
Research Article
Fractal Dimensions of In Vitro Tumor Cell Proliferation

George I. Lambrou1 and Apostolos Zaravinos2

1 1st Department of Pediatrics, University of Athens, Choremeio Research Laboratory, Thivon & Levadeias, 11527 Athens, Greece
2Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine,
Karolinska Institute, 171 77 Stockholm, Sweden

Correspondence should be addressed to George I. Lambrou; glamprou@med.uoa.gr

Received 23 August 2014; Accepted 19 November 2014

Academic Editor: Vassileios Zoumpourlis

Copyright © 2015 G. I. Lambrou and A. Zaravinos. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Biological systems are characterized by their potential for dynamic adaptation.One of the challenges for systems biology approaches
is their contribution towards the understanding of the dynamics of a growing cell population. Conceptualizing these dynamics
in tumor models could help us understand the steps leading to the initiation of the disease and its progression. In vitro models
are useful in answering this question by providing information over the spatiotemporal nature of such dynamics. In the present
work, we used physical quantities such as growth rate, velocity, and acceleration for the cellular proliferation and identified the
fractal structures in tumor cell proliferation dynamics. We provide evidence that the rate of cellular proliferation is of nonlinear
nature and exhibits oscillatory behavior. We also calculated the fractal dimensions of our cellular system. Our results show that
the temporal transitions from one state to the other also follow nonlinear dynamics. Furthermore, we calculated self-similarity in
cellular proliferation, providing the basis for further investigation in this topic. Such systems biology approaches are very useful in
understanding the nature of cellular proliferation and growth. From a clinical point of view, our results may be applicable not only
to primary tumors but also to tumor metastases.

1. Introduction

Population dynamics and population genetics provide a well-
developed mathematical theory of evolution [1, 2] and many
of these models and techniques have been applied to cancer.
Cells growing under normal conditions can manifest prolif-
eration dynamics of nonlinear nature [3, 4]. This nonlinear
behavior has also been demonstrated in cells being under the
influence of drugs or other environmental factors [5]. Any
further knowledge regarding the mechanisms underlying
cellular proliferation is of major importance and even the
smallest indication towards a certain direction could enable
us to discover novel differences in the mechanisms that
distinguish healthy from diseased cells.

Genes manifest several patterns of differential expression
in cancer [6, 7]. Gene expression is highly correlated to the
chromosome level and gene expression data can be simulated
using polynomial functions [8–10]. Gene expression has also
been suggested to take place discretely and not continuously
(i.e., in quanta) [11, 12]. It has also been reported to follow

oscillatory patterns, thus complicating things even more
regarding the rate of cellular proliferation, be it either growth
acceleration or deceleration [13, 14]. In terms of growth rate,
this means that cells cannot simply transit from one state to
the other. If the hypothesis of oscillatory modulation of gene
expression is correct, a much more complicated regulatory
pattern should be required by a cell in order to be able to
change its state, as a result of environmental stimuli. Biologi-
cal systems are dynamic systems and it is critical to know
how to determine a cell’s present state from its previous
one. This knowledge can have a vast number of applications,
from cancer to insect population control. However, discover-
ing the laws that underlie biological systems is a tedious work.
On the one hand it is not easy to model such systems due
to their high complexity and, on the other hand, biological
dynamical systems possess significant capabilities of adap-
tation. We tested this hypothesis, adding specific modifica-
tions to our previously published experimental setup [15].
Although several studies have dealt with the complex
dynamic behavior of animal populations [16–19], little is
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Figure 1: Graphical representation of time-series experiments for the A172 (glioblastoma) cells. Factors presented include cell proliferation
(a), rate of growth (𝑁

𝑡+1
/𝑁
𝑡
) (b), the speed of growth (𝑑𝑁/𝑑𝑡) (c), and the acceleration of proliferation (𝑑2𝑁/𝑑𝑡2) (d). TINC: total initial

number of cells.

known regarding the dynamics of tumor cell proliferation
[3] and even less is known regarding the state of proliferation
dynamics until cells reach an adequate number for the tumor
to be diagnosed.

Data regarding the dynamic nature of a tumor can only
be collected after it has been diagnosed. Usually, this is
too late for the patient, since all the critical steps for the
progression of the tumor have already taken place.Therefore,
in vitro systems provide an excellent opportunity to study
effects that are impossible to be measured in vivo. Most
importantly, in vitro systems can be studied in the long
term.This is required in order to reach conclusions regarding
nonlinearity and chaotic behavior of a cellular system. Since
primary cell cultures are short-lived when untransformed
(15–20 days), the only way to apply such measurements is
to use already established cell lines. For this reason, we
developed a modeling approach in order to simulate the in
vivo conditions, as best as possible.Thenature of proliferation
dynamics can give insight into the way that not only cells
proliferate, but they also differentiate.

In the present study we used systems biology approaches
and focused on the dynamics of in vitro cellular systems,

using three central nervous system (CNS) tumor and a T-cell
acute lymphoblastic leukemia (T-ALL) cell lines. These cells
provide an excellent substrate for modeling proliferation
dynamics, as previously shown [15]. The questions that we
posed were as follows. If certain physical measures, including
cellular proliferation, are observed at the phenotypical level
of the cells, how can they be translated at the molecular or
genomic level? If the proliferation rate of a cellular population
increases, does this mean that there are genes being tran-
scribed faster than others and/or at a faster rate than usual?
We aimed to test the hypothesis that cell proliferation is of
nonlinear nature and manifests self-similarity patterns with
its subsequent applications. Our results highlight the fact that
tumor cells manifest self-similarities in their proliferation
potential. This implies that the trajectory of a cellular pop-
ulation can be predicted and it could be a factor determining
metastasis.

2. Materials and Methods

2.1. Cell Cultures. TheTE671 (cerebellar rhabdomyosarcoma)
[20–23], A172 (glioblastoma) [24], 1321N1 (astrocytoma)
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Figure 2: Graphical representation of time-series experiments for the 1321N1 (astrocytoma) cells. Factors presented include cell proliferation
(a), rate of growth (𝑁

𝑡+1
/𝑁
𝑡
) (b), the speed of growth (𝑑𝑁/𝑑𝑡) (c), and the acceleration of proliferation (𝑑2𝑁/𝑑𝑡2) (d). TINC: total initial

number of cells.

[25, 26], andCCRF-CEM(T-ALL) [27–31] cell lineswere used
as the model, obtained from the European Collection of Cell
Cultures (ECACC, UK).

2.2. Cell Cultures Conditions. Cells were grown in DMEM
and RPMI-1640 medium, 15% FBS, and 0.1x strepto-
mycin/penicillin at 37∘C, 5%CO

2
, and∼100% humidity. Cells

were cultured in 12-well plates and 75 cm2 flasks in total
medium volume of 2mL and 25mL, respectively. Cells were
seeded at initial concentrations of 20 cells/𝜇L∼200 cells/𝜇L
for the CCRFCEM cells and 30, 60, 120, 240, 480, and 960
total cells populations were fed at regular intervals thereafter.
Medium changes took place by centrifugation at 1000 rpm
for 10min, the supernatant was discarded, and the remaining
cells were re-diluted in 25mL media and were allowed to
grow. Measurements were taken every 12 hours for a total
of >500 hours. Cells were passaged at regular intervals
by removing old media and adding fresh. Cells were not
trypsinized and were allowed to grow up to the point of
reaching confluence of 80–90%.This practically removed the
dead cells from the system and the remaining cells were
allowed to grow again in fresh medium. This allowed mod-
elling of the growth of a tumor (CNS tumors or leukemia)

in a space with finite capacity. Removal of cells modelled the
circulation that removes dead cells from a particular position
in the organism.

2.3. Measurements, Experimental Setup, and Model. The
CCRF-CEM cells grow in suspension and can therefore
provide an excellent model of avascular growth. In addition,
the following assumptions were considered for cellular pro-
liferation: (a) extracellular signal transduction takes place
autocrinaly; (b) the cellular distribution at the time of seeding
and thereafter is considered to be uniform; and (c) nutrient
supply was considered to be stable since cells were fed at
regular time intervals. All measurements were performed in
triplicate. Wolfrom et al. counted the cell population at the
end of a time period varying from 5 to 7 days [3]. At the end of
this period, cells were trypsinized,measured, and then seeded
at an initial concentration of 105 cells per flask. In our study,
prior to every measurement, flasks were gently shaken in
order to assure that the sample taken consisted of a represen-
tative, equally distributed population size. For the cellular
growth dynamics study, cells were assayed at least every 48 h
and the media renewed every 3–5 days. For the measure-
ments, 200𝜇L from each flask was measured on an automatic
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Figure 3: Graphical representation of time-series experiments for the TE671 (cerebellar rhabdomyosarcoma) cells. Factors presented include
cell proliferation (a), rate of growth (𝑁

𝑡+1
/𝑁
𝑡
) (b), the speed of growth (𝑑𝑁/𝑑𝑡) (c), and the acceleration of proliferation (𝑑2𝑁/𝑑𝑡2) (d). TINC:

total initial number of cells.
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Figure 4:Graphical representation of time-series experiments for theCCRCEM(T-cell acute lymphoblastic leukemia) cells. Factors presented
include cell proliferation for 20 cells initial population (a) and 200 cells initial population (b).
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Figure 5: Graphical representation of time-series experiments for the A172 (glioblastoma) cells. Factors presented include the cell
proliferation measurements as photometric absorption for different initial cells populations: 30 cells (a), 60 cells (b), 120 cells (c), 240 cells
(d), 480 cells (e), and 960 cells (f).

hematology analyzer (CellTaq-𝛼, Nihon Kohden). In addi-
tion, for the adherent cells, each plate was supplemented with
10% alamarBlue, a nontoxic dye that turns from blue to red
due to its oxidation in the mitochondria.

2.4. Mathematical Computations. We used a one-dimen-
sional representation based on the assumption that the pre-

sent state of our system is dependent upon the previous
one. So, our system is better described by the logistic equa-
tion, as

𝑓 (𝑥
𝑛+1
) = 𝑘𝑥

𝑛
(1 − 𝑥

𝑛
) (1)

and with respect to time
𝑥̇
𝑛
= 𝑘𝑥
𝑛
(1 − 𝑥

𝑛
) (2)
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Figure 6: Graphical representation of time-series experiments for the A172 (glioblastoma) cells. Factors presented include the 𝑑𝑁/𝑑𝑡 for
different initial cells populations: 30 cells (a), 60 cells (b), 120 cells (c), 240 cells (d), 480 cells (e), and 960 cells (f).

(the logistic differential equation). Both equations belong to
the family of logistic equations of the form

𝑓 (𝑥) = 𝑘𝑥 (1 − 𝑥) , (3)

where 𝑘 is the proliferation constant. For the analysis of the
data we utilized phase-space and return maps and used the
geometrical representation, as previously proposed [3]. To

find the fractal dimensions of the measured variables, we
calculated two fractal variables: 𝑁 and 𝑅. 𝑁 represents the
number of “squares” needed for a fractal shape to be com-
pleted and their respective “square size”𝑅. By definition, if the
first derivative of 𝑑 ln𝑁/𝑑 ln𝑅 remains constant for a space
of 𝑅, this is the fractal dimension of the shape, in the present
case of the cell proliferation trajectory. All mathematical
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Figure 7: Graphical representation of time-series experiments for the A172 (glioblastoma) cells. Factors presented include the 𝑑2𝑁/𝑑𝑡2 for
different initial cells populations: 30 cells (a), 60 cells (b), 120 cells (c), 240 cells (d), 480 cells (e), and 960 cells (f).

computations were performed in the MATLAB computing
environment.

3. Results

We measured the proliferation of the three CNS tumor cells
and the CCRF-CEM cells in vitro. Due to the large amount

of data, the proliferation results are presented in three-
dimensional graphs. The time-series proliferation results in
the A172, 1321N1, and TE671 cells revealed that proliferation
follows an oscillatory pattern (Figures 1–3).The rate of growth
[𝑁(𝑡+1)/𝑁𝑡] appeared tomanifest themost stable oscillatory
pattern, among all measurements that we performed (Figures
1(b), 2(b), and 3(b)). In order to resolve more the patterns of
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Figure 8: Graphical representation of time-series experiments for the CCRFCEM (T-cell acute lymphoblastic leukemia) cells. Factors
presented include the 𝑑𝑁/𝑑𝑡 for different initial cells populations: 20 cells (a), 200 cells (b), the 𝑑2𝑁/𝑑𝑡2 for the same populations 20 cells (c),
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oscillation, we present the proliferative pattern for the CCRF-
CEM cells, which resembles that of adherent cells (Figure 4).
As a representative resolution, the proliferation dynamics of
the A172 cells (Figure 5), characteristic for all adherent cell
lines, clearly revealed an oscillatory pattern in cellular growth
velocity (Figure 6) and acceleration (Figure 7), respectively. It
appears that cells do not proliferate in a linear pattern; rather
they oscillatewhile adapting to the environmental conditions.
Apart from testing this in adherent cells, we also applied our
question to cells growing in suspension. Of major interest,
these cells also exhibited similar dynamics (Figure 8). There-
fore, our results support that different cell types manifest
similar proliferation patterns, suggesting that a similar self-
similarity pattern exists among different cellular types. In
order to investigate self-similarity, it was necessary to show
that cell proliferation factors follow some form of repetition.
In systems biology, when the first derivative 𝑑 ln𝑁/𝑑 ln𝑅
remains constant in a space 𝑅, it is a hint of self-similarity.
Interestingly, the rate of proliferation was equal to 1 for all
cell types, while for the growth velocity and acceleration for
the A172 cells it was equal to 0.80888 (Figure 9). In order to
conceive the meaning of those numbers, two shapes with the

same self-similarity measures are mentioned: the Cantor sets
(𝑑 ln𝑁/𝑑 ln𝑅 = 1) and theApollonian Gasket (self-similarity
value = 0.8). Our results confirmed two interesting points: (1)
cell growth factors follow oscillatory dynamics (of nonlinear
nature) and (2) different cell types followed similar dynamics
of growth, irrespective of whether they grow as adherent or
suspension cells, hinting towards a common mechanism of
cellular proliferation.

4. Discussion

In the present work we identified nonlinear factors of cellular
proliferation, in three CNS tumor cell lines and one leukemic
cell line. Since our results show that cell growth is of nonlinear
nature, we propose an initial theoretical framework for the
analysis of such phenomena and for future considerations.
This knowledge could be useful in treating tumors, since
by understanding the mechanisms of cellular proliferation
we could interpret the factors that determine the progres-
sion of the disease and/or metastasis. Biological systems
are extremely complicated and manifest non-linear/chaotic
phenomena. Among others [15, 32], we strongly support that
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Figure 9: Graphical representation of self-similarity calculations for the 1321N1 cells with respect to rate of proliferation (a), for the A172
cells with respect to rate of proliferation (b), for the TE671 cells with respect to the rate of proliferation (c), for the A172 cells with respect to
the velocity of cell growth (d), for the CCRFCEM cells with respect to the rate of proliferation (e), and for the A172 cells with respect to the
acceleration of cell growth.

the maturity of biological sciences can be achieved through
their integrationwith other disciplines, such as those ofmath-
ematics and physics. This integration will enable the research
community to give generalized models for phenomena such
as the non-linear nature of cellular growth.

We have previously described the chaotic patterns of the
leukemic cell line that we used [15]. These patterns were
shown by the orbits/trajectories of proliferation and the

Lyapunov exponents (one of the criteria of chaos existence).
Such an example is the understanding of cellular proliferation
in which we attempted to contribute with our hints. Here,
we show that that different cell types follow similar dynamics
with respect to proliferation, however their dynamics follow
different trajectories.This difference arises from the probable
reason that it is possible that all trajectories can be described
by the same function, yet with different constants. Another
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question arising is that when cellular populations are mea-
sured with respect to time, they would give natural numbers
corresponding to the exact or approximate number of cells
present in the system. At the same time, all other physical
variables calculated return oscillations. The question posed,
concerns the role of gene expression in controlling cellular
proliferation. A possible explanation is that cells follow oscil-
latory dynamics exactly the same way gene expression does
[11].

Another issue in tumor proliferation dynamics that re-
mains unanswered is the conditions at the time of the disease
onset. The only knowledge we have thus far, concerning tu-
mors, originates from the time of clinical presentation, at
diagnosis. Practically, we have complete lack of knowledge
from the time of tumor initiation to the time of tumor presen-
tation. In that sense, the understanding of the proliferation
dynamics of tumor cells is critical since it could provide
insight into the understanding of tumor initiation. Supposing
we could describe the dynamics of cellular proliferation in a
formal, mathematical form, we would be able not only to pre-
dict the time zero (the starting point) but also to understand
themechanics of this progression. Additionally, if we suppose
that such a formal description could be applied to several
tumor types, we could conclude to a general rule of tumor
proliferation. To the best of our knowledge, there are no pre-
vious works dealing with this subject and posing these ques-
tions.

The implications of the understanding of proliferation
dynamics are immense. To date, we do not have a sufficient
theory that could allow us understand and predict cellular
growth. This is easy to prove if we ask a simple question:
given the population of cells today can we predict the popula-
tion after 24 hours? The answer is no, since the only way we
can do it is by approximation and this can be done only statis-
tically. In other words, if we could predict the future cellular
population based on the past population, this could lead us
to the starting point of cellular proliferation, information that
would be of extreme importance in cancer biology.

Concluding, in the present work we aimed to set a frame-
work for the detection of global patterns in cellular prolifera-
tion. Considering the fact that our knowledge in tumor bio-
logy comes only from the clinical presentation of the disease,
the discovery of global models of tumor progression and pro-
liferation could provide more insight in tumor biology and
be used for therapeutic or prognostic purposes. Future work
should focus on the investigation of the rates of cellular death
in the same proliferation models and, most importantly,
expand this model to gene expression for the same prolifera-
tion models, thus moving from phenotype to the genotype.
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ministic chaos in aperiodic oscillations of proliferative activity
in long-term cultured Fao hepatoma cells,” Journal of Cell Sci-
ence, vol. 113, no. 6, pp. 1069–1074, 2000.

[4] M. Laurent, J. Deschatrette, and C. M. Wolfrom, “Unmasking
chaotic attributes in time series of living cell populations,” PLoS
ONE, vol. 5, no. 2, Article ID e9346, 2010.

[5] S. Guerroui, J. Deschatrette, and C. Wolfrom, “Prolonged per-
turbation of the oscillations of hepatoma Fao cell proliferation
by a single small dose of methotrexate,” Pathologie Biologie, vol.
53, no. 5, pp. 290–294, 2005.

[6] A. Zaravinos, G. I. Lambrou, I. Boulalas, D. Delakas, and D. A.
Spandidos, “Identification of common differentially expressed
genes in urinary bladder cancer,”PLoSONE, vol. 6, no. 4, Article
ID e18135, 2011.

[7] A. Zaravinos, G. I. Lambrou, D. Volanis, D. Delakas, and D. A.
Spandidos, “Spotlight on differentially expressed genes in uri-
nary bladder cancer,” PLoS ONE, vol. 6, no. 4, Article ID e18255,
2011.

[8] G. I. Lambrou, M. Adamaki, D. Delakas, D. A. Spandidos, P.
Vlahopoulos, and A. Zaravinos, “Gene expression is highly
correlated on the chromosome level in urinary bladder cancer,”
Cell Cycle, vol. 12, no. 10, pp. 1544–1559, 2013.

[9] A. Zaravinos, G. Lambrou, I. Boulalas, D. Volanis, D. Delakas,
and D. Spandidos, “UP-01.018 linear correlations in chromo-
somal-based gene expression in urinary bladder cancer,” Urol-
ogy, vol. 78, supplement 3, p. S190, 2011.

[10] B. A. Cohen, R. D. Mitra, J. D. Hughes, and G. M. Church,
“A computational analysis of whole-genome expression data
reveals chromosomal domains of gene expression,”Nature Gen-
etics, vol. 26, no. 2, pp. 183–186, 2000.

[11] J. C. Mar and J. Quackenbush, “Decomposition of gene expres-
sion state space trajectories,” PLoS Computational Biology, vol.
5, no. 12, Article ID e1000626, 10 pages, 2009.

[12] J. C. Mar, R. Rubio, and J. Quackenbush, “Inferring steady state
single-cell gene expression distributions from analysis of meso-
scopic samples,” Genome Biology, vol. 7, article R119, 2006.

[13] J. R. Chabot, J. M. Pedraza, P. Luitel, and A. van Oudenaar-
den, “Stochastic gene expression out-of-steady-state in the cya-
nobacterial circadian clock,”Nature, vol. 450, no. 7173, pp. 1249–
1252, 2007.

[14] T. Degenhardt, K. N. Rybakova, A. Tomaszewska et al., “Popu-
lation-level transcription cycles derive from stochastic timing of
single-cell transcription,” Cell, vol. 138, no. 3, pp. 489–501, 2009.

[15] G. I. Lambrou, A. Zaravinos, M. Adamaki, D. A. Spandidos,
F. Tzortzatou-Stathopoulou, and S. Vlachopoulos, “Pathway
simulations in common oncogenic drivers of leukemic and
rhabdomyosarcoma cells: a systems biology approach,” Interna-
tional Journal of Oncology, vol. 40, no. 5, pp. 1365–1390, 2012.

[16] R.M.May, “Simplemathematicalmodels with very complicated
dynamics,” Nature, vol. 261, no. 5560, pp. 459–467, 1976.

[17] R. M.May, “Biological populations with nonoverlapping gener-
ations: stable points, stable cycles, and chaos,” Science, vol. 186,
no. 4164, pp. 645–647, 1974.

[18] M. C. Mackey and L. Glass, “Oscillation and chaos in physio-
logical control systems,” Science, vol. 197, no. 4300, pp. 287–289,
1977.



Journal of Oncology 11

[19] P.-C. Romond, M. Rustici, D. Gonze, and A. Goldbeter, “Alter-
nating oscillations and chaos in a model of two coupled bio-
chemical oscillators driving successive phases of the cell cycle,”
Annals of the New York Academy of Sciences, vol. 879, pp. 180–
193, 1999.

[20] R. M. McAllister, H. Isaacs, R. Rongey et al., “Establishment
of a human medulloblastoma cell line,” International Journal of
Cancer, vol. 20, no. 2, pp. 206–212, 1977.

[21] M. R. Stratton, J. Darling, G. J. Pilkington, P. L. Lantos, B. R.
Reeves, and C. S. Cooper, “Characterization of the human cell
line TE671,” Carcinogenesis, vol. 10, no. 5, pp. 899–905, 1989.

[22] T. R. Chen, C. Dorotinsky, M. Macy, and R. Hay, “Cell identity
resolved,” Nature, vol. 340, no. 6229, p. 106, 1989.

[23] P. J. Syapin, P. M. Salvaterra, and J. K. Engelhardt, “Neuronal-
like features of TE671 cells: presence of a functional nicotinic
cholinergic receptor,” Brain Research, vol. 231, no. 2, pp. 365–
377, 1982.

[24] O. I. Olopade, R. B. Jenkins, D. T. Ransom et al., “Molecular ana-
lysis of deletions of the short arm of chromosome 9 in human
gliomas,” Cancer Research, vol. 52, no. 9, pp. 2523–2529, 1992.

[25] L. C. Showe,M. Ballantine, K.Nishikura, J. Erikson,H. Kaji, and
C. M. Croce, “Cloning and sequencing of a c-myc oncogene in
a Burkitt’s lymphoma cell line that is translocated to a germ line
alpha switch region,”Molecular and Cellular Biology, vol. 5, no.
3, pp. 501–509, 1985.

[26] K. Bhatia, W. Goldschmidts, M. Gutierrez, G. Gaidano, R.
Dalla-Favera, and I. Magrath, “Hemi- or homozygosity: a
requirement for some but not other p53 mutant proteins to
accumulate and exert a pathogenetic effect,” FASEB Journal, vol.
7, no. 10, pp. 951–956, 1993.

[27] L. Miranda, J. Wolf, S. Pichuantes, R. Duke, and A. Pranzusoff,
“Isolation of the human PC6 gene encoding the putative host
protease for HIV-1 gp160 processing in CD4+ T lymphocytes,”
Proceedings of the National Academy of Sciences of the United
States of America, vol. 93, no. 15, pp. 7695–7700, 1996.

[28] C. Naujokat, O. Sezer, H. Zinke, A. Leclere, S. Hauptmann, and
K. Possinger, “Proteasome inhibitors induce caspase-dependent
apoptosis and accumulation of p21(WAF1/Cip1) in human
immature leukemic cells,” European Journal of Haematology,
vol. 65, no. 4, pp. 221–236, 2000.

[29] G. E. Foley, H. Lazarus, S. Farber, B. G. Uzman, B. A. Boone, and
R. E. McCarthy, “Continuous culture of human lymphoblasts
from peripheral blood of a child with acute leukemia,” Cancer,
vol. 18, pp. 522–529, 1965.

[30] B. G. Uzman, G. E. Foley, S. Farber, and H. Lazarus, “Morpho-
logic variations in human leukemic lymphoblasts (CCRF-CEM
cells) after long-term culture and exposure to chemotherapeutic
agents. A study with the electron microscope,” Cancer, vol. 19,
no. 11, pp. 1725–1742, 1966.

[31] P. A. Sandstrom and T. M. Buttke, “Autocrine production of
extracellular catalase prevents apoptosis of the human CEM
T-cell line in serum-free medium,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 90, no.
10, pp. 4708–4712, 1993.

[32] G. I. Lambrou, A. Chatziioannou, S. Vlahopoulos, M. Mos-
chovi, and G. P. Chrousos, “Evidence for deterministic chaos in
aperiodic oscillations of acute lymphoblastic leukemia cells in
long-term culture,” Journal of ChaoticModelling and Simulation,
vol. 1, no. 1, pp. 119–126, 2011.


