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Abstract

Background: A microRNA (miRNA) collection on the imprinted 14g32 MEG3 region has been associated with outcome
in osteosarcoma. We assessed the clinical utility of this miRNA set and their association with methylation status.

Methods: We integrated coding and non-coding RNA data from three independent annotated clinical osteosarcoma
cohorts (n =65, n=27, and n=25) and miRNA and methylation data from one in vitro (19 cell lines) and one clinical
(NCI Therapeutically Applicable Research to Generate Effective Treatments (TARGET) osteosarcoma dataset, n = 80)
dataset. We used time-dependent receiver operating characteristic (tdROC) analysis to evaluate the clinical value of
candidate miRNA profiles and machine learning approaches to compare the coding and non-coding transcriptional
programs of high- and low-risk osteosarcoma tumors and high- versus low-aggressiveness cell lines. In the cell line and
TARGET datasets, we also studied the methylation patterns of the MEG3 imprinting control region on 14932 and their
association with miRNA expression and tumor aggressiveness.

Results: In the tdROC analysis, miRNA sets on 14g32 showed strong discriminatory power for recurrence and survival
in the three clinical datasets. High- or low-risk tumor classification was robust to using different microRNA sets or
classification methods. Machine learning approaches showed that genome-wide miRNA profiles and miRNA regulatory
networks were quite different between the two outcome groups and mRNA profiles categorized the samples in a
manner concordant with the miRNAs, suggesting potential molecular subtypes. Further, miRNA expression patterns
were reproducible in comparing high-aggressiveness versus low-aggressiveness cell lines. Methylation patterns in the
MEG3 differentially methylated region (DMR) also distinguished high-aggressiveness from low-aggressiveness cell lines
and were associated with expression of several 1432 miRNAs in both the cell lines and the large TARGET clinical
dataset. Within the limits of available CpG array coverage, we observed a potential methylation-sensitive regulation of
the non-coding RNA cluster by CTCF, a known enhancer-blocking factor.

(Continued on next page)

* Correspondence: dspentzos@mgh.harvard.edu

'Center for Sarcoma and Connective Tissue Oncology, Department of
Orthopedics, Massachusetts General Hospital, Harvard Medical School,
Boston, MA, USA

“Hematology-Oncology, Cancer Center, Beth Israel Deaconess Medical
Center, Harvard Medical School, Boston, MA, USA

Full list of author information is available at the end of the article

- © The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
() B|°Med Central International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s13045-017-0465-4&domain=pdf
mailto:dspentzos@mgh.harvard.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Hill et al. Journal of Hematology & Oncology (2017) 10:107

Page 2 of 22

(Continued from previous page)

Conclusions: Loss of imprinting/methylation changes in the 14932 non-coding region defines reproducible previously
unrecognized osteosarcoma subtypes with distinct transcriptional programs and biologic and clinical behavior. Future

studies will define the precise relationship between 14932 imprinting, non-coding RNA expression, genomic enhancer
binding, and tumor aggressiveness, with possible therapeutic implications for both early- and advanced-stage patients.
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Background

Osteosarcoma is a bone malignancy primarily affecting
adolescents and young adults, which is characterized by
substantial clinical heterogeneity. Although patients with
optimal neoadjuvant chemotherapy response (>90% ne-
crosis) have good prognosis, those with lower levels of
tumor necrosis have more heterogeneous outcomes [1, 2].
Stratification of patients using pathologic necrosis as the
only prognostic stratification factor has not led to im-
proved outcomes in adjuvant clinical trials [3—5]. Micro-
RNAs (miRNAs) have emerged as novel candidate
biomarkers as well as potential modulators of tumor be-
havior. We recently described miRNA expression models
for recurrence and overall survival from formalin-fixed-
paraffin-embedded (FFPE) biopsy specimens that confer
strong prognostic discrimination independent of chemo-
therapy response [6]. The majority of these prognostic
miRNAs are located on the 14q32 locus, one of the few
genomic regions that are imprinted in normal cells, which
is thought to be critical in tissue development via a tightly
controlled, allele-specific DNA methylation effect on gene
expression. In addition, this locus contains a large cluster
of non-coding elements, both miRNAs and other small
nucleolar RNAs (snoRNAs) and long non-coding RNAs
[7, 8]. In this study, we provide evidence for the clinical
utility of 14q32 miRNAs as individualized prognostic bio-
markers in osteosarcoma. Additionally, we show that there
are substantial global transcriptional (miRNA and messen-
ger RNA (mRNA)) changes across clinical risk groups,
and we find in vitro and clinical evidence that differential
methylation in the 14q32 non-coding cluster region may
be underlying the miRNA expression changes and differ-
ent tumor aggressiveness phenotypes. Our findings sug-
gest that the non-coding 14q32 cluster contains a large
number of useful clinically relevant biomarkers and is a
locus of substantial genomic and epigenetic alterations
that give rise to novel subtypes of osteosarcoma with
distinct clinical, molecular, and biological context and
therapeutic implications.

Results

14932 miRNAs accurately predict individual patient
outcome

While miRNA profiles were prognostic of outcome in
recent studies, the precise clinical utility of miRNAs

located in the 14q32 region for individualized patient
outcome prediction has not yet been determined. We
used two previously published genomic datasets with
outcome annotation (called “Boston” and “Utah” data-
sets) and studied the clinical prognostic utility of the
14932 miRNAs via the time-dependent receiver operator
characteristic (tdROC) curve method. A summary table
for the two datasets, the details of which have been pre-
viously reported [6, 9], is provided in Additional file 1.
In order to minimize overfitting that is frequently associ-
ated with the construction of complex multivariate
models, we used the simple, yet robust “signed average”
approach. First, we generated a tdROC curve based on
the signed average of the top 5 prognostic miRNAs res-
iding at the 14q32 locus, which were previously identi-
fied in the Boston dataset [6] (and were able to be
mapped on the Agilent platform used in the Utah data-
set). These were miR-495, miR-329, miR-487b, miR-410,
and miR-656, and the resulting tdROC curve was highly
discriminatory for recurrence at 120 months (area under
the curve (AUC) = 0.743; Fig. 1a). Then, we mapped this
five-miRNA profile on the Agilent array and assessed its
performance in the Utah cohort again using the signed
average method. In this analysis, the prognostic model
was fully frozen (selected miRNA features and signs were
predefined in the Boston cohort) and applied to the Utah
cohort, and we found that the 5-miRNA profile main-
tained a very strong discriminatory power for overall sur-
vival at 60 months (AUC = 0.723, permutation p = 0.03;
Fig. 2a). The 60-month endpoint was chosen due to the
much shorter follow-up in the Utah cohort.

Given the rich miRNA content of the 14q32 chromo-
somal region, we were interested to test if the power for
prognostic discrimination extended beyond the top 5
miRNA prognostic markers. Thus, we extended this ana-
lysis to a group of 18 miRNAs on the same locus that
were part of a larger prognostic profile (that included
the top 5) in the previous study and found that that they
still accurately predicted an individual patient’s risk to recur
in both the Boston and Utah cohorts (Figs. 1b and 2b).
Then, we tested all 62 miRNAs that are located on 14q32,
and we found that the collection of these miRNAs offered
good discriminatory capacity as well in the Boston cohort
(Fig. 1c). We could not perform this analysis in the Utah
cohort due to significant differences in the probe content
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Fig. 1 Time-dependent ROC analyses using various sets of 14932 miRNA markers in the Boston cohort. a Signed averaged expression of top 5
miRNA markers (miR-495, miR-329, miR-487b, miR-410, miR-656). b Signed averaged expression of 18 miRNA markers from a previously published
18-miRNA signature. ¢ Signed averaged expression of all miRNAs on 14932

between miRNA DASL (cDNA-mediated annealing, selec-
tion, extension, and ligation) and Agilent miRNA arrays,
such that a significant subset of the total group of 14q32
miRNAs could not be mapped on the arrays from the Utah
cohort. These results demonstrate that significant prognos-
tic power resides on the entire 14q32 non-coding region,
and miRNA subsets from this locus can be used for very
accurate prognostic discrimination, using a simple method
that minimizes model overfitting.

Model streamlining and additional validation

As a prelude for future clinical optimization, we also
performed multivariate modeling using penalized Cox
regression and found a possible modest gain in accuracy
with potential use of only three mRNA markers (AUC =
0.891, permutation p<0.01, and AUC =0.806, p =0.02,

for the two datasets, respectively; Fig. 2c). We then tested
the 3-miRNA profile on another, third dataset, which be-
came recently available (called the “Texas” dataset [10])
and had not been used before in any of our analyses (Add-
itional file 1). After mapping the profile to the Tagman
qRTPCR assay used in the Texas dataset, we performed
penalized Cox regression, which strongly supported the
reproducibility of the 3-miRNA model (AUC = 0.788, per-
mutation p = 0.04; Fig. 3a). In order to further control for
any residual amount of overfitting for the 3-miRNA
model, we also performed the same analysis using 20 ran-
domly generated lists of 3 miRNAs from the global Taq-
man assay, and none of these randomly generated models
performed as well as the candidate 3-miRNA model. We
then extended our analysis to the entire group of prognos-
tic miRNAs previously identified in the Boston dataset.
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Fig. 2 Time-dependent ROC analyses using various sets of 14932 miRNAs in the Utah cohort. a Signed averaged expression of top 5 miRNA
markers. b Signed averaged expression of 14 miRNAs mapped to the Agilent platform from the previously published 18 miRNA signature.
c Penalized Cox regression model using three of the top 3 miRNA markers
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Fig. 3 Prognostic analysis using 14932 miRNAs in the Texas dataset. a Time-dependent ROC analysis using the candidate top 3 miRNA markers in
a penalized Cox regression model in the Texas dataset. b Kaplan-Meier analysis using two patient clusters generated by unsupervised hierarchical
clustering using 23 of all previously defined 27 prognostic 1432 miRNAs that were available on the TagMan gRTPCR assay

Using 23 of those 27 miRNAs that were available on  (the only one for which details of postoperative alterna-
the Tagman platform, we performed unsupervised hi- tive chemotherapy regimens were available), we con-
erarchal clustering of the samples in the Texas data-  structed multivariate models using the signed averaged
set. This resulted in two groups with substantially expression values for the 5-miRNA and 18-miRNA pro-
different survival (median survival 42 months versus files, together with two clinicopathologic covariates,
not yet reached, log-rank p value 0.06; Fig. 3b). Given = namely chemotherapy-induced necrosis and use of post-
the sample size limitations and the technical diff- operative alternate chemotherapy regimen in addition to
erences between the three different expression conventional MAP chemotherapy. tdROC analysis
platforms (DASL, Agilent, Tagman) involved in this showed improved prognostic power with the combined
analysis, these results provide strong independent models (AUC =0.852, permutation p < 0.01, and AUC =
evidence for the prognostic role of the 14q32 miRNA  0.854, permutation p=0.07, respectively) at the 60-

cluster in osteosarcoma. month follow-up time (Fig. 4) while use of chemother-

apy as the sole prognostic variable was (as expected) not
14q32 prognostic profiles and outcome following prognostic, and analysis combining the profiles with use
chemotherapy regimen selection or not of alternate chemotherapy did not show any

For the patients who experience suboptimal response to  improvement in prognostic power. (Analysis at a follow-
standard preoperative methotrexate, doxorubicin, and up time of 120 months produced similar, only slightly
cisplatin (MAP) chemotherapy (defined as <90% necro- lower, AUC values compared to the 60-month time
sis in the operative specimen), there remains uncertainly  point analysis (Additional file 2). This observation raises
as to whether adding alternate chemotherapy regimens the possibility that these miRNA profiles may affect out-
such as ifosfamide/etoposide (IE) offer any benefit, with  comes in the context of pathologic necrosis and use of
studies to date, including a recent large randomized trial, alternate adjuvant chemotherapy, although this would
failing to show survival benefit. We were interested to need to be proven in a larger prospectively designed
assess if the miRNA profiles may have prognostic inter-  study, where predictive interaction with chemotherapy
action with chemotherapy choice. In the Boston dataset can be statistically assessed.
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Fig. 4 Multivariate prognostic models including 14932 miRNA profiles and clinicopathologic covariates. Multivariate models included signed averaged
expression of a 5-miRNA and b 18-miRNA profiles (only 14 of 18 were included in this platform), together with pathologic necrosis and use of alternate
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Robust osteosarcoma molecular subtype discrimination
with subsets of 14932 miRNAs

We then considered the hypothesis that 14q32 miRNAs
are not simply markers of prognosis but signify previously
unrecognized distinct molecular subtypes of osteosar-
coma. To address this, we first ascertained that sample as-
signments as “high” or “low” risk were not sensitive to the
precise classification algorithm that was used. For ex-
ample, class assignments were highly similar whether the
5-miRNA profile was used in the signed averaged expres-
sion model (described in the previous paragraph) or in a
clustering-based grouping (Fisher’s exact p <0.001) or in
the supervised multivariate 5-miRNA model previously
published (Fisher’s p <0.001). This observation also held
true in the Utah dataset (Fisher’s p < 0.001, for the signed
average-based versus clustering-based grouping). Further,
the classification was stable when we used a larger set of
18 miRNAs from this locus to classify samples using any
of these methods in both datasets (Fig. 5a, b). Finally, simi-
lar concordance was observed in the Texas data, where
the 3-miRNA model classification was highly associated
with the groups generated by hierarchical clustering using
3, 5, and 23 of the prognostic miRNAs mapped on the
Tagman platform (Fisher’s p=0.04, 0.07, and 0.03,
respectively). Confirmation of strong similarity in terms of
risk group assignments for the samples independent of
the specific number of miRNAs and grouping method
suggests that the miRNA markers track potential under-
lying molecular phenotype.

Substantial global miRNA changes across osteosarcoma
subtypes

If the two prognostic risk groups represent molecular
subtypes, one might expect that they display large-scale
molecular differences in addition to the marker 14q32
miRNAs. Thus, we performed global miRNA differential
expression analysis between the high- and low-risk
groups in the Boston dataset (which were defined in our
previous report) and found that 492 miRNA probes
(64%) were differentially expressed across the risk sub-
types (¢ test p < 0.05; Benjamini-Hochberg false discovery
rate (FDR) <0.07; Fig. 6a, Additional file 3). Since the
proposed subtypes are not yet established, and in order
to ascertain that these subtype-related miRNA expres-
sion differences are not due to a statistical artifact, we
generated 100 random splits of the samples and tested
them for differential miRNA expression. None of these
randomly generated groups yielded a similar level of glo-
bal miRNA differential expression. Multidimensional
scaling (principal component analysis) was then per-
formed with the global miRNA content (all miRNAs
only filtered by low variance), and the three-dimensional
sample groups were highly associated with the 5-miRNA
model risk predictions (Fisher’s p <0.001; Fig. 7a). Of
interest, hierarchical clustering the samples using the
global miRNA content provided a trend for prognostic
discrimination (median RFS 126 versus 151 months; log-
rank p =0.092; Fig. 7b), though it did not reach the level
of statistical significance achieved when using the 14q32
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Fig. 5 Display (multidimensional scaling (MDS)) of sample risk stratification based on 14q32 prognostic miRNAs. a MDS of the Boston cohort
using 18 miRNAs. b MDS of the Utah cohort using 14 miRNAs that were mapped on the Agilent array. Yellow/blue color represents sample risk
assignments according to the 5-miRNA prognostic model. Classification was highly concordant between the 5 and the 18 miRNA set
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miRNA markers. We then assessed the correlation of the
miRNAs with DICER, a key gene involved in the miRNA
biogenesis and processing machinery. We found that only
a small fraction of the miRNAs that were differentially
expressed between the subtypes (5%) were moderately or
strongly correlated with DICERI (Spearman rank correl-
ation coefficient = 0.44-0.51; p <0.01; Additional file 4),
suggesting that DICER may account for (only) a small part
of the miRNA deregulation in the subtypes.

These findings were reproduced in the Utah dataset,
where 546 miRNA probes (36%) were differentially
expressed across survival risk groups (p<0.05; FDR
<0.139; Fig. 6a, Additional file 3), but with no similar
differences observed in any of the 100 random sample
splits. Multidimensional scaling/principal component
analysis using the global miRNA content also
demonstrated that the risk groups were significantly
associated with the 5-miRNA signed averaged
expression-based predictions (Fisher’s p = 0.05; Fig. 7c)
and classification was highly concordant regardless of
the number of miRNAs used in clustering. Finally, in
the Texas dataset, hierarchical clustering using different
numbers of miRNAs (3, 5, 23) produced highly similar
groups, which were also similar to clustering using the
14q32 miRNAs or even the global miRNA content (Fish-
er's p<0.05 for all comparisons). These results from the
three datasets support the notion that these risk groups
represent true molecular osteosarcoma subtypes with sub-
stantial underlying molecular differences beyond the set of
14932 miRNAs.

We then explored this hypothesis in a publicly avail-
able miRNA dataset from 19 osteosarcoma cell lines
[11]. In this dataset, experimental data were available,
grouping the cell lines according to their proliferative
capacity. We compared highly aggressive and less ag-
gressive cell lines (by virtue of high proliferation versus
low proliferation, as previously published [12]) and again
found a substantial amount of differential miRNA ex-
pression. Importantly, we also found a moderate to
strong amount of overlap in subtype-specific differential
expression among the two clinical and the cell line data-
sets. Figure 6 shows the scale of differential miRNA ex-
pression between high- and low-risk subtypes and the
degree of overlap between the two clinical datasets, which
was highly significant using a hypergeometric distribution
test. Generally, there was a much stronger concordance in
miRNAs upregulated in the aggressive phenotype than in
miRNAs downregulated in the aggressive phenotype
among the datasets. Details of the cell line miRNA differ-
ential expression analysis are provided in Additional file 3.
The observation of reproducible large-scale miRNA over-
expression in aggressive samples in two clinical and one in
vitro datasets further supports the hypothesis of distinct
molecular osteosarcoma subtypes with different biologic
and clinical behavior.

Global mRNA expression changes across osteosarcoma
subtypes

We also studied global mRNA transcript changes
(other than microRNA), which were available for a



Hill et al. Journal of Hematology & Oncology (2017) 10:107

Page 7 of 22

Boston Cohort

Utah Cohort

am
A e =
%

-Log1 0(p-values)
Log1 0(p-values)

¥ :.,.',:.' o
" . . S
PR P
- ,':.'.‘(-.‘: Y
N A .;‘.._ N
et 'U':" b"*".:
LI a ', e
0383 ““;ﬁq ' r .

Log2(Foid change)

Boston Cohort

157 118

(27.3%)

157
(36.3%)

(36.3%)

Log2iFold change)

Utah Cohort

Fig. 6 Global miRNA differential expression and overlap in the Boston and Utah datasets. a Global miRNA differential expression between high-
and low-risk subtypes in the Boston dataset (left panel) and the Utah dataset (right panel). Blue dots represent probes with statistically significant
differential expression. b Overlap between the Boston and Utah datasets in terms of miRNAs shown in a. Left panel shows the total overlap of all
differentially expressed miRNAs. Right panel shows the overlap in miRNAs upregulated in high-risk subtypes (hypergeometric test p < 0.0001 for
the overlap in both comparisons). Overlap in miRNAs downregulated in high-risk subtypes was smaller but still statistically significant (p < 0.01)
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(29.3%)

subset of 37 samples from the Boston dataset, with
respect to the risk subtypes, and found that 1362
mRNA probes (13%) were differentially expressed
across risk subtypes (p<0.05; FDR <0.275) in the
Boston dataset. Although these changes were statistically
more modest compared to the respective miRNA changes
in supervised univariate analysis (partly due to the smaller
sample size of the mRNA dataset), they still are consistent

with the notion of largely different transcriptional pro-
grams between the two subtypes. Also, unsupervised

genome-wide gene expression

(mRNA)

clustering

generated subgroups (Additional file 5) that showed a
strong trend for association with both the 5- and

18-miRNA previously defined model

risk predictions

(Fisher’s exact p=0.05-0.08 for different association
tests). These observations further speak to the possible
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existence of distinct molecular phenotypes. Interestingly,
the list of differentially expressed genes was enriched for
all the transcripts on the 14q32 genomic locus, taken col-
lectively as a single gene set or potential functional unit
(KS/LS enrichment p = 0.06). This collection includes 124
coding genes and 95 non-coding RNAs (long non-coding
RNAs and small nucleolar RNAs (snoRNAs), which were
included in the DASL whole genome array), raising the
possibility of a regional mechanism of coordinated regula-
tion affecting both coding and non-coding RNA elements
on the 14q32 locus.

14932 miRNAs are highly correlated with other 1432
non-coding genes

In a hypothesis-based approach, we tested the 14q32
miRNAs and found that several of them were also
highly correlated with other non-coding genes located
on 14q32. For example, MEG3, a long non-coding
RNA, was also highly correlated with several of the
miRNAs, as were numerous snoRNAs located near the
14932 miRNA cluster (p < 0.05, uncorrected because of
the small number of variables). These correlations
(Table 1) suggest a potentially highly coordinated
mechanism of expression regulation including coding
as well as non-coding elements within the larger
imprinted 14q32 chromosomal region. A list of all sig-
nificant correlations of the 14q32 genes with prognostic
miRNAs is shown in Additional file 6.

14q32 prognostic miRNAs correlate with aggressive
osteosarcoma behavior in vitro

We used the 19-osteosarcoma cell line dataset
(introduced above) to test the hypothesis that 14q32
miRNAs define distinct osteosarcoma subtypes in vitro,

correlated with tumor aggressiveness as predicted by our
genomic analysis of the clinical osteosarcoma cohorts. In
this study, five variables were used as metrics of cancer
cells’ aggressiveness: tumorigenicity, colony-forming
ability, invasion, migration, and proliferation [13]. We
selected all miRNAs on the 14q32 locus, which were as-
sociated with recurrence in univariate analysis, in our
previous study of the clinical Boston cohort (Cox regres-
sion p <0.05), resulting in a matrix of 27 miRNAs (a
subset of which is the 5-miRNA profile shown above).
We studied the association between the 14q32 prog-
nostic miRNAs with cell line “aggressiveness” metrics, as
reported in the public dataset. We found that the

Table 1 Association between long (or short) non-coding genes
with prognostic miRNAs on the 14g32 locus

Gene name  Number of Average Correlation range
miRNAs correlation

SNORD112 10 0391 0488 to 0.326
SNORD113-2 17 0461 0.569 to 0.360
SNORD113-3 16 0442 0.561 to 0.342
SNORD113-5 2 0357 0.368 to 0.345
SNORD113-6 4 0.365 0.392 to 0.328
SNORD113-8 17 0.571 0.723 to 0437
SNORD113-9 18 0409 0.508 to 0.350
SNORD114-1 3 0363 0.409 to 0.328
SNORD114-13 1 0450 0450
SNORD114-17 2 -0.337 —0.326 to —0.348
SNORD114-24 2 0367 0407 to 0.327
MEG3 13 0449 0570 to 0327

Analysis in the Boston dataset (Spearman p < 0.05; total number of miRNAs
tested, 28)
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median expression levels of the 27 prognostic miRNAs
(in aggregate) were higher in the aggressive cell lines
(defined by proliferative capacity, Mann-Whitney p =
0.02). In addition, unsupervised hierarchical clustering of
the cell lines using the expression patterns of these miR-
NAs distinguished a cluster of mainly aggressive cell
lines based on a composite metric of migration/inva-
sion/colony-forming capacity, which can be viewed as an
in vitro surrogate for metastatic potential (Fig. 8, Fisher’s
p=0.05 for association between the composite metric
and miRNA-based cluster groups).

Further, we found a number of significant or strongly
trending (p <0.1) associations testing each individual
miRNA in relation to the different aggressiveness met-
rics of the cell lines (Additional files 7 and 8). In a two-
group differential expression analysis (high versus low
proliferative cell lines), 13 miRNAs were upregulated in
the more proliferative cell lines. Eight miRNAs were up-
regulated in highly invasive cell lines, while one was
downregulated. Three miRNAs were upregulated in cell
lines with increased migratory ability, while two were
downregulated. Two miRNAs were upregulated in cell
lines with higher colony-forming ability, while two miR-
NAs were upregulated in cell lines with higher tumori-
genicity. Generally, the large majority of the miRNAs
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appear upregulated in the more aggressive phenotype,
with the exception of hsa-miR-493 and hsa-miR-411%,
which were consistently downregulated in the aggressive
cell lines.

To circumvent possible pitfalls of binarization in cell
line assays, we also analyzed proliferation as a continuous
variable. In this analysis more (17) of the 27 prognostic
miRNAs were highly or moderately correlated either posi-
tively (Spearman coefficient = 0.394 to 0.646) or negatively
(Spearman coefficient = -0.403 to -0.582) with greater
levels of proliferation at 72 h, which was the end time
point of the proliferation experiments in the public data
(all at p<0.1). Two miRNAs were highly or moderately
correlated with colony-forming ability (Spearman = 0.618,
0.653; p < 0.1) while three miRNAs were highly or moder-
ately correlated with invasiveness (Spearman =0.405,
-0.418, -0.54; p < 0.1). Again, the majority of these corre-
lations were positive, while hsa-miR-493 expression was
negatively correlated with migration capacity at a signifi-
cant or trending level (Spearman = -0.453; p <0.1). This
miRNA was the only one consistently negatively associ-
ated with the other more aggressive phenotypes in all
types of statistical analysis. Proliferation appears to be the
single individual attribute better capturing the extent of
association between 14q32 miRNAs and cell line
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aggressiveness. However, the composite invasion/migra-
tion/colony-forming capacity metric also showed a clear
association with aggressiveness, as a possible surrogate for
clinical metastatic potential.

Genomic map and context for methylation regulation in
the imprinted 14932 locus

The hallmark of 14q32 is allele-specific methylation (im-
printing). In order to explore the genomic context as it
relates to imprinting control on miRNAs, we first con-
sidered a map of the locus containing the genes, non-
coding RNAs (miRNAs or others), and CpG densities lo-
calized on 14q32 (Fig. 9a). Most of the prognostic miR-
NAs (previously defined in the clinical cohorts) are
generally clustered in a 350-kb region of 14q32, which
also contains the majority of all other non-coding RNAs
on this locus, including 41 out of 47 snoRNAs. The
non-coding RNA cluster also includes the DLKI-DIO3
differentially methylated region (DMR), which includes
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both the intergenic DMR (IG-DMR) and the MEG3
DMR and controls imprinting of this locus (Fig. 9b).
Upon further exploration, we noted that there are
several CpG islands (CGIs) within the 1432 miRNA/
non-coding cluster. CGIs are unmethylated in “normal
tissue”; however, variable degrees of CGI methylation
have been associated with various disease states includ-
ing cancer [14].

Methylation at the imprinted MEG3 locus on 14932
correlates with deregulation of the non-coding RNA
cluster

Based on these observations, we were interested to study
the association between miRNA expression and DNA
methylation. The non-coding RNA cluster lies in the
DLKI-DIO3 imprinted region, which also includes the
long non-coding RNAs, MEG3, MEGS, and MEGY9
(Fig. 8), and is regulated by at least two DMRs, the inter-
genic DMR and the MEG3 DMR [15-17], with
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Fig. 9 Map of the 14932 locus and its non-coding cluster. a Map of the 14932 locus. b Map of the non-coding RNA cluster on the 14932 locus.
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involvement of CCCTC zinc finger-binding factor
(CTCEF). Recent data suggest a process of loss of im-
printing (LOI) in this region, which is involved in cancer
development [18], and a correlation between methyla-
tion patterns in the MEG3 promoter and expression of
several miRNAs in the 14q32 ncRNA cluster has been
suggested. The direction of the correlation may be dif-
ferent for methylation of CTCF binding sites (positive)
versus conventional promoter methylation (negative)
[16]. This is consistent with the known role of CTCF as
a transcription enhancer blocker. We hypothesized that
this regulatory pattern may hold true in osteosarcoma,
and we tested this hypothesis using publicly available
miRNA expression (Agilent array) and methylation data
(Ilumina 27K array) from the previously mentioned 19-
osteosarcoma cell line dataset.

We focused on seven CpG sites interrogated by the
27K array, which are located upstream of the miRNAs
and proximal to the MEG3 promoter (no intergenic
probes are interrogated by this array). One of these CpG
sites, corresponding to the probe cg09280976, is located
within a known CTCF binding site in the MEG3 pro-
moter, and another one, corresponding to the probe
cg04291079, is located in the MEG3 gene body, in a re-
gion where there is no known CTCF binding site. The
other five probes are located close to but not entirely
within CTCF binding sites. In our analysis, we found
that 7 of the 27 14q32 prognostic miRNAs showed mod-
erately or highly positive correlation with the methyla-
tion probe cg09280976 at a significant or strongly
trending level (Spearman = 0.596—0.404; p < 0.1; Table 2).
Eight of these 27 miRNAs were moderately or highly
negatively correlated with the methylation probe
cg04291079 at a significant or strongly trending level
(Spearman = -0.393 to -0.552; p<0.1; Table 2), while
two were moderately positively correlated (Spearman =
0.554-0.400; p<0.1; Table 2). Methylation probes lo-
cated near, but not entirely within, CTCF binding sites
showed variable, positive and negative, correlations with
miRNAs (Table 2).

We also found that expression of 23 of the 27 prog-
nostic miRNAs was also positively correlated with
MEG3 expression (Spearman =0.808-0.409; p<0.1)
while only one miRNA was negatively correlated (Spear-
man = —-0.582; p <0.1). Finally, four of the methylation
probes in the non-coding RNA cluster were positively
correlated with MEG3 expression (Spearman =0.528—
0.41; p <0.1). These results, taken together, suggested a
possible methylation-based regulation of both short and
long non-coding RNAs in this imprinted genomic
region.

We then sought to validate these observations using a
genomic resource that recently became available by the
NIH. The NCI Therapeutically Applicable Research to
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Generate Effective Treatments (TARGET) osteosarcoma
project generated several genomic profiles for a large
number of patient samples and includes DNA methyla-
tion data (on the more advanced Illumina 450K methyla-
tion array) as well as miRNA TagMan qRTPCR
expression data. For most of the MEG3 CpG sites tar-
geted by methylation probes, we found remarkable simi-
larity between the moderate or moderately strong
methylation/miRNA correlations observed in the cell
lines (Table 2) and the correlations seen in the TARGET
data (Fig. 10). This was particularly striking, for the two
methylation sites were previously identified as clearly
within (targeted by probe cg09280976) or clearly not
within a CTCF binding site (targeted by probe
¢g04291079), both showing the same positive or negative
association with miRNA expression seen in the cell line
analysis. The rest of the MEG3 methylation sites showed
generally similar variable associations seen in the cell
line data with the exception of two probes within the
gene body. These differences could be possibly related to
the small sample size and inherently heterogeneous na-
ture of the cell lines, as well as the fact that the effect of
gene body methylation is much less clear than that of
promoter methylation. Also, one promoter site (probe
cgl1656), which did not show significant associations in
the cell lines, did show moderately strong associations in
the TARGET data, which probably further supports the
original hypothesis as it is located very near a CTCF
binding site and it should be expected to show a clear
positive correlation with expression. Due to publication
restrictions currently in place by the NCI on the osteo-
sarcoma TARGET data (see “Methods”), we are only
allowed to provide numerical details of the correlation
coefficients for a small subset of the miRNAs. There-
fore, as an example, we show the average correlation
coefficients for the following four miRNAs: miR-495,
miR-329, miR-656, and miR-411%*, which were some
our top miRNA prognostic markers in the three
previously analyzed clinical datasets (Boston, Utah,
Texas). For these four miRNAs, the average correl-
ation coefficients were as follows: ¢g09971646, 0.2105;
cgl16567044, 0.408; cg09280976, 0.323; cg25836301,
0.219; cg05711886, 0.185; and cgl5101633, 0.199.
These correlation coefficients were largely unchanged
when the larger group of prognostic 14q32 miRNAs
was considered.

Of interest, additional three CpG sites targeted by
probes in the arrays and located in the DLKI gene locus
showed moderate, variable (positive/negative), or no as-
sociation with the miRNAs, potentially to be expected
given their localization ~100 kb upstream of the MEG3
transcription start site (TSS), further underscoring the
potential specificity of the MEG3 methylation effect on
the non-coding RNA cluster.
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Table 2 Correlation between MEG3 methylation probes and prognostic miRNAs

Methylation probe  Distance from MEG3 TSS

Correlation with 14932 prognostic miRNAs

Number of miRNAs  Overlap with CTCF binding site

cg1656 1326 None

cg0928 775 0466 (0.596 to 0.404)
€g2583 156 0459 (0.528 to 0.396)
cg05711 =218 -0.561

cg1537 —628 —0443 (0408 to —0.631)
cg1510 —-1264 0.546 (0.621 to 0428)
€g0429 -1968 —0.283 (=0.554 to —0.552)

None Near site (in promoter)

7 In site (in promoter)

3 Near site (in promoter)

1 Near site (within gene body)
13 Near site (within gene body)
2 Near site (within gene body)
10 Not in site (within gene body)

Locations of MEG3 promoter and gene body methylation probes with respect to MEG3 transcription start sites (TSSs), CTCF binding sites, and correlation with the

14q32 prognostic miRNAs associated with proliferation (p < 0.1)

Differential methylation at the imprinted 14¢32 locus
correlates with aggressive osteosarcoma behavior in vitro
Next, we used the same cell line data to determine if
methylation patterns in the non-coding RNA cluster cor-
related with aggressiveness phenotypes. First, we
performed hierarchical clustering using the methylation
patterns of the seven MEG3 methylation probes ana-
lyzed in the previous section and examined the resulting
clusters for the 19 cell lines. We observed that the cell
line clusters were significantly associated with aggres-
siveness (measured by proliferation, Fisher’s p <0.05
when using either two or three proliferation groups,
high/low or high/intermediate/low, as previously pub-
lished) (Fig. 11a). Similar results were obtained when we
repeated the clustering including additional four probes
from the 27K array located in the DLKI promoter and
gene body (recognizing that methylation effects often
represent an aggregate of changes in a broader genomic
region, especially when CTCF binding is involved).

In a two-group differential methylation analysis be-
tween two proliferation phenotypes (high/low), 7 of 11
CpG sites had higher methylation in cell lines with in-
creased colony-forming ability (p <0.1) (high and low
categories as previously published). Four CpG sites had

higher methylation in more invasive cell lines, cell lines
with greater migratory capability (p <0.1) as well as cell
lines with higher tumorigenicity (p <0.1), compared to
their respective less aggressive counterparts. In a continu-
ous variable correlation analysis, methylation at five CpG
sites was positively correlated with colony-forming ability
(Spearman = 0.634-0.392; p <0.1). Methylation intensity
at one CpG site near DLKI was also positively correlated
with invasive ability (Spearman = 0.599); trending p < 0.1)
while another CpG site was positively correlated with mi-
gration (Spearman = 0.5; p < 0.05). Detailed results of the
differential methylation analyses and the continuous vari-
able correlation analyses are included in Additional file 9.
We then hypothesized that there may be a three-way
association between prognostic miRNA expression,
methylation, and cell line aggressiveness. As an example,
we focused on two CpG sites represented by Illumina
27K array probes cg09280976 and cg04291079, because,
as explained above, their corresponding locations are
known to be clearly within or clearly outside known
CTCF binding sites and it was therefore conceptually
easier to predict biologic associations. For each probe,
we plotted CpG methylation versus average expression
of miRNAs that were associated with that probe and

Prognostic miRNAs ()] +)

Correlation with 14q32 () (+) (+) +)
Prognostic miRNAs Moderate Moderately Strong Moderate Moderate
Dist. from TSS (bp) 100189 98317 775 -218 -1264
Probe ID cg06504820 cg09971646 cg09280976 cg05711886 cg15101633
DLK 1 MEG3 Promoter = TSS MEGS3
Probe ID cg17412258 cg16567044 cg25836301 cg15373285 cg04291079
Dist. from TSS (bp) 99445 1326 156 -628 -1968
Correlation with 14932 Moderate Moderately Strong ~ Moderate Moderate

+) ()

Fig. 10 Association between MEG3 methylation patterns and 1432 miRNA expression in the clinical NCI TARGET data. Analysis of 10 probes for CpG
sites within the DLK1/MEG3 imprinted region included on the lllumina 450K methylation array. Correlation coefficients for each probe, averaged over
the prognostic 14932 miRNAs, are shown. Coefficients between 0.3 and 0.5 were considered moderately strong, and those between 0.15 and 0.3 were
considered moderate. A + or — sign symbolizes a positive or negative correlation coefficient, respectively (Spearman p < 0.1). Upstream or downstream
distances of the CpG sites from the MEG3 TSS are also shown
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Fig. 11 Association between methylation patterns and cell line proliferation. a Unsupervised clustering of the MEG3 methylation probes shows
an association between methylation patterns and proliferative capacity (Fisher's p < 0.05). b Three-way plot of methylation intensity of the
€g09280976 probe versus average prognostic miRNA expression and cell line proliferative capacity. ¢ Three-way plot of methylation intensity of
the cg04291079 probe versus average prognostic miRNA expression and proliferative capacity

with proliferative capacity at a Spearman p < 0.1 versus
proliferative capacity as a continuous variable. The
resulting 3-D plots (Fig. 11b, c) recapitulate possible bio-
logic interactions in this imprinted region. For the probe
that is located within a CTCF binding site, we observe
two cell line clusters in the “corners” of the plot display-
ing the patterns “high methylation/high expression/high
aggressiveness” and “low methylation/low expression/
low aggressiveness,” respectively, consistent with the
known transcription enhancer-blocking role of CTCF in
the imprinted locus (Fig. 11b). For the probe that is lo-
cated outside CTCF binding sites, we also observe two
cell line clusters in diagonally opposed corners as com-
pared to panel b. These clusters display patterns of “high

methylation/low expression/low aggressiveness” and
“low methylation/high expression/high aggressiveness,”
respectively, consistent with a conventional negative
regulatory effect of promoter methylation on expression.
Associations between individual probe methylation and
aggressiveness showed a strong trend for significance in
panel b, while in panel c they did not, possibly related to
the possible heterogeneity in the cell line group and the
presence of some cell lines that did not necessarily fol-
low these clear biologic patterns. Also, it is unlikely that
one methylation probe, in isolation, can fully account for
overall tumor behavior especially when its regulatory ef-
fect would be contrary to the broader methylation effect
in this same region.
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Differential miRNA network targeting between high- and
low-risk tumors reveals possible therapeutic targets
Expression levels of miRNAs do not fully reflect their
biologic activity. We previously reported on miRNA
gene targets with gene set enrichment and found modest
evidence that some miRNAs appear to exert regulatory
influence [6]. However, this approach assumes that the
regulators affect each gene equally and does not take
into account multiple sources of information on gene
regulation. Inference on biologic activity can be drawn
by analyzing miRNA regulation of target gene expression
in the context of a gene regulatory network. Our group
recently described a network inference method for net-
work that models the regulatory effects of transcription
factors. This method (called “PANDA”) integrates differ-
ent “omics” data types to infer network edges that accur-
ately estimate gene expression regulation [19, 20]. Here,
we implemented a modification of PANDA (called
“PUMA,” PANDA Using MicroRNA Associations),
which estimates regulatory effects of miRNAs on gene
expression. We implemented PUMA to reconstruct net-
works for the high- and low-risk osteosarcoma subtypes
using mRNA expression data from the Boston clinical
cohort and “prior” data from the STRING database, JAS-
PAR, and TargetScan. The gene regulatory networks
showed substantial differences in gene targeting between
the two risk groups. This is interesting in light of our
earlier finding of a large number of differentially
expressed miRNAs between the high- and low-risk pa-
tient groups, especially because our network construc-
tion model did not incorporate miRNA expression
levels. In order to place this finding in a wider context,
we analyzed chemotherapy response phenotypes in a
similar manner and found much less differential miRNA
targeting between groups of patients with optimal versus
suboptimal chemotherapy-induced necrosis (Fig. 12a).
We then focused on a network module derived by the 5-
miRNA prognostic profile to determine what differences
in gene regulation may be driven by these miRNAs
(Fig. 12b, c). We identified significant differences in mul-
tiple edges of these networks using a permutation test
on sample labels (Additional file 10). Patients with poor
prognosis showed a particularly active module targeted
by miR-495. The top differential edges of this network
included at least two tumor suppressor genes (GASI and
CD9). Although miR-495 showed the strongest overall
statistical signal for perturbed regulation, the other four
miRNAs also contributed a number of statistically sig-
nificant differential edges. These included multiple genes
of known or potential significance including, for ex-
ample, another known tumor suppressor gene in osteo-
sarcoma (RASF5), which was differentially regulated by
two of five miRNAs in this network module. Thus, in-
creased targeting of tumor suppressor genes may be a
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mechanism by which these prognostic miRNAs indi-
vidually or synergistically could affect tumor behavior
and prognosis. Furthermore, Gene Ontology analysis of
target genes in the network modules suggested that
these miRNAs may differentially regulate pathways of
cellular senescence, insulin signaling, osteoblast differen-
tiation, and processes related to cellular proliferation
and cell cycle and growth signaling (Additional file 11).

We then curated the list of all significant edges from
the 5-miRNA network (in all 652 edges/637 genes) and
screened it against the Drug Gene Interaction Database,
a previously published interactive database of gene drug
interaction supported by clinical or preclinical evidence.
Figure 12d shows a selected subset of these interactions,
suggesting possible hypotheses for therapeutic develop-
ment including histone deacetylase (HDAC) inhibitors,
proteasome inhibitors, or mTOR inhibitors, some of
which are already in clinical or preclinical development
in sarcoma or osteosarcoma. A detailed list of possible
gene-drug interactions from the networks is provided in
Additional file 12.

Discussion

We, and others, previously reported that a collection of
miRNAs on the 14q32 locus is associated with prognosis
in osteosarcoma [6, 21]. Prognostic association via a
Kaplan-Meier analysis does not guarantee the value of a
test for predicting individual patient course. Thus, our
tdROC analysis complements prior findings and demon-
strates an excellent discriminatory power for miRNAs in
this locus, which was replicated in three separate
miRNA datasets. This replication is quite significant
when one considers the very different characteristics of
the three datasets (different array platforms, frozen ver-
sus paraffin tissue material, somewhat different clinical
characteristics with respect to age distribution and the
mix of metastatic/nonmetastatic cases, and a relatively
small number of recurrence/death events in two of the
datasets), which may also explain any minor differences
in the findings among the three datasets. New studies
will be required, in larger multi-institutional cohorts, in
order to select the optimal subset of miRNAs among the
50-60 present at 14q32, for a clinically useful test to be
developed. While potentially different subsets of these
miRNAs could also be appropriate markers, we believe
that the 5-miRNA or 3-miRNA profiles described in this
study would be excellent candidates.

Evidence to date has been disappointing with respect
to the use of alternate chemotherapy regimens, such as
ifosfamide/etoposide, for patients who do not achieve an
optimal pathologic response to standard preoperative
chemotherapy with the MAP regimen. This was further
underscored by the recent publication of the results
from the large international randomized EURAMOS-1
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study. This may signify true lack of clinical benefit from  patient subset. Our findings suggest that these miRNAs
these regimens, but it could also suggest lack of an opti- may also be candidates for further study as possible
mal stratification approach for selection of the right markers for selecting patients for such alternate
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regimens, in stratification schemes that may include
miRNA expression and conventional pathologic necrosis
in the operative specimen. Proof of this concept will re-
quire analysis in a large cohort with prospectively ran-
domized chemotherapy regimen allocation, such that a
formal test of interaction can be performed. It was in-
herently not possible to perform such analysis in our
data, but our findings would perhaps justify such a study
in the future.

We suggest that, in addition to being prognostic
markers, these miRNAs may track previously unidenti-
fied osteosarcoma molecular subtypes, potentially related
to imprinting defects at 14q32. We found that the sub-
groups of patients defined by the miRNA risk profile
harbor substantially different global (genome-wide)
miRNA expression patterns, as well as different mRNA
expression patterns. The miRNA patterns were more
strongly associated with patients’ outcome compared to
mRNA patterns. It is quite possible that miRNAs are
better surrogates for tumor behavior, given their capacity
to regulate large numbers of coding genes. In addition,
miRNA detection may be more degradation proof than
mRNA detection in banked tissue, though our results
are possibly confounded by the smaller sample size of
the mRNA dataset (compared to the miRNA dataset).
That having been said, the characterization of patient
samples as “high risk” versus “low risk” was consistent
regardless of which particular method (supervised or
unsupervised) or subset of miRNAs was used for sample
risk prediction, and clustering-based groups were associ-
ated whether using either the global miRNA or the glo-
bal mRNA data. Furthermore, the large-scale miRNA
differences between high- and low-risk samples were
also reproducible in two additional clinical and one in
vitro datasets. Taken together, these observations sup-
port the notion of robust molecular subtypes in osteo-
sarcoma with very different transcriptional programs,
coding and non-coding.

Using the largest (published to date) osteosarcoma cell
line dataset with genome-wide molecular information,
we found that the expression patterns of the 14q32 miR-
NAs as a function of cell line aggressiveness were largely
concordant with the findings in the clinical datasets. Cell
line proliferation seemed to be the single best correlate
of individual miRNA expression, although a composite
metric of invasion/migration/colony formation that was
used as a surrogate for metastatic potential also showed
a clear association with collective 14q32 miRNA pat-
terns. These findings notwithstanding, it should be ac-
knowledged that attributes such as invasion and
migration and overall clinical metastatic potential may
also be more heavily dependent on tumor-stroma inter-
actions and other elements, which are generally lost in
cell line systems and which our current bioinformatics
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analysis in the cell lines may not adequately capture.
Some of the individual miRNA associations presented
are only strongly trending as opposed to nominally sig-
nificant in the cell lines; however, the cell line datasets
are often imperfect correlates of clinical observations,
and the cell line dataset was much smaller compared to
the clinical datasets, where the associations have been
shown to be more robust. Also, 14q32 miRNAs can
probably be considered functionally interrelated, and
when we analyzed them in aggregate via clustering, their
association with cell line aggressiveness was robust. Previ-
ous reports have demonstrated both tumor-promoting
and tumor-suppressing effects of 14q32 miRNAs in differ-
ent settings, but the outcome-related findings in our study
are consistent with previously reported effects of these
miRNAs in other malignancies such as leukemia, lung
cancer, and liver cancer as well as their growth-promoting
effect in mouse pluripotent stem cells [16, 22-24].

Network analysis using inferred miRNA-mRNA regula-
tory events by integrating target prediction with mRNA
data provided insights into potential 14q32 miRNA-driven
mechanisms in tumors with different prognosis and
suggested that these may include perturbation of tsumor
suppressor genes [25—29]. Furthermore, this analysis reca-
pitulated the strong correlation between the miRNAs and
tumor aggressiveness showing that their target networks
include a large number of proliferation and cell cycle-
related pathways and further supporting the notion of dis-
tinct regulatory programs affecting cellular behavior in the
proposed osteosarcoma subtypes. To place these results in
context, we observed a much wider network perturbation
related to tumor aggressiveness and recurrence, compared
to chemotherapy response, an endpoint that is more prox-
imal in the natural history of the tumor. This leads us to
speculate that overcoming short-term chemotherapy resist-
ance may prove easier than achieving long-term remission
or cure in osteosarcoma. This network analysis is limited
by the fact that it provides in silico evidence, requiring fu-
ture functional elucidation. Due to the multidimensional
and multi-interactive nature of the networks, complex ex-
perimental designs will be needed in order to provide opti-
mal in vitro systems for functional exploration of these
networks. However, this is one of the first large-scale at-
tempts to generate such networks in human specimen
cohorts in this rare tumor.

The 14q32 chromosomal band uniquely contains a
very large cluster (>100) of non-coding RNAs, including
snoRNAs, microRNAs, and long non-coding RNAs,
which is the largest known miRNA cluster in the gen-
ome (54 miRNAs). Genetic defects at 14q32 have been
associated with severe developmental abnormalities, sug-
gesting a very tight regulatory role in early tissue growth
and differentiation. In our study, we noted a high degree
of coordinated expression between miRNAs, snoRNAs,
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and long non-coding RNAs, suggesting perhaps an inte-
grated mechanism of expression regulation in this re-
gion. Furthermore, 14q32 is an imprinted genomic
region [7, 30, 31]. Imprinting is defined as allele-specific
expression and is found in genomic regions critical for
tissue growth and embryonic development. Typically,
non-coding RNAs are expressed on the maternal allele
while coding RNAs are expressed on the paternal allele,
controlled by allele-specific methylation in genomic
areas called imprinting control regions, or differentially
methylated regions (DMRs). Disruption of this mechan-
ism, called “loss of imprinting” (LOI), has been described
not only in developmental abnormalities but also in can-
cer [18]. An enhancer-blocking factor, CCTC zinc
finger-binding factor (CTCEF), is also involved in gene
and miRNA expression control in imprinted regions
such as the H19-IGF2 and 14q32 loci, in a methylation-
sensitive manner. Specifically, it binds to unmethylated
insulator sequences on DNA, preventing active
enhancer-promoter interactions, thereby reducing tran-
scription [15, 17, 32].

Our data support a three-way interaction between
methylation, miRNA expression, and the phenotype
(tumor aggressiveness), possibly contingent upon CTCF
binding activity. Specifically, expression patterns of a
large subset of the 14q32 miRNAs were associated with
methylation patterns in the MEG3 DMR region, and
both were associated with tumor aggressiveness. The
mechanism behind this interaction is likely complex. We
found that hypermethylation of MEG3 DMR sites within
a CTCF binding domain is associated with increased
miRNA expression (potentially by inhibiting CTCF bind-
ing and its enhancer-blocking effect as described above)
and higher tumor aggressiveness. In contrast, hyperme-
thylation of MEG3 DMR sites outside a CTCF binding
domain is associated with decreased miRNA expression
and decreased tumor aggressiveness. A very similar
mechanism of methylation-sensitive CTCF binding and
miRNA expression control at 14q32 was recently de-
scribed in acute promyelocytic leukemia, and other re-
ports have shown regulation of this imprinted domain
by allele-specific enhancer activity in human embryonic
stem cells [15—-17, 32]. This genomic region has been re-
ported to contain a large number of enhancer elements
[33], and further studies will be required in order to
identify which of them may be involved in the regulation
of non-coding 14q32 genes in osteosarcoma.

The basic methylation/expression associations discov-
ered in the cell lines were also reproducible in the large
clinical osteosarcoma TARGET dataset. Perhaps more
importantly, findings related to methylation sites within
or outside known CTCF binding domains were highly
similar between the in vitro and the clinical TARGET
data. Future functional characterization and validation of
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the CTCF-related methylation/expression loop will re-
quire elaborate targeted designs including perhaps
CRISPR approaches, but our initial observations herein,
both in an in vitro and in a large clinical dataset, provide
first evidence in support of this hypothesis.

Both coding and non-coding 14q32 genes, taken col-
lectively as a single gene set, were enriched in the overall
transcription program differences characterizing the sub-
types. We also found evidence of coordinated expression
regulation of coding and non-coding genes on 14q32,
most strikingly a strong positive correlation between
snoRNAs and miRNAs. Whether all these changes or
changes in genes like DICER (a known miRNA process-
ing gene) are functional elements of a wider pathogen-
etic mechanism controlled by imprinting and related to
the biology of the osteosarcoma subtypes remains to be
clarified. While very little is known on the function of
snoRNAs in general, it is interesting to note that overex-
pression of 14q32 snoRNAs has been reported to pro-
mote tumor growth in acute leukemia [34, 35].

The methylation platform employed in the cell line
dataset was not comprehensive enough to allow assess-
ment of all relevant MEG3 DMR CpG sites as well as
the intergenic DMR sites. In addition, recent reports
have suggested that the effect of methylation on gene ex-
pression in osteosarcoma may be different for different
genomic “compartments” such as promoter CGIs, CGI
shores, enhancers, or intergenic regions. Pilot analysis in
a small clinical cohort showed either hypermethylation
or hypomethylation in osteosarcoma tumors with high
recurrence potential, and one other recent study also
provided initial evidence of and insight into the effect of
14932 methylation patterns in osteosarcoma [36, 37].
Our findings do not contradict but rather complement
these reports and indicate that both IG-DMR and MEG3
DMR methylation in conjunction with loss of imprint-
ing, possible gene enhancer function, and expression of
the entire 14q32 non-coding RNA cluster should be
thoroughly studied in relation to osteosarcoma biology
and outcome.

It is unclear what fraction of osteosarcoma tumors har-
bors the methylator phenotype proposed here, and studies
in small clinical cohorts may underestimate its incidence.
Though methylation data on the clinical cohorts were not
available, the miRNA-defined high-risk patient group ap-
pears enriched for this phenotype, and the cell line data
suggest that it could affect about 20-25% of the cases.
This would be consistent with data in other tumor settings
where the CpG island methylator phenotype (CIMP) is a
relatively rare epigenetic phenomenon [14]. In addition,
methylation changes in different imprinting control re-
gions or genomic compartments may lead to different
phenotypes. Integrated studies utilizing methyl sequencing
and global non-coding and coding gene profiling in large
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national cohorts, such as the NCI TARGET osteosarcoma
initiative, will hopefully provide answers to these ques-
tions. In addition, these comprehensive studies can also
fully address the possible influence of chromosomal amp-
lification or copy number variation on miRNA expression.
This was not examined in our study, though prior litera-
ture suggests that genomic copy number variation may
not be a big factor in the regulation of gene expression at
14932 [38-43].

Ultimately, this line of research will allow the develop-
ment of a set of mechanistically relevant clinical bio-
markers based on loss of imprinting and/or non-coding
RNA expression, with important therapeutic implica-
tions. Randomized trials have tested the addition of
interferon or ifosfamide and etoposide to the standard
neoadjuvant chemotherapy consisting of cisplatin/doxo-
rubicin/methotrexate in localized osteosarcoma patients,
using chemotherapy-induced pathologic necrosis as a
risk stratification marker [3—5, 44]. While results to date
point toward a lack of additional, or uncertain, benefit
with either intervention, it is conceivable that rather
than absolute lack of antitumor activity, these results re-
flect an imperfect marker for treatment stratification.
Our prior work has shown that 14q32 miRNAs confer
prognostic value independent of chemotherapy response,
with the added benefit that they can be obtained early,
at the time of diagnosis, as opposed to after 10 weeks of
preoperative treatment [6]. As suggested above, a strat-
egy that combines pathologic necrosis with miRNA bio-
markers may allow for better treatment stratification in
the future. Furthermore, development of methylation
1432 biomarkers may enhance the discriminatory
power of the miRNA assays, or even perhaps surpass
them, as previous reports have suggested that methyla-
tion markers may be more stable and less susceptible to
random variations over time in human cancer specimens
[45]. Testing all these hypotheses in archived clinical
trial material, such as that of the NCI TARGET initia-
tive, could revolutionize an approach to adjuvant treat-
ment as well as treatment with demethylating agents,
such as decitabine, currently in clinical trials in meta-
static osteosarcoma. In addition, new studies employing
RNA and DNA methylation sequencing approaches will
provide further depth in our understanding of the clin-
ical and biologic effects addressed in this study. Finally,
our drug-gene interaction screen, though computational
in nature, was based on multiple sources of public ex-
perimental and clinical data, providing additional test-
able hypotheses for therapeutic development. Some of
the drugs from our screen are already in clinical devel-
opment for osteosarcoma (such as HDAC inhibitors),
and an altered mTOR/PISK/PTEN pathway was identi-
fied as a therapeutic target in 25% of tumors in a
recently reported osteosarcoma genomic study [46]. One
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might envision a possible combinatorial and stratified
application of these drugs, based on the molecular sub-
types presented here.

Conclusions

In conclusion, our findings support a set of clinically ap-
plicable biomarkers of osteosarcoma outcome localized on
the 14932 chromosome and suggest that this genomic re-
gion defines previously unrecognized molecular subtypes
with distinct transcriptional programs and epigenetic
regulation. An unmet medical challenge in osteosarcoma
is the propensity of this tumor for early metastasis despite
effective chemotherapy in a significant subset of patients.
Modulation of the non-coding 14q32 region may ultim-
ately address the highly proliferative and migratory poten-
tial of the aggressive subtypes, thus providing valuable
new therapeutic avenues in this disease.

Methods

Human and cell line miRNA, mRNA, and methylation
array data

We used three previously published clinically annotated
human osteosarcoma datasets. One consisted of DASL
miRNA expression data from 65 and mRNA data from
37 diagnostic biopsy specimens from Beth Israel Dea-
coness Medical Center and Boston Children’s Hospital
(called “Boston dataset,” GEO accession GSE39040), and
another consisted of Agilent miRNA expression data
from 27 frozen tissue specimens from the University of
Utah (called “Utah dataset,” Array Express accession E-
MTAB-1136). The third dataset consisted of ABI Taq-
Man human microRNA qRTPCR data from 25 frozen
diagnostic biopsy samples from the University of Texas
Health Science Center (called “Texas dataset,” GEO ac-
cession GSE79181, details of which were published be-
fore [10]). Cell line miRNA data (Agilent arrays) and
methylation data (Illumina 27K array) were derived from
19 osteosarcoma cell lines (published by the Institute of
Cancer Research, Oslo University, GEO accession
GSE28425, GSE36004). Transcription and methylation
array details as well as clinical cohort and cell line anno-
tations have been previously reported [6, 9, 11, 47].

We also used new data provided by the NCI, which
launched the TARGET initiative, producing a repository
of large-scale genomic data from a number of rare
pediatric cancers. Within the osteosarcoma TARGET
project, methylation profiles for 86 osteosarcoma pa-
tients (Illumina 450K array) and miRNA expression pro-
files for 89 osteosarcoma patients (MegaPlex TagMan)
became recently publicly available (http://target.nci.nih.-
gov/dataMatrix/TARGET _DataMatrix.html, retrieved
November 10, 2016). The NCI has currently placed a
limitation on publishing findings from analyzing osteosar-
coma TARGET data. (https://ocg.cancer.gov/programs/
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target/target-publication-guidelines). This limitation al-
lows investigators to only publish data from a focused
analysis of a handful of genes, until the primary osteosar-
coma project TARGET investigator team publishes their
first “global” analysis of the genomic data. In complying
with this limitation, any TARGET-derived data we
present here are only related to methylation and expres-
sion analysis of a very small number of genes and miR-
NAs, all focused on the 14q32 locus. Therefore, our
analysis is in no way similar in scope to the (currently un-
published) global genomic investigation of osteosarcoma
undertaken by the TARGET initiative.

For any global expression analysis in the Boston, Utah,
and Texas datasets, variance filtering was performed ex-
cluding 33% of probes with the lowest variance for the
miRNA arrays and 66% of probes with the lowest vari-
ance for mRNA arrays, before performing any genome-
wide (global) analyses. MiRNA expression values were
quantile normalized before being subjected to further
statistical analysis. For analyses involving methylation in-
tensity, we utilized the M value (a transformation of the
conventional beta value) as it has been shown to possess
better statistical properties for differential analysis [48].
Further methodological details related to processing and
analyzing these data are provided in Additional file 13.

Recurrence and survival prediction and tdROC curves

In order to avoid overfitting, we used the signed average
method and leave-one-out cross-validation in all survival
analyses. In this approach, we averaged the expression
levels of individual miRNA features in each candidate
profile, weighted only by the sign of their hazard ratio
(positive or negative) in univariate Cox regression ana-
lysis, and the resulting signed averaged metric was used
as the prognostic index [49-51]. Kaplan-Meier analysis
with log-rank test and Cox regression were used to
analyze or model recurrence and survival as necessary.
In the Utah dataset, time-censored recurrence data were
not available, so we used overall survival as the time-
censored endpoint. Time-dependent receiver operating
characteristic (tdROC) and area under the curve (AUC)
analyses were performed as previously described. For the
Boston dataset, the tdROC endpoint was 120 months,
while for the Utah dataset, it was set to 60 months due
to the shorter follow-up available in that study. Penal-
ized multivariate Cox regression analysis was performed
as previously described [52].

Class comparison, gene set enrichment, and clustering

Two-class comparison of continuous variables was done
using the ¢ test, and p values were corrected with the
Benjamini-Hochberg FDR test while the Mann-Whitney
test was used for non-parametric two-class continuous vari-
able comparisons. In the case of testing a small number of
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variables based on prespecified hypotheses, we present un-
adjusted univariate p values. Univariate two-sided p values
<0.05 were considered significant, except in some explora-
tory analyses in cell lines involving a limited number of pre-
selected methylation and expression probes, where we also
report associations at a p < 0.1 as suggestive of biologic in-
ference. When examining the proposed molecular tumor
subtypes, not previously established in the literature, we
generated 100 random splits of the samples and considered
that the expression differences between the proposed sub-
types are significant if less than 5% of the random splits
showed the same degree of differential expression as the
proposed subtypes. We performed gene set analysis using
the KS/LS statistic to determine if the expression profiles of
the high- and low-risk groups were enriched for gene sets
or miRNA targets of interest, according to the functional
class scoring method [53]. Unsupervised hierarchical clus-
tering was performed with the average linkage method as
previously described [54]. We also used multidimensional
scaling to construct 3-D representation of sample locations
in the multivariate expression space.

Standard biostatistical tests

We explored categorical associations using 2 x 2 tables
and Fisher’s exact test. Spearman rank correlation was
used to determine the association between continuous
variables. The hypergeometric distribution test was used
to assess significance of the overlap between two miRNA
lists. All reported p values are two-sided.

Chromosomal coordinates for methylation site
localization and CTCF and enhancer binding site
identification

Data plots showing gene coordinates and CpG island
frequencies were plotted using Circos [55]. Chrl4q32
was defined as the region between the co-ordinates
89,800,000 and 109,000,000 on chromosome 14. The
location of genes, non-coding RNA, and miRNAs
within these co-ordinates were derived from UCSC
hgl9 gene annotation tables. UCSC bed file annota-
tions of CpG island locations in hgl9 were used to
determine CpG island location. CPG frequency was
determined by counting the number of CpG islands
within 100,000 bp upstream a given location. CTCF
binding sites in MEG3 were determined in previous
studies [16, 17]. These sites were cross-referenced
with the University of Tennessee CTCF binding site
database, which includes data from the UCSC genome
browser and the Broad Institute [56]. Search for en-
hancer sites was performed using the VISTA Enhan-
cer Browser (Lawrence Berkeley National Laboratory)
as previously described [33].
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MiRNA regulatory network analysis and drug-gene
interaction screen

We used a method called PUMA (PANDA using
MicroRNA Associations, Kuijjer et al., in preparation).
This is a network reconstruction algorithm that models
gene regulation by miRNAs and transcription factors
and is an extension of our previously published net-
work reconstruction method PANDA [19], which uses
message passing between regulatory, protein-protein
interaction, and gene expression data to model infor-
mation flow between regulators and their target genes.
PUMA extension works similar to PANDA, but in the
message-passing steps does not allow microRNAs to
form edges in the protein-protein interaction network,
thereby indirectly influencing microRNA-target gene
edges. We reconstructed networks for both subtypes
and generated a set of “background” permuted net-
works to estimate edge significance (defined as activity
score outside the four standard deviation range of the
background distribution. Details are provided in Add-
itional file 14, and implementation of the PUMA algo-
rithm is available at https://github.com/mararie/PUMA.
For drug target identification, we utilized the Drug
Gene Interaction Database (DGIdb) as previously de-
scribed [57].

Bioinformatics/biostatistics analysis software

We used the NCI BRB-ArrayTools software (developed by
Dr Richard Simon and the BRB-ArrayTools Development
Team) and the SPSS software, version 18 (IBM Corpor-
ation, NY).

Additional files

Additional file 1: Clinical characteristics of the Boston, Utah, and Texas
datasets. These published datasets were used to assess the prognostic
value of a subset of miRNA subsets located on 14932 via the tdROC curve
method. Available follow-up was different between the two datasets such
that we needed to choose a primary endpoint of 120 months for the
Boston dataset and 60 months for the Utah and Texas datasets.

(PDF 141 kb)

Additional file 2: Multivariate prognostic models including 14932 miRNA
profiles and clinicopathologic covariates, analyzed at the follow-up time of
120 months. (PDF 447 kb)

Additional file 3: Differentially expressed miRNAs between the two
subtypes in the three datasets. The Boston, Utah, and cell line data were
analyzed to determine the differential expression of their miRNA
population. (PDF 154 kb)

Additional file 4: Correlations between DICER and differentially expressed
miRNAs in the Boston dataset. DICERT is a gene that encodes for an
endoribonuclease essential for the formation of microRNA, and it is also
located on 14q32. We analyzed the correlation between miRNA expression
on the 1432 locus and DICER1 expression and found that a small fraction
(5%) of miRNAs was significantly correlated with DICERT. (PDF 174 kb)

Additional file 5: Boston dataset hierarchical clustering using the
messenger RNA (whole-genome) profiles. (Based on data available for a
subset of 37 patients only). (PDF 20 kb)
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Additional file 6: Correlations between prognostic miRNAs and other
14932 transcripts in the Boston dataset. Eighteen prognostic miRNAs that
we found on 14932 were compared with the remaining coding and
non-coding transcripts on that same locus to investigate whether a larger
pattern of co-regulation may exist. (PDF 424 kb)

Additional file 7: Association between prognostic 14932 miRNAs and
cell line aggressiveness (binary analysis). An analysis between 14932
miRNA expression and the following characteristics associated with cell
line aggressiveness was performed: proliferation, invasiveness, migration,
colony forming, and tumorigenicity. These attributes were analyzed as
binary (categorical) variables. (PDF 538 kb)

Additional file 8: Association between prognostic 14932 miRNAs and
cell line aggressiveness (continuous variable analysis). Spearman correlation
coefficients were assigned between 14g32 miRNAs and continuous variables
representing cell line aggressiveness (colony forming, invasiveness, migration,
and proliferation). (PDF 462 kb)

Additional file 9: Association between DLK1/MEG3 methylation and cell
line aggressiveness. The relationship between methylation and cell line
aggressiveness was analyzed for methylation site neighboring or on DLK7
and MEG3, both located on 14q32. This analysis was limited by the
number of available methylation probes for this region on the lllumina
methylation array. Cell line aggressiveness was assessed via colony
forming, invasiveness, migration, and tumorigenicity. (PDF 447 kb)

Additional file 10: Network edge differences between the two subtypes.
(PDF 557 kb)

Additional file 11: Significant network GO categories. (PDF 412 kb)

Additional file 12: Network gene-drug screen interactions. This includes
a detailed list of possible gene-drug interactions as a result from the screen
applied between the significant edges from the 5-miRNA network and the

Drug Gene Interaction Database. (PDF 488 kb)

Additional file 13: Supplementary methods. Additional details are
provided on certain aspects of our analytical procedures. (PDF 461 kb)

Additional file 14: Supplementary PUMA methods. This file is the detailed
protocol followed for the implementation of PUMA in order to reconstruct
networks for high- and low-risk osteosarcoma subtypes. (PDF 998 kb)
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