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Purpose: This study aimed to provide a comprehensive understanding of the

genome-wide expression patterns in the synovial tissue samples of patients with

rheumatoid arthritis (RA) to investigate the potential mechanisms regulating RA

occurrence and development.

Methods: Transcription profiles of the synovial tissue samples from nine patients with

RA and 15 patients with osteoarthritis (OA) (control) from the East Asian population were

generated using RNA sequencing (RNA-seq). Gene set enrichment analysis (GSEA) was

used to analyze all the detected genes and the differentially expressed genes (DEGs) were

identified using DESeq. To further analyze the DEGs, the Gene Ontology (GO) functional

enrichment and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway

analyses were performed. The protein–protein interaction (PPI) network of the DEGs

was constructed using the Search Tool for the Retrieval of Interacting Genes/Proteins

(STRING) and the hub genes were identified by topology clustering with the Molecular

Complex Detection (MCODE)-Cytoscape. The most important hub genes were validated

using quantitative real-time PCR (qRT-PCR).

Results: Of the 17,736 genes detected, 851 genes were identified as the DEGs

(474 upregulated and 377 downregulated genes) using the false discovery rate (FDR)

approach. GSEA revealed that the significantly enriched gene sets that positively

correlated with RA were CD40 signaling overactivation, Th1 cytotoxic module,

overactivation of the immune response, adaptive immune response, effective vs. memory

CD8+ T cells (upregulated), and naïve vs. effective CD8+ T cells (downregulated).

Biological process enrichment analysis showed that the DEGs were significantly enriched

for signal transduction (P = 3.01 × 10−6), immune response (P = 1.65 × 10−24),

and inflammatory response (P = 5.76 × 10−10). Molecule function enrichment analysis

revealed that the DEGs were enriched in calcium ion binding (P= 1.26× 10−5), receptor
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binding (P = 1.26 × 10−5), and cytokine activity (P = 2.01 × 10−3). Cellular component

enrichment analysis revealed that the DEGs were significantly enriched in the plasma

membrane (P = 1.91 × 10−31), an integral component of the membrane (P = 7.39 ×

10−13), and extracellular region (P= 7.63× 10−11). The KEGG pathway analysis showed

that the DEGs were enriched in the cytokine–cytokine receptor interaction (P = 3.05

× 10−17), chemokine signaling (P = 3.50 × 10−7), T-cell receptor signaling (P = 5.17

× 10−4), and RA (P = 5.17 × 10−4) pathways. We confirmed that RA was correlated

with the upregulation of the PPI network hub genes, such as CXCL13, CXCL6, CCR5,

CXCR5, CCR2, CXCL3, and CXCL10, and the downregulation of the PPI network hub

gene such as SSTR1.

Conclusion: This study identified and validated the DEGs in the synovial tissue samples

of patients with RA, which highlighted the activity of a subset of chemokine genes,

thereby providing novel insights into the molecular mechanisms of RA pathogenesis and

identifying potential diagnostic and therapeutic targets for RA.

Keywords: rheumatoid arthritis, osteoarthritis, synovial tissue, RNA-seq, differential gene expression

INTRODUCTION

Rheumatoid arthritis (RA) is an autoimmune disease
characterized by synovial inflammation, hyperplasia, and
cartilage and bone destruction. Clinical manifestations of
RA include joint pain, swelling, stiffness, and deformation
(1, 2). RA pathogenesis is thought to be related to genetic
and environmental factors, obesity, diet, and gut microbiota
composition (3, 4). Osteoarthritis (OA) is a joint disease
characterized by the degeneration of the synovial joint and loss
of articular cartilage, with primary clinical features including
pain and loss of mobility (5). Genetic factors, diet, estrogen
level, obesity, bone density, and joint laxity play a role in the
pathogenesis of OA (6). As both the RA and OA share common
physiological targets, biomarkers present in the synovial tissue
that could discriminate between these diseases should be
determined (7, 8).

Transcriptomics is tissue specific and it offers an avenue for
the investigation of the effects of the disease at the cellular
level that is likely to play an important role in the etiology
of the disease (9). RNA sequencing (RNA-seq) technology has
become the primary step in transcriptomic studies for the
characterization of gene expression within cells and tissues.
Therefore, identification of differential gene expression in the
synovial tissues of patients with RA and OA using RNA-seq
may provide new insights into the molecular pathophysiology of
these diseases.

In this study, to better understand the functional differences
at the transcriptome level between RA and OA, we analyzed
the whole genes detected by gene set enrichment analysis
(GSEA), identified the differentially expressed genes (DEGs)
in the synovial tissue samples of patients with RA and OA
using RNA-seq, analyzed the DEGs by the Gene Ontology (GO)
functional enrichment and the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analyses, constructed the protein–
protein interaction (PPI) network, and screened and verified

the hub genes. The validated hub genes may serve as critical
molecular markers for identifying differences in the synovial
tissues of patients with RA and OA due to their central role in
gene expression networks.

MATERIALS AND METHODS

Patient Information and Tissue Collection
In this study, we included nine patients with RA, who
were diagnosed based on the 2010 American College of
Rheumatology (ACR)/European League Against Rheumatism
(EULAR) classification criteria for RA (10) and 15 patients
with OA, who were diagnosed according to the ACR OA
classification criteria (11). The synovial tissue samples of patients
with RA and OA were obtained from the Guanghua Hospital,
Shanghai, China. All of the involved patients underwent a knee
replacement. After removing excess fat and vascular tissue, the
synovial tissue samples were placed in liquid nitrogen till further
use. The demographic information of patients with RA is given
in Table 1 and clinical information of patients with RA and OA
is given in Supplementary Table 1. This study was approved
by the Ethics Committee of Guanghua Hospital of Integrated
Traditional Chinese and Western Medicine (approval number:
2018-K-12) and a written consent was obtained from all the
patients prior to knee replacement.

Ribonucleic Acid Isolation and Library
Preparation
Total RNA was extracted from the synovial tissue samples
using TRIzol Reagent (Thermo Fisher Scientific, Waltham,
Massachusetts, USA) according to the manufacturer’s protocol.
ANanoDrop 2000 Spectrophotometer (Thermo Fisher Scientific)
was used to evaluate RNA quality and quantify each RNA sample.
RNA integrity was assessed using the Agilent 2100 Bioanalyzer
(Agilent Technologies, Santa Clara, California, USA). Total
RNA with a standard RNA integrity number (RIN) ≥ 7.0 and
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TABLE 1 | Demographic information of patients with rheumatoid arthritis (RA).

Course

(month)

Age

(year)

Gender H/W

(cm)/(kg)

ESR

(mm/h)

CRP

(mg/L)

RF-IGM

(IU/ml)

RF-IGG

(U/ml)

RF-IGA

(U/ml)

Anti-CCP

(RU/ml)

RA1 20 73 F 150/47 65 19.6 25.3 22.39 23.32 326.2

RA2 10 62 F 155/55 40 5.15 9.69 2.2 0.63 <20

RA3 14 61 F 163/62 16 6.28 <20 6.91 188.63 1,600

RA4 20 57 F 150/35 80 178.3 528 198 300 1,197.4

RA5 3 72 M 165/50 53 10.96 45.2 24.15 22.02 1,555.9

RA6 40 70 F 150/45 27 20.68 \ \ \ \

RA7 54 70 F 160/71 48 <0.5 \ \ \ \

RA8 2 64 F 16,360 65 44.28 <10.10 0.15 0.26 20

RA9 7 75 F 160/55 66.76 72.52 \ \ \ \

H/W, Height/Weight; F, Female; M, Male; ESR, Erythrocyte Sedimentation Rate; CRP, C-reactive protein; RF, Rheumatoid Factor; CCP, Cyclic Citrullinated Peptide Antibody.

Smoking: None of the patients, Hypertension: RA7 (10 years)/RA8 (20 years)/RA9 (5 years), Diabetes: RA7 (3 years).

28S/18S ≥ 0.7 was subjected to RNA-seq. RNA libraries were
constructed using the TruSeq Stranded mRNA LT Sample Prep
Kit (Illumina, San Diego, California, USA) according to the
manufacturer’s instructions.

Ribonucleic Acid Sequencing and
Identification of the Differentially
Expressed Genes
The libraries were sequenced on an Illumina HiSeq × 10
platform. Raw data (raw reads) in FASTQ format were first
processed using Trimmomatic (12) and low-quality reads were
removed to obtain clean reads. Clean reads were then mapped to
the human genome (GRCh38) usingHISAT2 (13). The fragments
per kilobase of transcript per millions mapped reads (FPKM)
of each gene were calculated using Cufflinks (14, 15) and the
read counts of each gene were obtained using HTSeq-Count (16).
Differential expression analysis was performed using the DESeq
R package (17). An adjusted P< 0.05 and |log2FoldChange|≥ 1.5
were set as the threshold for significant differential expression;
P-value was adjusted using the false discovery rate (FDR). The
expression profiling data were obtained from https://github.com/
dongyihe/rheumatoidarthritis.

Gene Set Enrichment Analysis Based on
RNA Sequencing Effectively Detected
Genes
Gene set enrichment analysis was performed using a defined
set of genes to determine statistically significant differences
between the RA and OA groups, using R software (https://
www.r-project.org) and the data set was obtained from the
Molecular Signatures Database version 7.2 (MSigDB; GSEA-
MSigDB website). MSigDB is a database of gene sets used for
GSEA (18). |Normalized enrichment score (NES)| ≥ 1, P ≤

0.05, and FDR ≤ 0.25 were selected as the cutoff criteria for
statistically significant differences. ES is enrichment score, NES
is the normalized ES value after correction, P indicates the
confidence of enrichment results, and FDR is an estimate of the
probability of false-positive results for NES, so the smaller the
FDR, the more significant the enrichment (19, 20). The MSigDB

gene set includes nine major collections (H:C8). C2 (curated
gene sets), C5 (ontology gene sets), and C7 (immunological
signature gene sets) were the target datasets for this study.
The R code was obtained from https://github.com/dongyihe/
rheumatoidarthritis.

Gene Ontology Functional Enrichment and
the Kyoto Encyclopedia of Genes and
Genomes Pathway Analysis
The DEGs were annotated using the GO functional
enrichment analysis, which included biological process
(BP), molecular function (MF), and cellular component
(CC) domains, and the KEGG pathway analysis (21). The
KEGG is a database that provides information regarding
gene functions at the molecular and higher levels, including
biochemical pathways (22). Annotation and visualization
were performed using the clusterProfiler package (23) (an R
package for comparing biological themes among gene clusters).
Enrichment analysis was performed using the hypergeometric
test. Adjusted P < 0.05 was selected as the cutoff criterion
indicating a statistically significant difference. P was adjusted
using FDR.

PPI Network Construction and
Identification of Hub Genes
The protein–protein interaction network was constructed using
the Search Tool for the Retrieval of Interacting Genes/Proteins
(STRING), a database that provides all the exposed PPI (24). The
minimum required interaction score had the highest confidence
(0.900). Hub genes were screened and visualized using the
Molecular Complex Detection (MCODE) and CytoHubba
plugins in Cytoscape version 3.7.2 for the visualization,
modeling, and analyses of the molecular and genetic interaction
networks (25). The MCODE and CytoHubba plugins can
identify hub genes from complex interaction networks and
help to lock the hub genes in a computationally efficient
manner (26).
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FIGURE 1 | Principal component analysis (PCA) plot of samples and volcano plot and heat map of the differentially expressed genes (DEGs). (A) PCA plot of samples

and (B) Volcano plot of DEGs. The red dots represent upregulated genes and the blue dots represent downregulated genes. The tagged genes are the top 30 genes

with a false discovery rate (FDR) < 0.05. (C) Heat map of DEGs.

Validation of Hub Gene Expression by
Quantitative Real-Time PCR
To validate the reliability of RNA-seq analysis in identifying
the DEGs and to determine the expression levels of the 10
selected hub genes, quantitative real-time PCR (qRT-PCR)
was conducted. Total RNA was extracted from 9 RA and 15
OA synovial tissue samples using TRIzol Reagent (Thermo
Fisher Scientific) and reverse-transcribed to complementary
DNA (cDNA) using the PrimeScriptTM RT Master Mix
(Perfect Real Time) (Takara Bio Incorporation, Beijing,
China). A qRT-PCR was then performed using the TB
Green R© Premix Ex TaqTM (Tli RNase H Plus) (Takara
Bio Incorporation). β-actin gene was used as the internal
reference. The relative messenger RNA (mRNA) expression was
calculated using the 2−11Ct method. The Mann–Whitney U
test was used for statistical analysis and P <0.05 indicated a
significant difference.

RESULTS

Identification of the Differentially
Expressed Genes in the Rheumatoid
Arthritis Synovial Tissue Samples Using
RNA Sequencing
Sequencing data comprised 17,736 genes, of which 851 genes
were identified as the DEGs, as they met the following
threshold criteria: adjusted P < 0.05 and |log2FoldChange|
≥ 1.5. We identified 474 upregulated and 377 downregulated
genes. The principal component analysis (PCA) plot of the
samples is shown in Figure 1A and the volcano plot and heat
map of the DEGs are shown in Figures 1B,C, respectively.
Details of the top 30 DEGs are given in Table 2, details
of the DEGs encoding chemokines are given in Table 3,
and the information about all the DEGs is shown in
Supplementary Table 2.
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TABLE 2 | Information of the top 30 differentially expressed genes (DEGs).

Gene_id avFPKM_OA avFPKM_RA log2FC p-Value FDR

ABCA8 1,946.28 377.46 −2.37 2.73 × 10−24 5.15 × 10−20

DUSP27 44.94 2.49 −4.18 3.61 × 10−23 3.41 × 10−19

IL32 408.08 1,658.18 2.02 3.71 × 10−21 2.33 × 10−17

PDCD1 12.52 159.29 3.67 4.60 × 10−19 2.17 × 10−15

NLGN1 67.60 10.70 −2.66 3.45 × 10−18 1.12 × 10−14

TNFRSF4 29.51 157.31 2.41 3.55 × 10−18 1.12 × 10−14

HLA-B 11,329.54 35,134.52 1.63 2.13 × 10−17 5.26 × 10−14

IL2RG 144.67 1,236.88 3.10 2.23 × 10−17 5.26 × 10−14

CD72 41.59 236.99 2.51 7.50 × 10−17 1.42 × 10−13

HCST 94.90 297.26 1.65 7.34 × 10−17 1.42 × 10−13

SFRP1 8,919.41 1,780.61 −2.32 8.28 × 10−17 1.42 × 10−13

GBP1 533.48 2,126.68 2.00 2.37 × 10−16 3.72 × 10−13

PTPRF 1,963.24 659.86 −1.57 3.85 × 10−16 5.59 × 10−13

JAKMIP1 7.78 46.89 2.59 4.43 × 10−16 5.97 × 10−13

PLPP3 7,762.40 2,173.36 −1.84 4.93 × 10−16 6.20 × 10−13

GNAL 651.95 158.73 −2.04 5.46 × 10−16 6.44 × 10−13

CXCR3 20.85 127.90 2.62 6.15 × 10−16 6.83 × 10−13

DCANP1 7.64 67.11 3.14 9.92 × 10−16 1.04 × 10−12

CALHM6 76.69 344.55 2.17 1.22 × 10−15 1.12 × 10−12

JCHAIN 347.73 9,237.36 4.73 1.25 × 10−15 1.12 × 10−12

LGALS2 29.85 111.12 1.90 1.22 × 10−15 1.12 × 10−12

UNC5C 455.87 136.78 −1.74 6.11 × 10−15 5.25 × 10−12

THRB 708.52 243.86 −1.54 1.01 × 10−14 8.20 × 10−12

GZMK 66.52 441.11 2.73 1.60 × 10−14 1.16 × 10−11

KLHDC7B 6.85 73.53 3.42 1.59 × 10−14 1.16 × 10−11

CD2 95.86 515.80 2.43 1.81 × 10−14 1.27 × 10−11

HPGDS 370.10 124.98 −1.57 3.19 × 10−14 2.15 × 10−11

ITGAL 201.08 1,024.91 2.35 5.80 × 10−14 3.65 × 10−11

AIM2 17.21 219.82 3.67 7.50 × 10−14 4.49 × 10−11

NPP5 161.32 44.14 −1.87 7.61 × 10−14 4.49 × 10−11

GZMA 61.58 319.25 2.37 1.03 × 10−13 5.88 × 10−11

Identification of RA-Related Gene
Signatures Using GSEA
The first part is the enrichment score line graph: the score at the
highest peak is the ES value of the gene set. In the second part,
the black lines represent gene positions in the sorted gene table.
The leading edge subset is the part of the genes corresponding
to the origin to the peak ES of the green curve, indicating the
genes that have amajor contribution to the enrichment. The third
part is the distribution of the rank values of all the genes after
sorting. The genes corresponding to the red part of the heat map
are highly expressed in RA, the genes corresponding to the blue
part are highly expressed in OA, and the signal-to-noise ratio
corresponding to each gene is shown in the gray area map. In C3
(curated gene sets), the significantly enriched gene sets positively
correlated with the RA group were CD40 signaling up (NES =

2.38, FDR = 6.16 × 10−9) and Th1 cytotoxic module (NES =

2.50, FDR= 6.16×10−9) (Figure 2A). In C5 (the Ontology Gene
sets), the significantly enriched gene sets positively correlated
with the RA group were activation of immune response (NES =
2.15, FDR = 1.23 × 10−9) and adaptive immune response (NES

= 2.62, FDR= 1.23× 10−9) (Figure 2B). In C7, the upregulation
of the gene set of effective vs. memory CD8+ T cell is related
to RA-related genes (NES = 2.13, FDR = 3.17×10−9). The
downregulation of the gene set of naïve vs. effective CD8+ T cell
is related to RA-related genes (NES = 2.39, FDR = 3.17×10−9)
(Figure 2C).

Gene Ontology Functional Enrichment
Analysis and the Kyoto Encyclopedia of
Genes and Genomes Pathway Analysis
The gene ontology functional enrichment analysis revealed
that the DEGs were enriched in the signal transduction
(P = 3.01 × 10−6), immune response (P = 1.65 ×

10−24), and inflammatory response (P = 5.76 × 10−10)
functions of the BP domain. In the MF domain, the
DEGs were enriched in the calcium ion binding (P =

1.26 × 10−5), receptor binding (P = 1.26 × 10−5), and
cytokine activity (P = 2.01 × 10−3) functions. In the CC
domain, the DEGs were enriched in the plasma membrane
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TABLE 3 | Information of the differentially expressed chemokine genes.

Gene_id avFPKM_OA avFPKM_RA log2FC P-Value FDR

CXCR3 20.85 127.90 2.62 6.15 × 10−16 6.83 × 10−13

CCL5 241.33 1,256.73 2.38 3.53 × 10−13 1.75 × 10−10

CXCL9 137.86 2,202.23 4.00 1.02 × 10−12 3.89 × 10−10

CXCR6 12.63 74.57 2.56 9.95 × 10−13 3.89 × 10−10

CXCL11 10.92 88.53 3.02 1.38 × 10−10 2.27 × 10−08

CCR5 160.37 643.42 2.00 7.81 × 10−10 9.46 × 10−08

CXCL10 56.74 599.22 3.40 9.14 × 10−09 7.98 × 10−07

CXCL13 6.55 1,202.88 7.52 7.83 × 10−08 4.56 × 10−06

CXCR4 965.34 3,547.62 1.88 1.04 × 10−06 3.97 × 10−05

CXCR5 3.05 68.30 4.48 3.02 × 10−06 9.66 × 10−05

CXCL3 32.45 151.69 2.22 2.05 × 10−05 4.74 × 10−04

CXCL6 77.05 321.63 2.06 3.71 × 10−05 7.66 × 10−04

CXCL5 3.35 54.10 4.01 6.70 × 10−05 1.24 × 10−03

CCR7 21.62 193.51 3.16 9.99 × 10−05 1.72 × 10−03

CCR2 12.06 49.70 2.04 2.02 × 10−04 2.99 × 10−03

CCR6 13.89 73.30 2.40 5.04 × 10−04 6.31 × 10−03

CCR4 12.55 61.95 2.30 5.77 × 10−04 7.03 × 10−03

CCL24 2.70 26.65 3.30 3.44 × 10−03 2.84 × 10−02

CCL17 2.84 28.75 3.34 3.83 × 10−03 3.09 × 10−02

CCL18 730.31 5,798.06 2.99 3.90 × 10−03 3.13 × 10−02

CCL11 0.59 4.00 2.77 5.27 × 10−03 3.92 × 10−02

CCL25 0.48 3.60 2.92 6.15 × 10−03 4.40 × 10−02

(P = 1.91× 10−31), integral component of membrane (P =

7.39 × 10−13), and extracellular region (P = 7.63 × 10−11)
functions (Figures 3A,B). Detailed information is given
in Supplementary Table 3. The KEGG pathway analysis
revealed that the DEGs were enriched in the cytokine–
cytokine receptor interaction (P = 3.05 × 10−17), chemokine
signaling (P = 3.50 × 10−7), T-cell receptor signaling (P
= 5.17 × 10−4), and rheumatoid arthritis (P = 5.17 ×

10−4) pathways (Figures 3C,D). The important pathways
involved in the cytokine–cytokine receptor interaction and
RA are shown in Figure 4. Detailed information is given in
Supplementary Table 4.

PPI Network Development and
Identification of Hub Genes in Rheumatoid
Arthritis
Using the STRING database, our analysis produced 833
nodes and 1,639 edges and the PPI enrichment P-value
was 1.0 × 10−16. Using the MCODE plugin in Cytoscape,
30 modules were identified. The important five modules
are given in Figure 5. Using both the MCODE and
cytoHubba plugins in Cytoscape, we identified C-X-
C motif chemokine ligand (CXCL) 13, CXCL6, CXCL3,
CXCL10, C-C motif chemokine receptor (CCR) 5, CCR2,
CCR7, C-X-C motif chemokine receptor 5 (CXCR5),
somatostatin receptor (SSTR) 1, and SSTR3 genes as the
hub genes.

Validation of Rheumatoid Arthritis-Related
Hub Genes
The expression levels of the 10 selected hub genes in the synovial
tissue samples from patients with RA and OA were validated by
qRT-PCR. The primer sequences used for this experiment are
given in Table 4. Statistical analysis showed that the expression
levels of CXCL13 (P < 0.0001), CXCL6 (P = 0.0252), CCR5 (P
= 0.0002), CXCR5 (P = 0.0033), CCR2 (P = 0.0073), CXCL3 (P
= 0.0314), and CXCL10 (P < 0.0001) in the RA synovial tissue
samples were significantly higher than those in the OA synovial
tissue samples, while the expression level of SSTR1 (P = 0.0486)
was significantly higher in the OA synovial tissue samples than in
the RA synovial tissue samples (Figure 6).

DISCUSSION

Rheumatoid arthritis and OA are two common types of
arthritis that present with inflammation but have distinct
etiologies, clinical trajectories, and treatments. The pathogenesis
and manifestations of these two diseases are complex, with
clinical heterogeneity in presentation and disease course (8, 27).
Distinguishing between RA and OA is critically important for
early diagnosis, appropriate treatment, and elucidation of the
underlying pathophysiology of these disorders. Previous studies
have demonstrated that synovial tissue plays an important role in
the occurrence and development of RA and OA. Previous studies
mostly used microarray technology to study the differential
expression profile data of RA andOA, which played an important
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FIGURE 2 | GSEA plot of all the detected genes. (A) C2, curated gene sets; (B) C5, the Ontology Gene sets; and (C) C7, immunologic signature gene sets. GSEA,

gene set enrichment analysis; ES, enrichment score; NES, normalized enrichment score. The green line means enrichment profile. The red part of the heat map

represents the genes that are highly expressed in rheumatoid arthritis (RA), the blue part of the heat map represents the genes that are highly expressed in

osteoarthritis (OA), and the gray area of the heat map represents the signal-to-noise ratio of each gene.
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FIGURE 3 | The Gene Ontology (GO) functional enrichment and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the DEGs. (A) Dot plot

of the GO functional enrichment analysis (the top five terms of each domain); (B) bar plot of the GO functional enrichment analysis (the top five terms of each domain);

(C) dot plot of the KEGG pathway analysis; and (D) bar plot of the KEGG pathway analysis. The size of the dots and the height of the histogram represent the number

of enriched genes and the color represents the P-value. The bigger the dot, the higher the column, and the more genes are enriched. The darker the color, the smaller

the P-value.

role in the study of RA. However, microarray technology can only
detect known sequences, while sequencing technology can detect
unknown sequences and discover unknown genes. Compared
with first-generation sequencing technology, second-generation
sequencing technology has high throughput and high sensitivity
and may discover new disease-causing genes. In this study,
second-generation sequencing was used to analyze the synovial
tissue samples obtained from patients with RA and OA. We
identified the DEGs between the two samples, analyzed the
functions and pathways of the DEGs, and validated the hubDEGs
by qRT-PCR.

In previous studies, synovial tissue datasets in the Gene
Expression Omnibus (GEO) database, such as GSE55235 and
GSE12021, were used for bioinformatics analysis of RA. These
studies were based on different datasets and identified genes
(28, 29). Li et al. (30) found that vascular endothelial growth
factor A and epidermal growth factor receptor may have essential
roles in the development of RA and can be used as potential
biomarkers of RA. Ren et al. (29) suggested that a set of eight
genes (CCR5, CCL5, CXCL9, CXCL10, CXCL13, PNOC, TLR8,
and CD52) can be used to diagnose RA with excellent specificity
and sensitivity. To further analyze the transcriptome of the
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FIGURE 4 | The two most important pathways identified through the KEGG pathway analysis. (A) The cytokine–cytokine receptor interaction pathway and (B) the

rheumatoid arthritis pathway. The red boxes represent upregulated genes and the dark green boxes represent downregulated genes.

synovial tissue samples of patients with RA, we collected the
samples from patients with RA and OA present at the same
rheumatology hospital, performed RNA-seq, and investigated

the pathways, gene networks, and hub genes. In this study, OA
was used as the control group to study RA biomarkers. We
performed transcriptomic analysis of the synovial tissue samples
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FIGURE 5 | The PPI network and hub genes (top five modules). The significant modules identified by the Molecular Complex Detection (MCODE) and the cytoHubba

plugin of Cytoscape. The size and color of circles represent the degree of the hub gene. The darker the color, the bigger the circle, and the higher the degree of the

core gene. DEG, differentially expressed gene; PPI, protein–protein interaction.

of patients with RA and OA using RNA-seq and determined that
the identified DEGs can be used as biomarkers for diagnosing
the two diseases. Further study using these biomarkers should
be conducted.

In this study, 17,736 genes were identified. GSEA is sensitive
in detecting genes with relatively small fold changes (31).
The significantly enriched curated gene sets that positively
correlated with RA were CD40 signaling and Th1 cytotoxic
module. CD40 signaling is associated with the production of
human rheumatoid factor (32) and the CD40/nuclear factor-
kappa B (NF-kB) signaling pathway plays an important role
in RA pathogenesis (33). The Th1 cytotoxic module has not
been reported to be related to RA, but Th1 cytotoxicity

is reportedly associated with the tumor microenvironment
(34). The significantly enriched Ontology Gene sets that
positively correlated with the RA group were involved in
the activation of the immune response and adaptive immune
response. RA is an autoimmune disease that affects both
innate and adaptive immunities (35). The significantly enriched
immunologic signature gene sets that positively correlated
with the RA group were effective vs. memory CD8+ T
cells (upregulated) and naïve vs. effective CD8+ T cells
(downregulated). CD8+ T cells are involved in the pathogenesis
of many autoimmune diseases, mainly because of their self-
reactive cytotoxic inflammatory behavior (36). Effective CD8+
T cells have proliferative and cytotoxic properties and induce the
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death of infected cells and effective memory CD8+ T cells have
a lower ability to induce cytotoxicity than effective CD8+ T cells
(36, 37).

TABLE 4 | Gene primer sequences.

Gene Primer sequence

SSTR3 FORWARD 5′-ATGGACATGCTTCATCCATCAT-3′

REVERSE 5′-CACATAGATGACCAGCGAGTTA-3′

SSTR1 FORWARD 5′-TGTTGTACACATTTCTCATGGG-3′

REVERSE 5′-CATCTTAGCAATGATGAGCACG-3′

CCR5 FORWARD 5′-GCAGCTCTCATTTTCCATACAG-3′

REVERSE 5′- GACACCGAAGCAGAGTTTTTAG-3′

CCR7 FORWARD 5′-CATGCTCCTACTTCTTTGCATC-3′

REVERSE 5′-CACTGTGGCTAGTATCCAGATG-3′

CXCL6 FORWARD 5′-TGAGAGTAAACCCCAAAACGAT-3′

REVERSE 5′-CAAACTTGCTTCCCGTTCTTC-3′

CXCL3 FORWARD 5′-GCGTCCGTGGTCACTGAACTG-3′

REVERSE 5′-AGTGTGGCTATGACTTCGGTTTGG-3′

CCR2 FORWARD 5′-CCAACGAGAGCGGTGAAGAAGTC-3′

REVERSE 5′- CGAGTAGAGCGGAGGCAGGAG-3′

CXCR5 FORWARD 5′-CGGCAGACACGCAGTTCCAC-3′

REVERSE 5′-ACGGCAAAGGGCAAGATGAAGAC-3′

CXCL10 FORWARD 5′-CTCTCTCTAGAACTGTACGCTG-3′

REVERSE 5′-ATTCAGACATCTCTTCTCACCC-3′

CXCL13 FORWARD 5′-CAAGGTGTTCTGGAGGTCTATT-3′

REVERSE 5′-TGAATTCGATCAATGAAGCGTC-3′

In this study, 851 DEGs were identified, of which 474
DEGs were upregulated and 377 DEGs were downregulated.
The GO functional enrichment analysis revealed that the DEGs
were enriched in signal transduction, immune response, and
inflammatory response (BP domain); in calcium ion binding,
receptor binding, and chemokine activity (MF domain); and in
the plasma membrane, an integral component of membrane,
and extracellular region (CC domain). The KEGG pathway
analysis showed that the DEGs were enriched in the cytokine–
cytokine receptor interactions, chemokine signaling, T-cell
receptor signaling, and RA pathways. The DEGs were mainly
concentrated in immune and inflammation-related pathways.

Ten DEGs were identified as hub genes using the MCODE
and the cytoHubba plugin of Cytoscape. According to the qRT-
PCR validation, the expression levels of CXCL13, CXCL6, CCR5,
CXCR5, CCR2, CXCL3, and CXCL10 in the RA synovial tissue
samples were higher than that in OA synovial tissue samples,
while the expression of SSTR1 showed the opposite trend. The
expression levels of CCR7 and SSTR3 did not differ between
the RA and OA synovial tissue samples. CXCL13, CXCL10,
CXCL6, and CXCL3 are the main members of the chemokine
subfamily CXC. CXCL13, a B-cell chemokine, interacts with its
receptor CXCR5 to promote the migration and aggregation of
B lymphocytes (38). The expression level of CXCL13 in the
serum of patients with RA is positively correlated with the level
of rheumatoid factor and with disease activity and treatment
response in early RA (39–41). CXCL10 is a ligand for CXCR3,
which may stimulate the migration of monocytes, natural killer

FIGURE 6 | Validation of the 10 hub DEGs identified in the synovial tissue samples of patients with RA and OA by quantitative real-time PCR (qRT-PCR). The relative

expression levels of each gene were calculated using the 2−11Ct method. ****, P < 0.0001, ***, P < 0.005, **, P < 0.01, *, P < 0.05.
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cells, and T cells (42). The expression of CXCL10 has been
detected in the serum, synovial fluid, and synovial tissue of
patients with RA (43, 44). Therefore, CXCL10 could act as a
disease activity marker in early RA because of its high level in
the plasma of untreated early patients with RA and its association
with clinical disease activity (45). This study confirmed the high
expression level of CXCL10 in the RA synovial tissue samples,
which was significantly higher than that in the OA synovial tissue
samples. CXCL3 is associated with the invasion and metastasis
of various cancers (46–48) and CXCL3 and CXCL6 are involved
in the invasion and migration of various cancers (49–51). The
differential expression of CXCL3 and CXCL6 in the RA and OA
synovial tissue samples is not yet reported. CCR7, CCR5, and
CCR2 are chemokine receptors.CCR5 is expressed in RA synovial
tissue and in T-helper cell type 1 inflammatory infiltrates. The
Delta32 allelic variant of CCR5 has been reported to have a
protective effect on RA susceptibility (52); however, the effect of
CCR5 inhibitors on RA remains controversial (53–55). CCR2 has
been widely considered as a potential therapeutic target for RA
and CCR2 blocking agents have been developed (56). Monocyte
chemoattractant protein 1 (CCL2) and its high-affinity receptor
CCR2 are central to the development of pain associated with knee
OA. Thus, CCR2 plays an important role in both the RA and OA.
This study found that the expression levels of CCR2 in the RA
and OA synovial tissue samples were different, which are likely
related to its different functions in RA and OA pathogenesis.
Somatostatins can regulate diverse cellular functions such as
neurotransmission and cell proliferation. SSTR1 is associated
with various cancers, such as prostate cancer (57) and gastric
cancer (58). The role of SSTR1 in RA and OA has not yet been
studied and the present results may provide a basis for future
study on arthritis.

Osteoarthritis referred to degenerative joint disease and RA
referred to joint disease caused by immune disorders. OA was
used as the control group for RA, which had advantages but
also limitations. The main limitation of this study was that
inflammation was not properly investigated. RA is characterized
by persistent synovitis and systemic inflammation and in the
course of the development of OA, synovial inflammation is
also observed. Although study on systemic inflammation in OA
remains controversial, RA and OA have different mechanisms of
inflammation as elucidated by the present results. These different
mechanisms will be the focus of our future study.

In this study, RNA-seq technology was used to supplement
the previous microarray technology and qRT-PCR technology
was used to supplement and verify the previous conclusions. At
the same time, bioinformatics technology was combined with
experimental technology to make the results more reliable and
provide a reliable preliminary basis for future study.

CONCLUSION

Ribonucleic acid sequencing was used to detect differential gene
expression in the RA and OA synovial tissue samples. Using
bioinformatics, the DEGs were identified in the RA and OA
synovial tissue samples and the GO functional and the KEGG

pathway enrichment analyses of the DEGs were performed. The
hub DEGs such as SSTR1, CXCR5, CXCL6, CXCL3, CXCL13,
CXCL10, CCR7, and CCR2 were validated by qRT-PCR. This
study enriched the expression profile data of the DEGs in the
synovial tissue of patients with RA and OA and provides novel
insights into the differences between RA and OA. The candidate
DEG pathways might be therapeutic targets and biomarkers for
RA or OA.
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