight the complex and layered regulatory networks of disease progression
that is controlled by miRNAs, highlighting the need to comprehensively explore the role of key
miRNAs and their effects at various stages of disease progression to provide an insight on the best
approach to capitalise on their therapeutic capacity.

6. MiRNAs in Atherosclerotic Plaque Neovascularisation

6.1. Vasa Vasorum Formation and Vascular Remodelling

Although often viewed simplistically as the build-up of cholesterol-rich plaques in the subintimal
compartment of the vessel wall, the pathology of atherosclerosis is in fact transmural. In addition to
the “inside-out” recruitment of circulating lipoproteins and inflammatory cells from the vessel lumen
into plaque, converging lines of evidence point to a parallel “outside-in” pathway to atherogenesis.
This involves early and rapid remodelling of the outer vascular layer, or adventitia, consisting of
expansion of inflammatory cells and permeable microvessels, called vasa vasorum (VV), that infiltrate
and progressively destabilise the growing plaque [112]. VV are a specialised microvasculature that
supply the adventitia and outer media layer of the vessel with oxygen and nutrients under normal
physiologic conditions (Figure 4) [113].

Accumulating evidence shows that changes in VV characteristics are closely associated with
the progression of atherosclerosis [114]. The focal expansion of VV precedes and co-localises with
atherosclerotic lesions, with their density correlating strongly with plaque area [115–118]. VV infiltrate
plaque as immature, leaky microvessels that exacerbate the deposition of pro-inflammatory cells and
particles, while also contributing to plaque haemorrhage [119]. As plaque grows, a hypoxic gradient is
created across the thickened artery wall which further stimulates neoangiogenesis of VV. Given their key
pathogenic roles, the inhibition and stabilisation of VV have emerged as enticing therapeutic objectives
to favourably modify plaque and address the unacceptable burden of atherosclerotic cardiovascular
disease that persists despite current treatments [120]. Accumulating evidence has also revealed
important regulatory roles of miRNAs in the aberrant formation of VV in atherosclerotic arteries [121].
It has been postulated that multiple miRNAs may govern how adventitial progenitor cells normally
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regulate VV development [122,123], while altered miRNA expression may result in abnormal VV
formation and expansion in atherosclerotic arteries [112].
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Figure 4. Disruption of physiological vasa vasorum contributes to plaque formation. Factors such
as diabetes, hypertension and hypercholesteraemia can lead to localised or systemic inflammation
and hypoxia driving atherogenic conditions. Formation of adventitial vasa vasorum (VV) occurs
in response to the metabolic demand of the outer and medial layers of an artery. Under hypoxic
conditions, hypoxia-inducible factor (HIF)-1α and HIF-2α induce vascular endothelial growth factor
(VEGF)A, a proangiogenic mediator. Hypoxic conditions also provide favourable conditions for
fibroblast growth factor (FGF)2, promoting EC growth and stabilising VV. Additionally, inflammation
triggers VV sprouting from the adventitia into the arterial lumen by inducing secretion of several
angiogenic growth factors.

6.2. Vascular-Resident Stem Cell Differentiation and Neovascularisation

Additionally, the VV serve as the vascular niche for vascular-resident stem cells (VSCs), acting as
a stem cell reservoir to supply VSCs, which can differentiate into ECs and VSMCs, into the intima,
contributing to atherosclerotic re-modelling [114]. VSCs have potent angiogenic effects through their
paracrine properties and/or ability to differentiate into ECs or SMCs, thereby contributing to the
growth of the VV within atherosclerotic lesions. Controlled regulation of stem cell differentiation
into cardiovascular lineages cells would dampen the influence of VV neovascularisation in the
progression of atherosclerosis. Several miRNAs have been found to mediate embryonic stem cell (ESC)
differentiation and self-renewal into specific cell lineages, including different vascular, endothelial
and haematopoietic cell types (Figure 5). Numerous miRNAs including miR-21, miR-134, miR-145,
miR-296 and miR-470 promote ESC differentiation by targeting transcription factors that drive stemness
including Nanog, Sox2, Oct4, c-Myc and Klf4 while the miR-290-295 cluster has been shown to inhibit
ESC differentiation [124]. Furthermore, several miRNAs play an important role in the differentiation of
cardiovascular lineage cells including ECs and SMCs.
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Figure 5. Role of miRNAs in regulation and self-renewal of embryonic stem cells and differentiation of
stem/progenitor cells into endothelial and smooth muscle cell lineages. Multiple miRNAs are involved
in regulating ESC differentiation into multipotent stem/progenitor cells, largely by targeting stemness
factors. miR-21, miR-134, miR-145, miR-296 and miR-470 promote ESC differentiation by inhibiting
transcription factors Nanog, Sox2, Oct4, c-Myc and Klf4. In contrast, the miR 290-295 cluster inhibits
progression, termed embryonic stem cell-specific cell cycle-regulating miRNAs. Other key miRNAs
promote cardiovascular lineage differentiation and regulate cell phenotype, including endothelial and
smooth muscle cell commitment.

Multiple miRNAs have been shown to regulate endothelial cell (EC) commitment and vasculogenic
growth, including that of the VV. The importance of miRNAs in vascular development and angiogenesis
was first observed when the enzyme Dicer was inhibited with embryonic lethality observed during early
development due to an underdeveloped vascular system [125,126]. miR-126 is involved in regulating
angiogenic signalling and vessel integrity and is significantly upregulated in vasculogenic progenitors
when compared to undifferentiated ESCs [127]. miR-126 has atheroprotective properties under normal
homeovascular conditions, suppressing the inflammatory cascade and mediating leukocyte adherence
in atherosclerosis by decreasing VCAM-1 expression [128] and inhibiting Sprouty related EVH1 domain
containing 1 (SPRED1) and phosphoinositide-3-kinase regulatory subunit 2 (PIK3R2), inhibitors of
vascular endothelial growth factor (VEGF)A signalling [129]. miR-126−/− mice have a reduced ability
to survive myocardial infarction due to vascular abnormalities and defective angiogenesis [130].
miR-126 is aberrantly expressed under hypoxic conditions, causing an over-abundant formation of
neovessels [131]. Given the hypoxic nature of the atherosclerotic milieu into which the VV expand,
miR-126 upregulation may result in excessive angiogenesis and localised proliferation of unstable
neovessels, promoting the pro-atherogenic response, highlighting the importance of miR-126 in
regulating adaptive and maladaptive angiogenic responses. The miR-17–92 cluster is highly expressed
during developmental vasculogenesis in both embryonic and post-natal cell lineages [132]. Extensive
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studies have established the anti-angiogenic role of miR-92a [133,134], with miR-92a inhibition shown
to enhance angiogenesis and accelerate re-endothelialisation [135]. The miR-31–miR-720 pathway is
critical in EPC activation and downregulation of this pathway contributes to the pathogenesis of CAD.
Overexpression of miR-31 rescued angiogenic and vasculogenic abilities of EPCs derived from patients
with CAD by targeting thromboxane A2 receptor (TBXA2R) and FAT atypical cadherin 4 (FAT4), which
in turn regulates VEGFA directly or indirectly via hypoxia-inducible factor (HIF)-1α [136]. FAT4 in turn
induces the expression of miR-720, which inhibits VASH1, a VEGFA-inducible secreted protein that
inhibits angiogenesis and vascular function by inducing prolyl hydroxylase–mediated degradation of
HIF-1α [136]. Endothelial progenitor cells (EPCs) mediate and promote EC growth. In addition to its
effects on leukocytes and smooth muscle cells, miR-21 levels are strikingly upregulated in EPCs from
CAD patients [137]. Furthermore, miR-21 overexpression was shown to inhibit EPC migration while
miR-21 inhibition restored EPC function [137].

Numerous miRNAs have also been implicated in SMC differentiation. In addition to their role as
modulators of VSMC plasticity, miR-143 and miR-145 are important mediators in the differentiation
of multipotent stem cells into the VSMC phenotype [93]. Dicer knockout of miR-143 and miR-145
proved lethal to mouse embryos due to extensive vessel haemorrhage and thin-walled aortas that
was primarily attributed to decreased VSMC proliferation [138]. Furthermore, fewer progenitor cells
committed towards the VSMC phenotype and a subsequent loss of smooth muscle contractile function
in many tissues. miR-145 and miR-143 cooperatively target a network of transcription factors, including
Klf4 and Elk-1 to promote SMC differentiation and directing smooth muscle fate [93]. miR-1 has
also been shown to regulate ESC/progenitor cell differentiation into VSMCs. miR-1 expression is
upregulated and highly enriched during ESC differentiation to VSMCs, while repression of miR-1
inhibited VSMC phenotype commitment and differentiation [139,140]. miR-1 was shown to inhibit
Klf4, a key transcription factor in the regulation of VSMC proliferation, differentiation, apoptosis and
cell reprogramming [140]. miR-221 and miR-222 are two highly homologous miRNAs enriched in both
ECs and VSMCs [141,142] and are postulated to contribute to VV expansion by acting on progenitor cell
populations seeded in vessel walls. miR-221 and miR-222 have distinct and opposing effects on VSMCs
and ECs, promoting proliferation in VSMCs but initiating EC death pathways and quiescence [141].
miR-221 and miR-222 have been shown to influence the angiogenic capacity of ECs [143] and phenotypic
properties of VSMCs [144]. miR-29a has also been shown to mediate VSMC differentiation from ESCs
by targeting SRF, MEF-2C and myocardin (Myocd), three well-known transcription factors for VSMC
gene regulation [145]. miR-214 regulates VSMC differentiation from ESCs by suppressing Quaking
(QKI), which downregulates the expression of SRF, MEF-2C and Myocd [146].

Collectively, these studies highlight the role of miRNAs in both the regulation of cardiovascular
lineage differentiation and angiogenesis. Under pathophysiological conditions, this may drive the
formation of new vessels, including VV into neointimal lesions. While these studies suggest the
potential targeting of miRNAs in this space, additional research is required to unravel the involvement
of miRNAs in VV growth during atherogenesis.

7. Therapeutic Potential of Targeting MiRNAs to Treat Atherosclerosis

Table 1 provides an overview of the different cell types and cellular processes involved in the
progression of atherosclerosis targeted by the miRNAs summarised in this review. Several miRNAs have
been shown to simultaneously regulate different processes across multiple cell types. This highlights
the therapeutic potential for targeting miRNAs in order to provide a holistic approach for the
prevention of atherosclerosis. For example, miR-21 drives critical stages at the initiation phase of
atherosclerosis including leukocyte polarisation and survival, smooth muscle cell proliferation and
differentiation towards a synthetic phenotype, embryonic stem cell differentiation and endothelial
progenitor cell migration and function. Additionally, miR-34 has been shown to confer protection to
the endothelium against oxidative stress and is also important in macrophage differentiation and foam
cell formation. miR-155 also has the capacity to exert simultaneous effects on multiple properties that
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influence endothelial dysfunction, macrophage differentiation with divergent stage-specific effects in
macrophages within the atherosclerotic lesion. The miR-143/miR-145 cluster are critical modulators of
VSMC maintenance and proliferation and can not only drive the differentiation of multipotent stem
cells towards the VSMC phenotype but are also important in modulating VSMC plasticity, which could
have significant influence on the vessel wall. Furthermore, miRNAs can have distinct and opposing
effects on different cell types, as evidenced by the two highly homologous miRNAs, miR-221 and
miR-222, and their ability to promote VSMC proliferation while concurrently driving EC apoptosis.
Further exploration on the expansive role of these miRNAs as well as other emerging miRNAs will
provide insight on the most effective way to fully capitalise on their properties in a therapeutic manner.

Table 1. Summary of the miRNAs highlighted in this review and their effects on different cell types
and cellular processes involved in the progression of atherosclerosis.

Stage of Disease Cellular Process miRNA Cell Type

Cholesterol homeostasis
and reverse

cholesterol transport

Cholesterol biosynthesis

miR-24
miR-122
miR-185
miR-223
miR-486

Hepatocytes

Cholesterol efflux

miR-10b
miR-20a/b
miR-23a/b
miR-30e

miR-33a/b
miR-92a
miR-101
miR-144
miR-148

miR-302a

Macrophages

Atherosclerotic plaque
initiation and
progression

Inflammation

let-7g
miR-17-3p

miR-31
miR-146a
miR-155

miR-181a-3p/-5p
miR-181b
miR-221
miR-222

Endothelial cells

Oxidative stress

let-7a/b
miR-19b
miR-20a
miR-34
miR-98

miR-142-3p
miR-199a-3p/-5p

miR-200c
miR-221
miR-222
miR-328

Endothelial cells

Modification of
endothelial

barrier integrity
miR-155 Endothelial cells

Senescence let-7g
miR-216a Endothelial cells

Monocyte recruitment miR-21 Monocytes
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Table 1. Cont.

Monocyte to macrophage
differentiation

miR-22
miR-27a/b

miR-33
miR-34a
miR-155

Monocytes

Macrophage polarisation miR-33
miR-155 Macrophages

Foam cell formation

miR-23a-5p
miR-27
miR-34
miR-212
miR-590

miR-758-5p

Macrophages

Vascular smooth muscle
cell proliferation and

differentiation

miR-1
miR-21

miR-143/145
Smooth muscle cells

Atherosclerotic
plaque rupture

Fibrous cap thinning

miR-21
miR-29b

miR-124-3p
miR-133b
miR-181b
miR-362

Smooth muscle cells

Necrotic core formation miR-155
miR-378a Macrophages

Atherosclerotic plaque
neovascularisation

Embryonic stem cell
differentiation

miR-21
miR-134
miR-145

miR-290/295
miR-296
miR-470

Embryonic stem cells

Endothelial cell
commitment and

vasculogenic growth

miR-17-92 cluster
miR-21
miR-31

miR-126
miR-720

Multipotent stem cells

Smooth muscle cell
differentiation

miR-1
miR-29a
miR-143
miR-145
miR-214

miR-221/222

Multipotent stem cells

8. Circulating MiRNAs as Potential Clinical Biomarkers for Atherosclerosis and CVD

Extensive research has revealed that miRNAs are extremely stable and expressed in the peripheral
circulation. miRNAs can be easily obtained and are reliably detected from plasma or serum by
non-invasive methods [147]. Given that miRNAs are differentially regulated at various stages in
the pathophysiology of atherosclerosis in a tissue- and cell-specific manner, this has opened a new
paradigm for their use as diagnostic biomarkers to improve differential clinical diagnosis from
subclinical atherosclerotic disease to acute coronary syndromes. Several studies have explored miRNA
profiles in correlation with atherosclerotic disease burden.

In a human study of advanced coronary atherosclerotic plaques, miR-21, miR-92a and miR-99a
were found to be upregulated in the circulation [148]. Consistent with this, miR-21 is significantly
upregulated in serum levels of patients presenting with clinical atherosclerosis [149]. However,
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only miR-21 levels were upregulated in symptomatic compared to asymptomatic plaques, suggesting
that miR-21 may be a better biomarker that correspondingly reflects symptomatic plaque burden [148].
A recent systematic review of 18 studies identified a common miRNA profile (deregulation of miR-21,
miR-30, miR-126 and miR-221-3p) that is associated with different atherosclerotic disease locations [150].
Specific miRNA patterns were also identified for each territory: miR-21 and miR-29 were found in
carotid atherosclerosis while let-7e, miR-27b, miR-130a and miR-210 were deregulated in lower limb
atherosclerosis [150]. Assessment of downstream cellular functions found that these deregulated miRNAs
are associated with control of angiogenesis, endothelial cell function, inflammation, cholesterol metabolism,
oxidative stress and ECM composition, all of which underpin the pathophysiology of atherosclerosis.
Studies have also reported elevated levels of circulating miR-221 and miR-222 in patients with clinical
atherosclerosis, which were positively correlated with triglyceride and VLDL levels [8,149].

Circulating miRNAs were also altered in response to established CAD. Patients with CAD
had reduced levels of VSMC-enhanced miR-145; EC-enriched miRNAs miR-126, miR-17 and
miR-92a; and miR-155, yet expression of cardiomyocyte-enriched miRNAs miR-133 and miR-208a
was elevated [151]. CAD is associated with a significant decrease of circulating miRNAs that are
preferentially expressed in ECs and VSMCs, whereas prototypic muscle-enriched miRNAs are increased,
which may be caused by an uptake of circulating miRNAs into atherosclerotic plaques or lesions, further
contributing to the neovascularisation and inflammatory progression of the plaque. Other studies
have also reported that circulating miR-19a, miR-29a, miR-30e, miR-145, miR-150, miR-155, miR-181d,
miR-342, miR-378 and miR-484 levels are decreased in patients with stable CAD [152] and has been
associated with subclinical atherosclerosis [152]. CAD severity was found to be inversely associated
with circulating miR-126 levels [153]. Studies in patients with acute myocardial infarction (AMI) have
identified several miRNAs which have the potential to act as predictive biomarkers. Circulating
levels of miR-133 and miR-328 were strikingly increased (11–16 times) in patients with AMI [154].
miR-133 was increased by 12-fold approximately 2 h after AMI onset, typically earlier than most
traditional AMI markers [155,156]. Circulating miR-21-5p and miR-361-5p rapidly increased after the
onset of AMI symptoms, followed by a gradual decline in the following days, mimicking the dynamic
trends seen with plasma cardiac troponin in early phase AMI [157]. miR-499, which is produced
almost exclusively in the heart before entering the circulation [158], is proving to be a promising AMI
diagnostic biomarker [158–160]. Multiple studies investigating patients diagnosed with AMI showed
a significant elevation of plasma miR-499 as early as 1 h after onset of chest pain associated with AMI,
with individuals in other CVD groups displaying non-detectable levels of miR-499 [159]. miR-223
is also known to reliably predict AMI in individuals with ACS, with five-fold elevations in serum
miR-223 levels observed in AMI patients when compared to controls [161].

Studies have also reported that some miRNAs have differential expression patterns depending
on the disease pathology. miR-126 levels are elevated in patients with atrial fibrillation and heart
failure [162], while conversely low levels are reported in patients with angina or AMI [151,163,164],
highlighting a diverse role for miR-126 in the cardiovascular system. Circulating levels of several 14q32
miRNAs (miR-134, miR-328, miR-370, miR-480 and miR-487a/b) also possess diagnostic value for CAD,
AMI and cardiac death, respectively [161,165–167]. In patients with acute ischaemic stroke, increased
levels of miR-487b were found in circulating leukocytes [168]. Other 14q32 miRNAs, including miR-541
and miR-665, have been described in cardiac hypertrophy and heart failure [169,170]. The 14q32
miRNA cluster has established roles in vascular remodelling by possessing both anti-angiogenic and
pro-atherogenic properties, which could underpin the variations in differential expression patterns.
Overall, the profiling of specific circulating miRNAs in atherosclerotic and wider CVD possesses
promising research potential. Additional studies investigating their roles as definitive diagnostic and
prognostic biomarkers in large prospective cohorts are now needed.
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9. Conclusions

There has been significant therapeutic advancement in the treatment of atherosclerosis. However,
it is evident that there remains a gap where novel therapeutic approaches can complement current
therapies such as lipid-lowering drugs (e.g., statins and fibrates) and anti-hypertensive drugs to provide
a holistic approach for treating atherosclerosis to orchestrate the regulation of complex signalling
networks across multiple cell types and different stages of disease progression. Since their discovery
in 2000, there has been significant interest in the potential of miRNAs as both therapeutic targets
and clinical diagnostic biomarkers in multi-faceted diseases including atherosclerosis. In vitro and
pre-clinical studies to date show that numerous miRNAs have the potential to regulate complex cellular
processes across key cardiovascular cell types. We strongly believe that this highlights their clinical
potential as emerging therapeutics that can be customised as personalised treatments to specifically
target the different stages of atherosclerosis progression. Furthermore, targeted modulation of miRNAs
has the capacity to be highly effective for the treatment of atherosclerosis because of their ability to
orchestrate a host of complex factors concurrently across multiple cell types. The field of miRNA
biology has expanded considerably over the last 20 years and will continue to grow rapidly as miRNA
therapeutics enter clinical trials. Furthermore, growing evidence suggest that circulating miRNAs
can provide insight into a patients’ specific atherosclerotic disease stage to better inform clinical
diagnosis. This highlights the significant potential for the use of miRNAs as theranostic targets,
providing an attractive therapeutic approach to facilitate interventions targeted at patient-specific
stages of atherosclerosis and the future management of its cardiovascular complications.
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