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Genes communicate with each other through different regulatory effects, which lead

to the emergence of complex network structures in cells, and such structures are

expected to be different for normal and cancerous cells. To study these differences,

we have investigated the Gene Regulatory Network (GRN) of cells as inferred from

RNA-sequencing data. The GRN is a signed weighted network corresponding to the

inductive or inhibitory interactions. Here we focus on a particular of motifs in the GRN,

the triangles, which are imbalanced if the number of negative interactions is odd. By

studying the stability of imbalanced triangles in the GRN, we show that the network of

cancerous cells has fewer imbalanced triangles compared to normal cells. Moreover, in

the normal cells, imbalanced triangles are isolated from the main part of the network,

while such motifs are part of the network’s giant component in cancerous cells. Our

result demonstrates that due to genes’ collective behavior the structure of the complex

networks is different in cancerous cells from those in normal ones.

Keywords: gene regulatory networks, cancerous cells, stability, sign network, balance theory, max entropy,

inverse problem

INTRODUCTION

Cancers are a large family of diseases that involve abnormal cell growth with the potential to invade
or spread to other parts of the body (Pezzella et al., 2019). From the reductionist perspective,
cancer is known as a disease of the genes. From this perspective, related studies focus on finding
particular genes for each type of cancer and, consequently, diagnosing or curing cancer face
formidable challenges. On the other hand, from the complexity theory perspective, collective
behaviors emerged from the interactions of systems withmany interacting units, are not describable
solely by knowing the behavior of the system’s building blocks (genes), and we cannot understand
what happens at a higher level of organization by just studying how each element works at a lower
scale. In other words, we need a holistic point of view to study the collective behavior of the genes
(Zhou et al., 2014). The human body contains more than 10 trillion (1013) cells, originating from a
single one. Cells differ from each other, depending on which genes are turned on (Bianconi et al.,
2013). The process by which information from a gene is used to synthesize functional gene products
(often proteins) is called gene expression. Today, there are several projects globally, compiling
genomic information related to cancers, and recent advances with sequencing technology reveal
the high importance of these projects. Despite all the advances in technology and analysis in
genome sequences, it seems that cancer remains indomitable to a large extent. While we know
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some genes play an essential role in specific cancers, we are often
far from controlling, let alone curing them (Goh et al., 2007;
Jeyashree Krishnan et al., 2020).

Gene expressions are not independent (Demicheli and
Coradini, 2011). They communicate with each other through
regulatory effects, in a sense that some genes can up-regulate
or down-regulate the expression level of other genes. These
complex interactions between the genes can lead to collective
behavior and result in changing the state of the cell. Complex
systems consist of heterogeneous agents mutually influenced
via interactions of different intensities over multiple spatio-
temporal scales. This heterogeneity encompassed in both the
participating components and their varying interactions makes
complex systems difficult to decipher. To understand and
control these complex systems, the network theory provides an
effective mathematical modeling framework that enables the
encoding of the entities (nodes) of a complex system and their
heterogeneous interactions (links) of different strength (weights)
into a topological network configuration implicitly embedded
in metric spaces, where the distance among nodes is decided
both by the structural configuration of the system (topology)
and the intrinsic nature of the inter-node couplings (e.g., social
affinity, chemical bonds, traffic intensity, or neural connectivity
strength). In some cases, the properties of the inter-couplings
among system components and the corresponding spatial
embeddings even play a far more dominant role in regulating
the overall system behaviors and dynamics. For instance, the
atomic and molecular interactions among a chain of amino acids
definitively dictate not only the dynamical spatial conformation
of the corresponding protein but also its biological functionality.
The disturbance of normal protein interactions can lead to
irreversible pathological consequences known as proteopathies
like Alzheimer’s, Parkinson’s, and Huntington’s disease.
Therefore, the study of structural organization, formation and
dynamics of the complex systems can benefit from studying
their geometrical properties and discovering new relationships
between geometrical characteristics and network problems (e.g.,
community structure identification; Xue and Bogdan, 2017).
In this scenario, there is a network of interactions, in which
each gene is represented as a node, and its regulatory effect on
other genes is considered the links connecting it to other nodes.
These links can have zero (no effect), positive (up-regulation), or
negative (down-regulation) weight, forming a weighted signed
network. Such networks are called Gene Regulatory Networks
(GRN) (Barabasi and Oltvai, 2004; Hempel et al., 2011; Walhout,
2011; Peter and Davidson, 2015; Costanzo et al., 2016; Liesecke
et al., 2018; Huynh-Thu and Sanguinetti, 2019; Tieri et al.,
2019). Different methods exist to build a GRN by computing
a similarity, correlation or information-theory-based measure
between the vectors associated to genes (Hempel et al., 2011).

Since the advent of high-throughput measurement
technologies in biology in the late 90s, reconstructing gene
regulatory networks’ structure has been a central computational
problem in systems biology (Huynh-Thu and Sanguinetti,
2019). Despite the efforts, the exact causal relationships
between each pair of genes are unknown. Previous studies
report the individual gene expression dynamics as well as the

cross-dependency between them in the context of gene regulatory
network the dynamics between genes are fractal and long-range
cross-correlated (Ghorbani et al., 2018). Advanced analytical
tools to analyse the multiscale patterns that occur in natural
and synthetic biological systems, such as the methods reported
in previous study (Xue and Bogdan, 2017), will be needed
to develop a more complete and predictive understanding of
the mechanisms and consequences of collective behavior in
biological networks. Furthermore, discussion of gene expression
and interactions is highly complex, which is why higher-order
interactions are expected. One of the simplest interactions of a
higher than two orders is a third-order called Balance theory
(Marvel et al., 2011). We use Balance theory as the simplest
model that does not consider interactions independent of each
other and regards them as triadic interactions (Fritz, 1958;
Antal et al., 2005; Moradimanesh et al., 2020). Thus, we use the
simplification of considering the network as undirected and
independent of time.

In this step, Even though we know there are time lags in our
case, as we use Balance theory to discuss the characteristics of
the weighted gene networks, we need to consider the interaction
of genes statically, and this may be the next step in how to
incorporate the effect of time lag into the theory of balance.
This action requires improving and modifying the theory of
balance. One of the other limitations that we confronted was our
computational calculations limitation, which forced us to reduce
our network size. We tried to use methods that reduce the quality
of the deleted information as much as possible and achieve
significant results in the end. To assess the pairwise interaction
network structure, we use a maximum-entropy (Abellán and
Castellano, 2017) probability model to explore the properties
of the GRN. Such maximum entropy models have been widely
used in statistical physics, e.g., for Ising type interacting models
(Belaza et al., 2017; Nguyen et al., 2017). Physical systems in
thermal equilibrium are described by the Boltzmann distribution,
which has the maximum possible entropy given the mean energy
of the system (Jaynes, 1957; Hedayatifar et al., 2017).

METHOD

From Real Data to Gene Interaction
Network
The mRNA data (expression level) of 20,532 genes in the case
of Breast Cancer (BRCA: Breast invasive carcinoma) has been
downloaded from The Cancer Genome Atlas (TCGA) project
(NIH, 2006-2014; Weinstein et al., 2013). The data contain
114 normal and 764 cancerous samples, and the measurement
of the expression levels has been done with the technique
of RNA sequencing (RNA-Seq). We have used the Reads Per
Kilobase transcript per Million reads (RPKM) normalized data.
RPKM puts together the ideas of normalizing by sample and
by the gene. When we calculate RPKM, we are normalizing
for both the library size (the sum of each column) and the
gene length. In the following we had to reduce the number of
genes because it was difficult to handle a 20,532∗20,532 matrix
computationally. For each gene, we have calculated the variance
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of its expression level over its samples, and finally we have
stored the first 483 genes with the highest variance, which is due
to more different activity patterns these genes show (CCNSD,
2019). Note that there are so-called housekeeping genes that
typically get transcribed continually. These genes are required
to maintain basic cellular function and are expressed in all cells
of an organism under normal and pathophysiological conditions
(Butte et al., 2001; Eisenberg and Levanon, 2003; Zhu et al., 2008).
Some housekeeping genes are expressed at relatively constant
rates in most non-pathological situations.

Measuring interactions is difficult within a living cell,
but measuring abundances of components (mRNA levels)
is considerably easier. Therefore, from the experimental
data we wanted to reconstruct the gene-gene interactions
computationally based on a model, following the practice that
collective behaviors in such systems are described quantitatively
by models that capture the observed pairwise correlations
but assume no higher-order interactions (Schneidman et al.,
2006). By assuming a maximum entropy pairwise model, we
were looking for the interaction matrix J, whose every element
Jij is the strength of the net interaction between gene i and
gene j. In other words, the strength and sign of the interaction
represent the mutual influence on each other of a pair of genes’
expression levels. From the maximum entropy probability
distribution, we have constructed the energy function, which in
this case is an Ising-like model with long-range Ferro- as well
as antiferromagnetic couplings, which may lead to frustrated
triangles. The energy function for our problem can be written as:

H = −
∑

i<j

JijSiSj, (1)

where the expression level of gene i as a continuous real-valued
variable (a Gaussian field) is represented by Si. Using the energy
function above, we can write down the Boltzmann equilibrium
distribution as:

P({Si}) =
1

Z
exp (−

∑

i<j

JijSiSj). (2)

Z is the partition function, and we have subsumed temperature
into the couplings Jij without loss of generality. The interaction
matrix, J, is not known, and we wanted to learn/infer it (Nguyen
et al., 2017) from the experimental data. We want to infer all the
Jij as the parameters of our model. To this end, we have restricted
ourselves to a probabilistic model with terms up to second order,
which we have derived for continuous, real-valued variables. In
other words, ourmodel is constrained to generate the first and the
secondmoments which are exactly the same as what we find from
the experimental data (Stein et al., 2015). Thus, Pmust maximize
the Gibbs-Shannon entropy to infer the parameters of the model.

S[P] = −
∑

i<j

P({Si}) ln P({Si}). (3)

Using Lagrange multipliers, it can be shown (Stein et al.,
2015) that the desired model is a multivariate Gaussian

distribution, twice of its covariance is minus the inverse of the
interaction matrix.

P(S; 〈S〉;C) =
e−

1
2 (S−〈S〉)TC−1(S−〈S〉)

(2π)
L
2 det (C)

1
2

. (4)

So, within this approximation, we can write Jij = −C−1
ij .

L is the number of genes based on which we have built the
distribution. The elements of the matrix J are, by definition,
the effective pairwise gene interactions that reproduce the gene
profile covariances (Lee et al., 2014) exactly while maximizing
the entropy of the system. The inverse of the covariance matrix,
C−1, which is commonly referred to as the precision matrix,
displays information about the partial correlations of variables.
In practice, the precision matrix can be estimated by simply
inverting the sample covariance matrix, if a sufficiently large
number of samples are available. In our study, due to the lack of
enough samples, the inverse of the covariance matrix has been
obtained by means of the Graphical Lasso (GLasso) algorithm
(Friedman et al., 2008). GLasso is an algorithm to estimate the
inverse of the covariance matrix from the observations from
a multivariate Gaussian distribution. In statistics and machine
learning, lasso [least absolute shrinkage (Peterson and Ford,
2012) and selection operator] is a regression analysis method
that performs both variable selection and regularization in order
to enhance the prediction accuracy and interpretability of the
statistical model it produces. G-Lasso sparse the network in
such a way that it does not disrupt the overall properties of
the network. In sparsing a matrix, One of the problems is that
the threshold method in the network is severe. In this way, in
networks the threshold may eliminate weak links in favor of solid
links. But we know that some links are fragile, and their share
in the network is very high. For example, it connects part of the
network to another part, but it can be a strong link between the
network and the node that does not matter to us. The threshold
method eliminates the important weak link that connects the two
network parts—in contrast, keeping a strong link connected to
the trivial part of the network. We know that removing a strong
link that is only connected to an insignificant node does not
destroy the network properties while removing a weak link that
affects the network properties, G-Lasso is wary of such issues.

Following are step by step calculations in brief:

• Import Row data from TCGA Database, The mRNA
data(expression level) of 20,532 genes.

• Dimension reduction, keep genes with the highest variance
(483 genes).

• Calculate the covariance matrix of genes (483*483).
• Calculate J, inverse of the covariance matrix by G-Lasso

(Mazumder andHastie, 2012) approach tomake it sparse, with
penalty = 0.09.

• Calculate Energy-Energy matrix.

All of the calculations have been done in Python and MatLab. All
codes and results are available upon request1.

1https://ccnsd.ir/research/cancer-project/
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Frustration in Interaction Network
The positive (negative) value of the interactions implies that
increasing (or decreasing) a gene’s expression results in up-
regulating (down-regulating) of the other gene(s)’s expression(s),
respectively. J is the generalized adjacency matrix (Newman,
2018), representing the presence and weight of a link. Jij is the
strength of the interaction between gene i and gene j or in
network terms, the weight of the link i− j.

Let us now consider the local triangles; Groups with three
interacting genes forming a triangle of interactions in the
network. The triangle 1(i, j, k) is defined as balanced if the sign
of the product of its links is positive; JijJjkJki > 0, otherwise,
the triangle is imbalanced or frustrated; JijJjkJki < 0. We define
a triangle to be of type 1k if it contains k negative links. Thus,
1+++ and 1−+− are balanced, while 1+−+ and 1−−− are
imbalanced (Heider, 1946). The statistics of the analoges of these
imbalanced triangles have been shown to be relevant in systems
with signed interactions like randommagnets (Fischer andHertz,
1991) and social networks (Antal et al., 2005).

The notion of balance allows us to define an “energy
landscape” for such networks (Marvel et al., 2009; Górski et al.,
2017). For a triangle this is:

1ijk = Eijk = −JijJjkJki (5)

and by summing over all the Eijk the energy of the whole network
can be obtained (Krawczyk et al., 2019).

Etotal =
1

N

N∑

i,j,k=1

1ijk (6)

Note that this energy is different from that of (1) and serves
to characterize the triangles, while H was used to calculate the
interactions from the measured expression strengths. Energy
counts the number of triangles and does not indicate where
the triangles are. The correlation between triangles shows which
triangle with energy Ek has a common link with which triangle
with energy El.

Ckl =
1

N

N∑

i,j,k=1

1kij1lij (7)

This equation answers the question that a triangle with preferred
energy is adjacent to which triangle. Ckl can be positive, negative,
or zero. A positive Ckl means that a balanced triangle links to
another balance triangle. A negative Ckl indicates that a balanced
triangle links to another imbalance triangle. Finally, Ckl zero
means there is no preference and link between two triangles.

RESULTS

We have calculated the distributions of the energies of different
types of triangles in both cancerous and normal data-sets and
observed the following results (Figure 1). (i) In all the cases,
the energy distributions of all types of triangles are fat-tailed.
(ii) The distributions of imbalanced (frustrated) triangles, 1+−+

(Figure 1B) and 1−−− (Figure 1A), do not show noticeable
differences between cancerous and normal data. (iii) In the
cancerous network 1+++ (Figure 1C) triangles and normal
network1−+−-types (Figure 1D) are less. The total energy of the
cancerous network is 27,239 units and total energy of the normal
network is 35,984 units. So the total energy of the cancerous
network is lower than that of normal network.

In order to see if the effect comes from structural correlations
specific to the differences between the normal and cancerous
data, we have shuffled the links in the networks. This was
carried out by swapping endpoints of randomly selected pairs
of links many times, which is a standard procedure to produce
degree preserving random reference networks. The energy
difference between the shuffled networks is 280 units which
is one order of magnitude less than in the original case.
Moreover, the distribution profiles change dramatically for the
shuffled network.

The next question we have studied was about the distribution
of triangles with different energies in the networks and their
relationships. For this purpose, we coarse grain the network
such that balanced and imbalanced triangles are represented as
green and red nodes, respectively. Two coarse-grained nodes
are connected if their corresponding triangles have one edge
in common. We calculate the energy-energy mixing pattern
(Newman, 2002) between the triangles. The plots in Figures 1E,F
shows how many triangles with different energies are connected.
Notice that this matrix is rather sparse reflecting that only low
number of the triangles have links in common. In the normal
network, frustrated triangles are packed together and they form
a kind of module while in the cancerous network they have a
more heterogeneous pattern of connections and they are mixed
with balanced triangles. Moreover, triangles with higher absolute
valued energies are connected to ones with lower absolute valued
energies. In both cases, we see triangles with lower energies
are more connected to each other. Triangles in the cancerous
network do not tend to distribute evenly in a particular region of
energy-energy space. In fact the energy pattern in the normal case
is more localized and assortative. Another result is that in both of
the networks so many triangles do not have a link in common.

Having more energy for a cell, in this context, means that
there is more tendency toward changing the states of the
triangles. In the case of cancerous network, we have seen that
triangles exhibit a lower chance of being changed. On the
other hand, we see frustrated triangles are somehow uniformly
distributed in the cancerous coarse-grained network while they
are more localized in the normal coarse-gained case. These
facts are mimicked in the Figure 2. Inspired by the concept
of Balance theory in social science (Sheykhali et al., 2020),
we saw that the interaction network of the normal case has
more imbalanced (frustrated) triangles and more energy as a
consequence. This energy has been defined in a social context
giving a good clue to look at the system of genes as a social
system. Not only genes cannot live independent of each other,
but they also must pay the cost of living together! Note that
changing the expression of a gene can have drastic consequences
(Witthaut and Timme, 2013). Our analysis reveals the fact
that to get a true picture of biology at the cell level, it is
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FIGURE 1 | (A–D) Log-log plot of the distributions of triangles vs their absolute energy. All distributions are fat-tailed. (A) 1−−−, (B) 1+−+, (C) 1+++, and (D) 1−+−.

Note the differences in the profile of 1+++ and 1−+− in cancerous and normal case. (E,F). In cancerous (right) and normal (left) cells triangles with different energies

are connected to each other differently. The energy pattern in the normal case is more localized and assortative.

essential to know the connections and their type between
the genes.

Applying maximum entropy and Ising models for identifying
the interactions between genes and the use of balance theory
is a new perspective discussed in this article, which also has its
limitations. One of the limitations is that the maximum entropy
assumes the gene expression as an equilibrium process which
lacks time-varying properties. Several studies have mentioned
the existence and implications of multi-fractal dynamics in gene
expression, proteomics, and physiological processes. However,

there are various valuable studies on GRN as well that, despite
this limitation, have considered gene expression in equilibrium.
In this step, even though we know there are time lags in our
case, as we use balance theory to discuss the characteristics of
the weighted gene networks, we need to consider the interaction
of genes statically. Incorporating the effect of time lag into
the theory of balance may be the next step, which requires
the extension and modification of the balance theory. The
other limitation we have confronted was the computational
calculations limitation, which forced us to reduce the network
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FIGURE 2 | A representation of energy-energy matrix and a schematic diagram of how high-energy frustrated (imbalanced) triangles are distributed in the network of

triangles (frustrated triangles, red nodes and balanced triangles, green nodes) in the normal and cancerous network. Compared to the cancerous cell, the normal cell

is at a higher energy level, resulting in more likely altering the configuration of the triangles. On the other hand, frustrated triangles are more connected to the

cancerous triangle network.

size. We have conducted methods that reduce the quality of the
deleted information as much as possible and achieve significant
results in the end.

CONCLUSION

Cancer has been commonly known as a group of diseases
of the genes and there has been a huge effort to find the
effective genes responsible for different cancers. Thanks to
such reductionist approaches, we now know some specific
genes for some cancers. Genes, however, are not independently
functioning in the cell and their expressions are strongly
correlated with each other. Recently, it has been recognized that
the regulatory effects between the genes can be represented by a
gene-gene interaction network and the structure of this network
is essential in understanding the collective phenomena, which
play a role in developing cancer-related studies. Our results
contribute to this line of research (Rabbani et al., 2019). We have
presented a formalism, by which we arrived from the data about
gene expressions to an interacting network model, where the
interactions were inferred using the maximum entropy principle.
The resulting signed weighted network (Saeedian et al., 2017) was
analyzed from the balanced and imbalanced triangles perspective.
We have found significant differences between normal and
cancerous cell GRN-s: There are more imbalanced triangles in

normal GRN-s than in cancerous ones and the correlations
between such triangles are also different in these two networks.
Further investigations are indeed valuable to study when the
observed differences develop and whether our observations can
be used for diagnostic purposes.
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